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Recent large-scale cDNA sequencing efforts show that elaborate patterns of splice variation are responsible for much
of the proteome diversity in higher eukaryotes. To obtain an accurate account of the repertoire of splice variants, and
to gain insight into the mechanisms of alternative splicing, it is essential that cDNAs are very accurately mapped to
their respective genomes. Currently available algorithms for cDNA-to-genome alignment do not reach the necessary
level of accuracy because they use ad hoc scoring models that cannot correctly trade off the likelihoods of various
sequencing errors against the probabilities of different gene structures. Here we develop a Bayesian probabilistic
approach to cDNA-to-genome alignment. Gene structures are assigned prior probabilities based on the lengths of their
introns and exons, and based on the sequences at their splice boundaries. A likelihood model for sequencing errors
takes into account the rates at which misincorporation, as well as insertions and deletions of different lengths, occurs
during sequencing. The parameters of both the prior and likelihood model can be automatically estimated from a set
of cDNAs, thus enabling our method to adapt itself to different organisms and experimental procedures. We
implemented our method in a fast cDNA-to-genome alignment program, SPA, and applied it to the FANTOM3 dataset
of over 100,000 full-length mouse cDNAs and a dataset of over 20,000 full-length human cDNAs. Comparison with the
results of four other mapping programs shows that SPA produces alignments of significantly higher quality. In
particular, the quality of the SPA alignments near splice boundaries and SPA’s mapping of the 59 and 39 ends of the
cDNAs are highly improved, allowing for more accurate identification of transcript starts and ends, and accurate
identification of subtle splice variations. Finally, our splice boundary analysis on the human dataset suggests the
existence of a novel non-canonical splice site that we also find in the mouse dataset. The SPA software package is
available at http://www.biozentrum.unibas.ch/personal/nimwegen/cgi-bin/spa.cgi.
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Introduction

Recent large-scale sequencing projects such as FANTOM3
[1] have started to unveil the complexity of the mammalian
transcriptome. Data from such projects provide a unique
opportunity for an in-depth investigation of the mechanisms
that lead a single region in the genome to produce a myriad
of transcript forms through variation in the transcription
initiation site, the transcription termination site, and the
combination of splice sites used. In order to perform such an
analysis it is essential that the mapping of the observed
transcripts to the genome from which they derive is highly
accurate. For instance, the study of the structure of basal
promoters and of the mechanism of alternative transcription
initiation requires that the starts of transcripts are correctly
mapped. Similarly, the study of important regulatory ele-
ments such as microRNA binding sites requires that the ends
of the transcripts are accurately mapped and the 39 UTRs are

correctly identified. For learning more about the mechanism
and regulation of alternative splicing, it might well be that the
most informative transcripts are those with rare splice
variations, potentially including errors of the splicing
machinery. The mapping program thus should reliably
identify these cases as well.
Currently available algorithms for mapping cDNAs to the

genome fail to reach the required level of accuracy for
various reasons. Structurally, the most significant problem
with existing mapping algorithms is that they use ad hoc
scoring schemes for defining the quality of different align-
ments. Some programs, e.g., Sim4 [2], cannot properly deal
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with non-canonical splice boundaries and sometimes intro-
duce multiple errors in the alignment around the splice
boundary to force the canonical, GT-AG, pair of splice
signals. Other programs, e.g., BLAT [3], do not explicitly
distinguish between small introns and small deletions caused
by sequencing errors. Finally, a significant fraction of all
mapping errors are caused by the general inability of the
algorithms to correctly map the starts and ends of the
transcripts.

Here we introduce SPA, a novel algorithm for spliced
alignment that is based on a Bayesian probabilistic model for
mapping cDNAs to the genome and identifying their gene
structures. Using a set of parameters that can be estimated in
a dataset- and organism-specific way, SPA searches for the
mapping with maximal posterior probability. Extensive
comparisons between SPA, Sim4 [2], GMAP [4], BLAT [3],
and Spidey [5] on mappings of full-length human cDNAs
show that SPA performs significantly better than each of the
other algorithms. Our main application is the mapping of the
more than 100,000 full-length cDNAs of the FANTOM3
dataset [1]. We show that SPA’s alignments are significantly
more accurate than those that were obtained for the
FANTOM3 project [1] using the BLAT program [3] with the
–fine option and post-processing of the output to identify the
intron/exon structure.

Results

Trading Off Sequencing Errors and Gene Structures:
Bayesian Probabilistic Model

For a given cDNA we want to infer the set of exons in the
genome from which it derives. That is, we want to align the
cDNA with the genome and indicate in this alignment where
exons start and end. For simplicity, we will refer to such a
combination of an alignment and identification of exon
boundaries as a mapping of the cDNA. To evaluate the quality
of different mappings it is essential to take into account both

the sequencing errors that they imply as well as the gene
structures that they imply. On the one hand, we know that
sequencing errors are quite rare and that, roughly speaking,
the fewer mismatches, insertions, and deletions there are in
the alignment, the more likely the alignment is. On the other
hand, one can always ‘‘perfectly’’ align a cDNA to the genome
as long as one allows an arbitrary number of arbitrarily small
exons separated by arbitrarily small introns, e.g., by letting
each nucleotide form an exon by itself. However, it is clear
that the resulting gene structure would be extremely unlikely.
To correctly evaluate the quality of different mappings one
thus has to trade off the likelihood of various sequencing
errors against the likelihood of different gene structures.
To combine the probabilities of the gene structure and the

sequencing errors in a systematic way we use a Bayesian
approach. Depending on the organism under study, we assign
different prior probabilities to different gene structures. In
our model the prior probabilities of gene structures depend
on the lengths of their exons and introns, and on the
sequences occurring at their splice boundaries. This prior
over gene structures is then combined with a likelihood
model for different sequencing errors. Each possible map-
ping implies a transcript, and this transcript generally differs
from the observed cDNA by a number of single-base
mutations, insertions of bases into the cDNA that were not
present in the transcript, and deletions of bases from the
cDNA that were present in the transcript. The likelihood
model assigns the probability that, starting from a given
transcript, sequencing errors would lead to the observed
cDNA. In this model we assume that bases are mutated at a
constant rate during sequencing, and that insertions and
deletions of different lengths occur at different rates.
Formally, given a cDNA c, the genome g, and a hypothesized

mapping m, we have a prior probability P(mjg) for the gene
structure that the mapping implies, and a probability P(cjm)
for the sequencing errors that the mapping implies. Using
Bayes’s theorem the posterior probability P(mjc,g) for a
mapping given both cDNA and genome is

Pðmjc; gÞ ¼ PðcjmÞPðmjgÞP
m9 Pðcjm9ÞPðm9jgÞ ; ð1Þ

Our alignment algorithm attempts to find, for a given cDNA
c, the mapping m that maximizes this posterior probability
P(mjc,g).

Estimating Model Parameters
The likelihood of different gene structures generally varies

between organisms. Similarly, the rate at which different
errors occur during sequencing generally varies between
different sequencing technologies. In contrast to existing
algorithms that use a single scoring function for all organisms
and experimental technologies, our algorithm adapts its
scoring function by adapting the prior P(mjg) over gene
structures to the organism from which the cDNAs derive, and
the likelihood model of sequencing errors P(cjm) to the
experimental technology used.
As detailed in the Materials and Methods, in our model the

distributions P(mjg) and P(cjm) are specified by a number of
parameters such as the distribution of intron lengths, the
probabilities of different sequences at the splice boundaries,
and the rates at which mutations, insertions, and deletions of
various lengths are introduced during sequencing. These
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Synopsis

A prerequisite for the identification and analysis of splice variation in
the transcriptomes of higher eukaryotes is the very accurate
mapping of cDNAs to their genomes. However, current algorithms
use ad hoc scoring schemes that cannot correctly trade off the
likelihoods of different sequencing errors against the likelihoods of
different gene structures.

In this paper the authors develop a Bayesian probabilistic approach
to cDNA-to-genome mapping that combines explicit models for the
prior probabilities of different gene structures with the likelihoods of
different sequencing errors. The parameters of these probabilistic
models can be estimated automatically from the input such that the
mapping procedure is automatically adapted to the organism and
sequencing technology of the data under study.

The authors implement their approach in a fast mapping algorithm
called SPA and apply it to a dataset of human full-length cDNAs and
the FANTOM3 dataset of mouse full-length cDNAs. Comparisons
with four other mapping algorithms show that SPA produces
mappings that are significantly more accurate, with the largest
improvements in the mappings of the 59 and 39 ends of the cDNAs,
and the mappings around splice boundaries. The authors also
identify a novel set of putative splice sites in the human dataset.



parameters are either estimated directly from the dataset
under study or estimated from an external set of reference
alignments. In the first approach, we start by mapping the
dataset of cDNAs with a default set of parameters and then
estimate the parameters of the distributions P(mjg) and P(cjm)
from the resulting ‘‘reference’’ alignments. A second round of
alignments is then performed with these new parameters. If
necessary this procedure can be iterated more than once. If
an external set of reference alignments is provided, we
estimate the parameters of the distributions P(mjg) and P(cjm)
directly from these reference alignments.

Part of the estimation procedure involves the estimation of
the splice boundary probabilities P(s1s2s3s4), i.e., the proba-
bility that an intron will start with bases s1s2 and end with
bases s3s4. To this end we could of course simply count the
frequency with which the boundaries s1s2s3s4 occur in the set
of reference alignments. However, as illustrated in Figure 1,
many of these boundaries are ambiguous. That is, the
boundary can be put in multiple places without introducing
any mismatches or gaps into the alignment. Since the
placement of these ambiguous boundaries in the reference
alignments is very sensitive to the details of the scoring
function that produced the reference alignments, the
frequency of boundaries s1s2s3s4 in the reference alignments
might be highly biased.

As detailed in the Materials and Methods we calculate a
probability for all possible ways in which ambiguous splice
boundaries in the reference alignments can be assigned (i.e.,
shifted left or right) and use a Monte-Carlo Markov chain to
sample the space of all possible boundary assignments in
proportion to their probability. We set P(s1s2s3s4) equal to the
frequency with which each boundary s1s2s3s4 occurs during
this sampling. Roughly speaking, the assignments that
contribute most to the average are those that lead to
distributions P(s1s2s3s4) that have low entropy. We confirm
that our sampling has converged by performing multiple
sampling runs.

Finally, we have observed that in both the human and
mouse full-length cDNA datasets, a small fraction of the
cDNAs show a much higher rate of misincorporation than the
others. To optimize the mappings of these cDNAs, our
parameter estimation procedure also identifies the subset of
cDNAs that belong in this high misincorporation-rate class,
estimates their average misincorporation rate, and remaps
them with the misincorporation-rate parameter set to this
higher value.

Alignment Algorithm
As shown in the Materials and Methods, finding the optimal

mapping m with maximal posterior probability P(mjc,g)
reduces to finding the optimal alignment of the cDNA c to
the genome g under an appropriate scoring scheme derived
from our probabilistic model. In addition, the maximally
scoring alignment can be determined by dynamic program-
ming.
Formally, with s(i,j) being the score of an optimal alignment

that ends with position i in the cDNA being mapped to
position j in the genome, this score can be determined by the
recursion relation

sði; jÞ ¼ max
i9 , i; j9 , j

ðsði9; j9Þ þ s½ði; jÞjði9; j9Þ�Þ; ð2Þ

where the score s[(i, j)j(i9, j9)] is the change in alignment score
associated with extending the optimal alignment ending at
(i9,j9) by adding the single pair of mapped bases (i,j). Apart
from the score associated with the matching or mismatching
of the bases at i and j, the score s[(i, j)j(i9, j9)] also incorporates
the contribution of the (possible) gaps associated with leaving
bases i9 þ 1 through i � 1 of the cDNA unmapped, and
skipping bases j9þ 1 through j� 1 in the genome. The latter
may involve an intron.
Note that, in contrast to scoring models that use affine gap

penalties, our much more general scoring of insertion,
deletion, and intron lengths forces us to consider all pairs
of positions (i9, j9) with i9 , i and j9 , j. Therefore, although we
can theoretically determine the optimal score rigorously
using the dynamic programming recursion (Equation 2) on
the full dynamic programming matrices formed by the cDNA
and each of the chromosomes, it is computationally infeasible
to map cDNAs using this scheme and we therefore developed
a heuristic approach, which is illustrated in Figure 2.
We first use the BLAT gfServer [3] to determine a set of

genomic loci to which the cDNA might map. We separately
find the best alignment to each of these loci and choose the
overall optimal alignment at the end. For each of the loci we
then find a set of ‘‘defined positions.’’ The defined positions
(i,j) consist of all areas in the alignment matrix that show
significant homology between the cDNA and the genomic
locus and are shown as the red diagonals in the top alignment
matrix on the right in Figure 2. The defined positions are
identified by first finding all k-mer matches between locus
and cDNA, extending these diagonally up to the first
mismatch on each side, and adding a ‘‘fuzz’’ of defined
positions at both ends of the diagonal. In the next step an
optimal alignment is found by applying the dynamic
programming recursion (Equation 2) only to the set of
defined positions. For each defined position (i,j), shown as a
green square in the second diagram on the right in Figure 2,
we find the maximum alignment score obtained by extending
the optimal alignment ending at any of the previous defined
positions (i9, j9), shown as the red squares in the same diagram.
We also record the position (i9, j9) that leads to the optimal
mapping at (i, j). When all s(i, j) are calculated we can trace
back the optimal alignment as usual.
We then iteratively check the alignment for problem areas

such as unmapped cDNA nucleotides and non-canonical
splice boundaries, and add defined positions in the problem
areas. When there are unmapped cDNA bases at the 59 or 39

end we also extend the genomic locus at the corresponding

Figure 1. Example of an Ambiguous Splice Boundary

Because a few nucleotides at the start of the intron match the
nucleotides at the start of the neighboring exon, the splice boundary
can be positioned in multiple ways without introducing mismatches. The
different possible boundaries are indicated in different colors.
DOI: 10.1371/journal.pgen.0020024.g001
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end or ends and search for defined positions between the
unmapped 59 or 39 end of the cDNA and the added genomic
segment. This ‘‘re-tiling’’ procedure is illustrated in the
diagram at the bottom right in Figure 2. The blue line shows
the best alignment through the current set of defined
positions. There are two segments of the cDNA that remain
unmapped in this alignment and these define the ‘‘problem
areas’’ shown as orange boxes in the diagram. We then
identify additional defined positions in these areas at a finer
resolution than before, i.e., we decrease k. The new defined
positions are shown as the two red diagonals. Every time new
defined positions are added to the matrix we recalculate the
globally optimal alignment afresh and check it for problem
areas. This iterative procedure ends when no more problem
areas exist, when no more defined positions can be added to
the matrix, or when the number of defined positions exceeds
a prespecified maximum. The last condition guarantees that
the time that the algorithm spends on a given cDNA stays
within a strict upper bound.

Finally, since a small fraction of the cDNAs are erroneously
reverse-complemented with respect to the transcript from
which they derive we also determine the optimal alignment
for the reverse-complement of the cDNA, and we take into
account the small prior probability that the cDNA was
reverse-complemented in the sequencing process. SPA
reports the alignment with maximal posterior probability
over all loci and orientations. Details of the procedure are
described in the Materials and Methods.

Running Times
The speed of the mapping is a considerable challenge. For

example, to map 1 million cDNAs within a week on a cluster
with 100 CPUs, the algorithm cannot take more than 1 min
per cDNA. Ideally the mapping should take no more than
seconds per cDNA on average. However, some transcripts are
very long, derive from large paralogous gene families, and can

therefore be mapped to many different loci in the genome,
some of which may be as long as 1,000,000 nucleotides. In
addition, some loci may contain highly repetitive areas that
give a very large number of significant local alignments that
all need to be checked in order to determine which alignment
gives the globally optimal score. When multiple sequencing
errors fall within a small exon that is flanked by large introns
in the genome the algorithm will have to search the entire
genomic region at a fine resolution to discover the exon.
Given these complications, it is simply impossible to produce
accurate alignments in a matter of seconds for all transcripts.
However, there are also many short single-exon transcripts
that map without any, or with very few, errors to only one
place in the genome. These transcripts can obviously be
accurately mapped in much less than a second.
An efficient alignment algorithm should thus take into

account the large variation in mapping difficulty for different
cDNAs, quickly dispensing with cDNAs that are easy to map
and detecting automatically when more time is needed for
more complicated cases. As illustrated in Figure 3, this is
naturally achieved by our iterative scheme that checks the
current best alignment for problem areas and extends the
number of defined positions in these areas by performing a
finer resolution homology search. The figure shows the
distribution of SPA’s running time on all cDNAs of the
FANTOM3 dataset. The average time per cDNA for this set of
102,793 cDNAs was 23.6 s. This is comparable to the time
BLAT takes when run with the –fine option. The running
time of individual cDNAs varies over six orders of magnitude
from less than 0.01 s to several hours. The vast majority of
cDNAs map in less than a second, a few percent take on the
order of minutes, and a very small number of cDNAs take
more than an hour. More detailed analysis of a number of
examples shows that there are several reasons why some
cDNAs take such a long time to map. Most of these cDNAs
can be mapped to multiple locations in the genome (often

Figure 2. Schematic Summary of the SPA cDNA-to-Genome Mapping Algorithm

DOI: 10.1371/journal.pgen.0020024.g002
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more than ten), and SPA attempts an alignment at each locus.
At many of these loci only part of the cDNA can be mapped,
and this will lead to unmapped pieces at the 59 or 39 end in
the initial alignment. SPA will then extend the loci at the
corresponding ends and re-tile these regions at ever finer
resolution in an attempt to map the unmapped 59 and 39

ends. At every step of this re-tiling a significant number of
defined positions are added, and SPA has to perform the
dynamic programming to identify the best alignment through
these positions at every step. Another reason for long
running times is that some cDNAs contain a significant
amount of repetitive sequence, which produces a very large
number of defined positions in the dynamic programming
matrix.

To give a specific example, the cDNA with RIKEN identifier
F830048L18 took almost 4 h to run. SPA considered 20
different loci for this cDNA, one of which was on Chromo-
some 1 and the other 19 of which were on pieces of
unassembled chromosome. The initial alignments of 15 of
these loci all had unmapped 39 ends of about 75 nucleotides.
For all 15, SPA extended the locus at the 39 end (by 50
kilobases), and then re-tiled this area with finer and finer tile
size in an attempt to map the 39 end piece. This failed in all 15
cases. For the other five loci the initial alignment had an
unmapped piece at the 59 end. For these loci SPA extended
the loci at the 59 end and re-tiled with finer tile size. For one
of the loci (locus 4) this led to a successful mapping of the
piece at the 59 end. This final alignment contains three exons
in a genomic locus of 2,013 nucleotides.

Results for Human Full-Length cDNAs
As an initial test of SPA, and to extensively compare its

performance with other algorithms, we used a recent dataset
[6] of 20,207 human full-length cDNAs. (The paper mentions
over 21,000 cDNAs, but we only found GenBank records for
20,207.) We mapped the cDNAs of this dataset using SPA,
Sim4 [2], Spidey [5], BLAT [3], and the recently published
algorithm GMAP [4] (see Materials and Methods for details).
Sim4, BLAT, and Spidey were chosen because they are the
most commonly used spliced alignment algorithms, and
GMAP was chosen because it is a recent fast algorithm that

is reported [4] to produce mappings that are in quality
comparable to or better than those that BLAT produces.
Evaluating the quality of the mappings produced by the

different algorithms is complicated by the fact that we
obviously do not know what the ‘‘correct’’ mapping is for
each cDNA. In fact, deciding which of several mappings for a
single cDNA is the best is equivalent to defining a scoring
model for cDNA mappings. Since we are of the opinion that
SPA’s scoring model is by far the most realistic and
sophisticated model available, we believe that a higher
scoring under this model is a good proxy for higher quality
of the mappings. Thus, as a first test we scored each
algorithm’s mappings using SPA’s scoring model, and
compared the scores with the scores of SPA’s mappings.
The results are shown as the solid lines in Figure 4. In each
panel the solid green line shows the distribution of the score
differences for cDNAs for which SPA has a higher scoring
mapping, and the solid red line shows the distribution of
score differences for cDNAs for which the other algorithm
scores higher. For example, the top left panel shows that
there are over 6,000 cDNAs for which SPA’s mapping scored
better than Sim49s mapping, versus only 210 cDNAs for which
Sim4 scored better. There are almost 4,000 cDNAs for which
the score difference in SPA’s favor is at least ten, and a little
over 700 cDNAs for which the score difference is at least 100.
In contrast, there are only about 200 cDNAs for which Sim49s
mapping is better by at least ten, and less than 40 for which
the difference is at least 100 in Sim49s favor. To give an
indication of the scale of these score differences, a difference
of 100 corresponds to between 30 and 60 more matched
nucleotides. We see that, for all four algorithms, the number
of cDNAs for which SPA scores better is at least ten times as
high as the number of cDNAs for which the other algorithm
scores better.
Although we believe these results provide strong evidence

that SPA produces higher quality mappings, one could always
argue that the apparent higher quality of SPA’s mappings
under this scoring model is simply a result of the fact that
SPA used the same model to produce the mappings and does
not necessarily indicate higher quality mapping. To address
this we performed the same comparisons using scoring
models that are adapted to the mappings of each of the
other algorithms. That is, for each other algorithm, we ran
our parameter estimation procedure to infer the mismatch
probability pmm, the splice boundary probabilities
Psb(s1s2s3s4), and the probability distributions of insertions
Pi(k), deletions Pd(k), and intron lengths Pint(k) that maximize
the overall probability of this algorithm’s mappings. We then
compared the mappings of SPA and each other algorithm
under the optimal scoring model for that algorithm. The
results are shown as the dashed lines in Figure 4. One can see
that the distributions of score differences between SPA and
the other algorithms are highly robust under the change of
the scoring function.
The dashed lines substantially deviate from the solid lines

only for very high score differences in SPA’s favor and for
small score differences in the other algorithm’s favor. These
observations can be understood as follows. Almost all
mappings that have a much higher score under SPA’s scoring
contain one or more very short introns of length less than 30
in the other algorithm’s mapping. SPA’s scoring highly
penalizes these short introns (see Materials and Methods),

Figure 3. Distribution of Running Times of SPA on All 102,143 cDNAs of

the FANTOM3 Dataset

The horizontal axis shows the time in seconds, and the vertical axis
shows the fraction of all cDNAs that took longer than the corresponding
time to finish. Both axes are shown on a logarithmic scale.
DOI: 10.1371/journal.pgen.0020024.g003
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but under the algorithm’s own scoring model this penalty is
significantly reduced. This causes the difference in the green
lines at very high score differences.

Mappings with very small score differences generally only
differ in their choice of splice sites or by subtle differences in
the assignment of mismatches and gaps. For example, one
mapping may have a single insertion of length six and the
other mapping two insertions of length three. For such cases
SPA’s scoring slightly prefers SPA’s mapping and the other
algorithm’s scoring slightly prefers its own mapping. Because
the large majority of cases for which the other algorithm
scored better involved only small differences, changing from
SPA’s scoring model to the other algorithm’s scoring model
causes the number of such cases to increase significantly. In
contrast, because the large majority of mappings for which
SPA scored better involved larger differences, the total
number of cDNAs for which SPA scored better is affected
relatively little by changing the scoring function. Mappings
with differences of ten or more differ substantially, e.g., by
the mapping of an additional exon or a 59 or 39 end that is
unmapped in the other mapping, and changes to the scoring
hardly affect the score difference between such mappings.

In summary, for each algorithm, and independent of the
scoring function’s parameters, SPA produces a better align-
ment on about 25% (over 5,000) of the cDNAs, a substantially
better alignment on at least 5% (1,000 or more) of the cDNAs,
and a very large improvement for a few percent of the cDNAs
(200 or more).

Given that, for the solid lines in Figure 4, we use our own
scoring function for assessing the quality of the mappings,
and given that SPA of course attempts to find the mapping
with maximal score, one may wonder why there are any
cDNAs at all for which the other algorithms find mappings
that are considered better under SPA’s scoring model (the
solid red lines). The reason is that, because of time

constraints, we used a heuristic algorithm to find the best
alignment. The red curves thus indicate cases for which our
heuristic algorithm failed to find the alignment with optimal
score. Fortunately, these cases are rare, amounting to about
1% of the cDNAs. Cases where SPA’s mapping has a lower
score by a large amount are rarer still.
All these comparisons still depend on a scoring function

for evaluating the quality of the mappings. We additionally
compared the mappings in a number of ways that are
completely independent of a scoring model. First, in Figure 5
we compare a number of global statistics across the mappings
of the different algorithms (a much more detailed table of
global statistics is provided in Table S1). In the bar chart in
the upper left of Figure 5 we show the relative numbers of
errors of different types in the mappings of the five
algorithms. We have rescaled the bars such that, for each
type of error, the total number of errors in the SPA mappings
is set to one.
In an ideal situation every cDNA nucleotide would be

mapped to a matching nucleotide in the genome. SPA has a
total of 472,392 nucleotides that are not mapped to matching
nucleotides in the genome, which corresponds to just under
1% of all nucleotides in the data. The top five bars in the bar
chart in Figure 5 show the relative numbers of unmatched
bases in the tested algorithms. We see that all other
algorithms have over 20% more unmatched bases than SPA.
The pie charts in Figure 5 show how these unmatched
nucleotides are distributed over different types of errors for
each of the algorithms. All algorithms failed to produce
mappings for some of the cDNAs (see Materials and Methods).
As the pie chart for Spidey shows, unmapped cDNAs account
for almost half of Spidey’s unmatched nucleotides. Unmap-
ped cDNAs also account for a significant fraction of GMAP’s
unmatched nucleotides, and for a moderate fraction of
BLAT’s unmatched nucleotides. For the large majority of

Figure 4. Distributions of Differences in the Log-Posterior Probability of the Mappings of the Human cDNAs

Shown are the differences between SPA and Sim4 (top left), GMAP (top right), BLAT (bottom left), and Spidey (bottom right). The green curves show the
distributions of score differences for the cases in which SPA had a higher scoring mapping, and the red curves show the distributions of score
differences for mappings where the other algorithm had a higher scoring alignment. The solid lines were obtained using SPA’s scoring function and the
dashed lines using for each algorithm the scoring function that maximizes the posterior probability of the entire set of mappings of that algorithm. All
axes are shown on logarithmic scales.
DOI: 10.1371/journal.pgen.0020024.g004
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these cDNAs, BLAT and GMAP simply did not report a
significant alignment. SPA and Sim4 did produce alignments
for most of these cDNAs, but manual inspection revealed that
these were typically very low quality alignments with only a
small fraction of the cDNA mapped. We suspect that many of
these cDNAs are experimental artifacts, including chimeric
cDNAs.

Unmapped nucleotides at the 59 and 39 ends of cDNAs
account for more than half of the unmatched nucleotides for
all algorithms but Spidey. As shown in the second set of bars
in the upper left in Figure 5, all other algorithms have
substantially more nucleotides in these unmapped ends than
SPA. As shown in Table S1, unmapped poly-A tails account
for only a small proportion of these unmapped ends (see also
Materials and Methods). The difference between SPA and the
other algorithms is caused mostly by SPA’s ability to identify
additional 59 or 39 exons that the other algorithms miss. For
these cases we often found that one or more initial/terminal
exons were separated from the other exons by a region in
which the quality of the mapping was poor, containing an
internal piece of the cDNA that could not be mapped at all.
Frequently there are assembly gaps in these regions as well,
and we suspect that misassemblies occur in some of these
regions. The other algorithms, but in particular GMAP, tend
not to extend their mappings beyond problematic areas,
which causes them to miss the initial/terminal exons that lie

beyond this region and that can be accurately mapped. As a
result of this, the number of internal insertions is much
smaller for GMAP than for the other algorithms.
The bottom two sets of bars in Figure 5 compare the

quality of the mappings around the splice boundaries (see
Materials and Methods for details). We see that SPA had fewer
errors (mismatches, insertions, and deletions occurring with-
in ten nucleotides of splice boundaries) and that the fraction
of splice boundaries that do not match any of the known
boundaries, i.e., the canonical GT-AG, the non-canonical GC-
AG, or the U12 spliceosome boundary AT-AC, was lower for
SPA than for any of the other algorithms. Sim49s mappings
contained almost twice as many errors around splice
boundaries as SPA’s mappings. The main reason for this is
that Sim4 attempts to find canonical GT-AG splice sites and
that it is willing to introduce multiple mismatches and
insertions to accomplish this. In contrast, BLAT’s mappings
contained only a few more errors around splice boundaries,
but BLAT’s mappings contained a much higher fraction of
boundaries that do not match any known splice site.
Table 1 shows the ten most frequent splice sites in the SPA,

Sim4, and Spidey alignments with their associated frequen-
cies. We found that the canonical GT-AG signal and non-
canonical GC-AG signal used by the U2 spliceosome [7] were
the two most abundant boundaries for all five algorithms.
Interestingly, in spite of Sim49s strong preference for canon-

Figure 5. Comparison of Global Mapping Statistics for the Mappings of the Human cDNAs for SPA, Sim4, GMAP, BLAT, and Spidey

The bar chart shows the relative numbers of nucleotides in different types of errors between SPA and the other algorithms. The number of splice
boundary errors is defined as the number of nucleotides in mismatches, insertions, and deletions that occur within ten alignment positions of a splice
boundary. The fraction of unknown splice boundaries is the fraction of all splice boundaries that do not contain a GT-AG, GC-AG, or AT-AC splice
boundary. The numbers of errors in SPA are scaled to one. The pie charts show the percentages of the unmatched nucleotides in each of the
algorithms’ mappings that are the result of unmapped cDNAs (dark blue), unmapped 59 and 39 ends (light blue), internal insertions (green), and
mismatches (red).
DOI: 10.1371/journal.pgen.0020024.g005
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ical boundaries, and its willingness to allow errors around the
splice boundaries to accommodate them (see Figure 5), it still
ended up with a lower frequency of GT-AG boundaries than
the mappings of SPA, GMAP, and BLAT. Spidey had an even
lower frequency of canonical GT-AG. The overall frequency
of GT-AG boundaries was a bit higher in GMAP’s mappings
than in SPA’s mappings. This is the result of the relatively
high frequency of non-canonical boundaries in areas of the
cDNAs that remain unmapped in GMAP’s mappings. When
we restricted the analysis to splice boundaries that lay in
areas of the cDNAs that were mapped by both SPA and
GMAP, SPA had a higher frequency of GT-AG boundaries
than GMAP.

Both BLAT and Sim4 showed a disproportionately high
number of CT-AC boundaries. In the case of BLAT this is a
result of the fact that it does not consider the possibility that
the cDNA has been misoriented, whereas SPA, GMAP, and
Spidey do consider this possibility. Sim4 also does not
explicitly consider the possibility that the cDNA has been
misoriented but instead attempts to find either canonical GT-
AG or reverse-complemented CT-AC boundaries independ-
ently for each splice boundary. This frequently leads to
mappings for which, in a single cDNA, some boundaries are
GT-AG and others are CT-AC. Other frequent alternative
boundaries of Sim4 and BLAT are mostly single-point mutant
versions of the canonical GT-AG boundary. Spidey finds
splice boundaries by first looking for a donor site and then
choosing the acceptor site independently. This is reflected in
the fact that all of its top ten boundaries use a donor site that
matches either GT or GC. The AT-AC signal used by the U12
spliceosome [8] occurs near the top of the list of splice sites
for SPA (0.17%), GMAP (0.17%), and BLAT (0.14%), whereas
Sim4 and Spidey seem to miss this experimentally verified
alternative boundary.

Finally, the splice boundary inference procedure employed
by SPA leads to the emergence of a set of related splice sites,
i.e., AG-CC, TG-CC, AG-GC, TG-GC, AC-CC, and TC-CC, that
are even more abundant in SPA’s mappings than the AT-AC
boundaries and that together account for almost 1% of all
splice boundaries. In SPA’s initial parameter set, only the
known boundaries GT-AG, GC-AG, and AT-AC were given
high probabilities (see Materials and Methods). Thus, in the
first round of mappings, whenever ambiguous boundaries

occurred that did not allow for any of the known splice sites,
SPA placed the boundary essentially at random. This seems to
be the behavior of GMAP as well. However, the splice
boundary inference revealed that many of these unknown
boundaries can be explained by the novel set of splice sites
just mentioned. These splice sites were thus given higher
probability in the parameter set, and in the second round of
mappings SPA now chose these boundaries with much higher
frequency, as shown in Table 1. Since none of the other
algorithms employ such splice boundary inference, none of
them recover these novel alternative boundaries. However,
when we applied our splice boundary inference procedure to
GMAP’s or BLAT’s mappings, these alternative boundaries
also appeared with relatively high frequency in their
mappings. We are currently investigating these new splice
sites in more detail (T. M. Chern, E. van Nimwegen, and M.
Zavolan, unpublished data).
Another way of evaluating the quality of the mappings of

the different algorithms is to compare the mappings with a
reference set of human gene structures. Unfortunately,
obtaining a large collection of human gene structures will
always involve computational methods for mapping tran-
scripts to the genome, which could introduce a systematic
bias that favors the type of algorithm that was used in
producing the reference set. However, the Consensus CDS
project [9] combines a number of different lines of evidence
with manual curation to produce a set of highly trusted
protein coding exons in the human genome that are
hopefully not significantly affected by systematic biases. As
a further comparison of the mappings we intersected the
mappings of all five algorithms with the full set of CCDS
exons. The results are shown in Table 2.
We see that all mappings intersect roughly half of the

nucleotides in CCDS exons. In this test as well SPA
outperformed all other algorithms, although the difference
is less than 1% in all cases. As in all other tests so far, Spidey
performed worst on this test. It is noteworthy that Sim4
outperformed BLAT significantly, and that BLAT in turn
outperformed GMAP on this test.
As a final test of the mappings we compared how well the

sequences within the mappings of each algorithm are
conserved across vertebrates. To this end we used the
phastcon profiles [10], which assign a conservation score (a

Table 1. The Ten Most Frequently Occurring Splice Sites in the Mappings of the Human Dataset by SPA, Sim4, GMAP, BLAT, and Spidey

SPA Sim4 GMAP BLAT Spidey

Splice Site Percent Splice Site Percent Splice Site Percent Splice Site Percent Splice Site Percent

GT-AG 96.0% GT-AG 94.1% GT-AG 96.6% GT-AG 94.9% GT-AG 92.5%

GC-AG 1.06% GC-AG 1.36% GC-AG 1.06% GC-AG 1.01% GC-AG 1.05%

AG-CC 0.27% CT-AC 0.55% AT-AC 0.17% CT-AC 0.20% GC-CA 0.20%

TG-CC 0.18% GT-AA 0.38% CT-GG 0.04% AT-AC 0.14% GT-TG 0.17%

AT-AC 0.17% GT-TG 0.22% CA-CC 0.03% GA-AG 0.13% GT-CT 0.15%

AG-GC 0.15% CT-GC 0.21% CC-GG 0.03% CT-AG 0.11% GT-GG 0.15%

TG-GC 0.14% GA-AG 0.20% CA-GC 0.03% GT-TG 0.10% GC-CT 0.15%

AC-CC 0.13% AT-AG 0.16% GC-GT 0.03% AT-AG 0.09% GG-CA 0.14%

TC-CC 0.11% CT-AA 0.14% CC-TG 0.03% GT-GG 0.09% GC-GG 0.12%

AA-AA 0.11% CT-AG 0.13% CA-GG 0.03% CC-AG 0.09% GT-CA 0.11%

The frequency of occurrence is shown to the right of each splice boundary sequence.
DOI: 10.1371/journal.pgen.0020024.t001
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number between zero and one) to each nucleotide in the
human genome based on a comparison with the genomes of
chimpanzee, dog, mouse, rat, chicken, zebrafish, and fugu (see
Materials and Methods for details). The results are shown in
Figure 6. The left panel shows that, at any level of
conservation, the number of nucleotides with at least that
level of conservation is larger in SPA’s mappings than in the
mappings of any other algorithm. Thus, the higher number of
mapped nucleotides in SPA’s mappings are not concentrated
in badly conserved regions but include highly conserved
regions. In fact, as the right panel of Figure 6 shows, the
nucleotides that are unique to each of the algorithms’
mappings do not differ substantially in their distribution of
conservation level. The right panel of Figure 6 shows the ratio
of conservation distributions of nucleotides that are unique
to SPA’s mappings and nucleotides that are unique to each of
the other algorithms’ mappings. We see that, with the
exception of Spidey, which has a significantly underrepre-
sented fraction of highly conserved nucleotides, the ratio
stays within the range 0.8–1.2 over the entire range of
conservation level. These results show that the relatively large
number of nucleotides that are mapped only by SPA have
roughly the same distribution of conservation level as the
relatively small number of nucleotides that are mapped only
by the other algorithms.

Results on FANTOM3 Mouse Full-Length cDNAs
We ran SPA on all 102,143 cDNAs of the FANTOM3 dataset

that had been mapped for the FANTOM3 project using BLAT

with the –fine option, followed by post-processing to
distinguish deletions from introns. As in the mappings of
the human dataset, we compared the log-posterior proba-
bilities of all SPA mappings with the FANTOM3 mappings
using both SPA’s scoring function as well as a scoring
function that maximizes the overall posterior probability of
the FANTOM3 mappings. The results are shown in Figure 7.
As in the mappings of the human cDNAs, the change in
scoring function affected these distributions relatively little.
At almost any score difference there are more than ten times
as many mappings with at least such a score difference in
SPA’s favor as there are in BLAT’s favor. Overall, SPA had a
better mapping on more than 70% of the cDNAs, a
substantially better mapping (difference of ten or more) on
more than 10% of the cDNAs, and a much better mapping
(difference of 100 or more) on almost 5% of the cDNAs. In
contrast, BLAT’s mapping was much better than SPA’s
mapping on only 0.3% of the cDNAs.
To compare the quality of the mappings independently of a

scoring function we again calculated a number of global
mapping statistics. The relative numbers of nucleotides in
errors of various kinds are shown in Figure 8. A more detailed
set of statistics is shown in Table S2. One can see that all types
of errors are significantly overrepresented in BLAT’s map-
pings compared to SPA’s mappings. The largest differences
are in the number of unmapped cDNAs, the number of
nucleotides in unmapped 59 and 39 ends, and the fraction of
splice boundaries that do not match any of the known splice
sites. However, the number of internal mismatches (internal
insertions and mismatches) is also larger by about 20% in
BLAT’s mappings, and the number of nucleotides in errors
around splice boundaries is larger by more than 50% in
BLAT’s mappings. Thus, the global statistics confirm the
overall higher quality of SPA’s mapping especially in the
mapping of 59 and 39 ends and in the correct mapping of the
splice boundaries.
The ten most common splice boundaries in the SPA and

BLATmappings of the FANTOM3 cDNAs are shown inTable 3.
The canonical GT-AG boundary was the most frequent in

both SPA’s and BLAT’s mappings, but its frequency was 1.2%
higher in SPA’s mappings. The known non-canonical boun-
dary GC-AG was about equally common in the SPA and the
BLAT mappings. Both SPA and BLAT found the boundary
AT-AC of the U12 spliceosome. Also very abundant in the

Figure 6. Comparison of Conservation Statistics for the Mappings of the Human Dataset

Shown are the data for SPA versus Sim4 (green), GMAP (blue), BLAT (orange), and Spidey (pink). The left panel shows, as a function of conservation
score c, the difference in the number of nucleotides with conservation score at least c between the SPA mappings and the mappings of each other
algorithm. The right panel shows the relative distribution of conservation scores for the nucleotides that were unique to SPA’s mappings and the
nucleotides that were unique to the other algorithm’s mappings. The panel shows, for each conservation score c, the ratio between the fraction of all
nucleotides unique to SPA’s mappings that have conservation score c and the fraction of all nucleotides unique to the other algorithm’s mappings that
have conservation score c.
DOI: 10.1371/journal.pgen.0020024.g006

Table 2. The Intersection between the Mappings of the Different
Algorithms and the CCDS Exons

Statistic Algorithm

SPA Sim4 GMAP BLAT Spidey

Intersection CCDS 2,097,375 2,094,077 2,079,646 2,085,062 2,059,784

Difference 0 3,298 17,729 12,313 37,591

The first statistic is the total number of nucleotides in the mappings that intersect the set
of 4,164,450 nucleotides of the CCDS exons. The second statistic is the difference between
the number of intersecting nucleotides in the SPA mappings and the mappings of each of
the other algorithms.
DOI: 10.1371/journal.pgen.0020024.t002
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SPA mappings were boundaries where one or both of the
ends of the intron were in an assembly gap (where the
wildcard nucleotide N occurs in the genome). As we describe
below, BLAT often has problems with mappings in these
areas. The fourth most abundant boundary in the BLAT
mappings was CT-AC, i.e., the reverse-complement of the
canonical boundary. As with the mappings of the human
cDNAs, this boundary’s high abundance is a result of the fact
that BLAT does not explicitly recognize reverse-comple-
mented cDNAs. It is interesting that one of the set of novel
related splice boundaries that we identified in the human
cDNA mappings also occurs with relatively high frequency in
the mappings of the mouse cDNA, i.e., the TG-CC boundary.
It is also interesting that many of the other high frequency
boundaries, e.g., GT-CA, GG-AG, and GT-TG, occur in the
top ten of both algorithms.

Figure 9 shows examples of the most common differences

between the SPA and BLAT mappings that we have identified
through manual inspection. Figure 9A and 9F show examples
with large differences in score between the SPA and the
BLAT mapping. Figure 9A illustrates BLAT’s inability to deal
with repeat elements. Even though, as the SPA mapping
illustrates, the cDNA can be mapped without any errors,
BLAT introduces a spurious insertion of one repeat unit,
which then leads to more than 1,100 nucleotides at the 59 end
of the cDNA remaining unmapped, i.e., being interpreted as
an insertion. Similarly, Figure 9F shows that even a single
nucleotide insertion can lead BLAT to miss a large part (more
than 100 nucleotides) at the 59 end of the mapping.
Figure 9B and 9E show examples of moderate score

differences. Figure 9B illustrates BLAT’s inability to appro-
priately deal with assembly gaps. As can be seen in the SPA
mapping, the last 13 nucleotides of the exon on the left fall in
an assembly gap (N’s in the genome). SPA correctly assumes
that the most likely interpretation is that the N’s will match
the cDNA nucleotides and that the splice boundary will be
the canonical GT-AG boundary. Consistent with this model,
the right end of the intron has the canonical acceptor site
AG. BLAT on the other hand treats ten of the last 13
nucleotides of the exon as an insertion, introduces a single
nucleotide deletion, and uses a non-canonical splice boun-
dary. Such errors in the BLAT mappings are common
whenever the alignment passes through an assembly gap.
Figure 9E shows another example of a moderate difference in
score that also involves a different choice of splice boundary.
SPA uses the relatively common GC-AG boundary and has
only a single mismatch in this area of the alignment. In
contrast, BLAT uses the uncommon AG-AT boundary and
introduces eight mismatches in this area.
Figure 9C shows a small score difference involving an

ambiguous splice boundary. SPA chooses an AT-TC boundary
whereas BLAT prefers the CT-AT boundary. With the
probabilities of splice signals that we inferred, the boundary
AT-TC has a probability of 8.4 3 10�5 whereas the boundary
CT-AT does not occur at all. We suspect that BLAT prefers
the CT-AT boundary because its underlying model for
scoring splice boundaries is the Hamming distance to the
canonical GT-AG boundary. Finally, Figure 9D shows one of

Figure 8. Comparison of Global Statistics of the SPA Mappings and Post-Processed BLAT Mappings of the FANTOM3 Mouse cDNAs

The bars show, from top to bottom, the total number of unmatched nucleotides, the number of internally unmatched nucleotides (mismatches plus
internal insertions), the number of nucleotides in unmapped 59 and 39 ends, the number of nucleotides in unmapped cDNAs, the number of errors
(mismatches, insertions, and deletions) within ten alignment positions of the splice boundaries, and the fraction of splice boundaries not matching any
known splice site (GT-AG, GC-AG, or AT-AC). The bars are scaled such that SPA’s total numbers of errors are set to one for each type.
DOI: 10.1371/journal.pgen.0020024.g008

Figure 7. Distributions of Differences in the Log-Posterior Probability of

SPA and Post-Processed BLAT Alignments on the FANTOM3 Mouse

cDNAs

The green curve shows the distribution of score differences for the cases
in which SPA had a higher mapping score. The red curve shows the
distribution of score differences for mappings where post-processed
BLAT had a higher alignment score. Solid lines were obtained using SPA’s
scoring function and dashed lines using the scoring function that
maximizes the posterior probability of BLAT’s mappings. Both axes are
shown on logarithmic scales.
DOI: 10.1371/journal.pgen.0020024.g007
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the most common small differences between the SPA and
BLAT mappings. A single-nucleotide insertion in the cDNA
close to the 59 end of the cDNA leads BLAT to leave the first
four nucleotides unmapped, even though the first three map
perfectly to the genome.

We also observed a large number of cases where there were
mismatches within the first two nucleotides of the cDNA. SPA
often interprets these as mismatches whereas BLAT treats
them as insertions. We suspect the experimental method-
ology that was used to obtain the FANTOM3 dataset leads to
an overrepresentation of errors at the first two cDNA
nucleotides.

Since the FANTOM3 dataset is the largest collection of
mammalian cDNAs, covering a large proportion of mouse
genes, it provided us the opportunity to examine SPA’s and
BLAT’s ability to deal with cDNAs deriving from families of
paralogous genes. This is of interest especially since sets of
paralogous genes that occur close to each other on the

chromosome are particularly challenging for mapping
algorithms. We extracted the genomic loci of two such gene
families and compared the mappings of SPA and BLAT that
intersect these loci. For the family of intercellular adhesion
molecules (ICAMs) we found that there were essentially no
differences in SPA’s mappings and BLAT’s mappings. We
found ten cDNAs corresponding to ICAM genes, eight
mapping to ICAM-1 on Chromosome 9 and two mapping to
ICAM-2 on Chromosome 11. Both algorithms map these
cDNAs correctly.
The beta defensin gene family provides a more interesting

example. Figure 10 shows a screen shot of the University of
California Santa Cruz (UCSC) genome browser [11] display-
ing the SPA and BLAT mappings of two cDNAs that both
map to the defensin locus on Chromosome 8. SPA’s and
BLAT’s mappings of the cDNA 9230103N16 are essentially
identical and perfectly overlap the known Defb12 gene.
However, there is a substantial difference in the mapping of
cDNA 4931406G05. This cDNA maps to the negative strand.
SPA’s mapping ends with 44 nucleotides that fall in a genomic
gap and are mapped to N’s. BLAT, in contrast, introduces two
extra short exons separated by very long introns in an
attempt to map these 44 nucleotides. The resulting small
exons have several mismatches and insertions, and both long
introns have non-canonical splice sites. As a result, BLAT’s
mapping spans multiple defensin genes whereas SPA’s map-
ping does not overlap any known defensin gene.
Figure 11 shows two screen shots from UCSC’s genome

browser [11] displaying SPA’s mapping of cDNA 4933424L15
on Chromosome 11 and BLAT’s mapping of the same cDNA
on Chromosome 8. BLAT’s mapping intersects two separate
defensin genes (Defb11 and Defb15) whereas SPA’s mapping
does not overlap any known defensin gene. Both these
mappings fail to map the whole cDNA. SPA’s mapping has
an unmapped 39 end of about 350 nucleotides, whereas
BLAT’s mapping has an unmapped 59 end of about 560
nucleotides. It appears that this cDNA may be a chimera
formed by combining the region from Chromsome 8 with the
region of Chromosome 11.

Figure 9. Examples of Differences in the SPA and BLAT Mappings

DOI: 10.1371/journal.pgen.0020024.g009

Table 3. The Ten Most Frequently Occurring Splice Sites in the
Mappings of the FANTOM3 Dataset by SPA and BLAT

SPA BLAT (Post-Processed)

Splice Site Percent Splice Site Percent

GT-AG 97.8% GT-AG 96.6%

GC-AG 0.82% GC-AG 0.79%

GT-NN 0.18% NN-NN 0.18%

NN-AG 0.18% CT-AC 0.16%

AT-AC 0.12% AT-AC 0.1%

NN-NN 0.12% GT-NN 0.05%

GT-CA 0.05% GG-AG 0.05%

GG-AG 0.05% GT-TG 0.05%

TG-CC 0.04% GT-CA 0.04%

GT-TG 0.03% GT-GG 0.04%

The splice sites are ordered with the most frequent at the top, and the frequency of
occurrence is shown next to the sequence.
DOI: 10.1371/journal.pgen.0020024.t003
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Discussion

To realize the full potential of large collections of full-
length cDNAs, such as the FANTOM3 dataset that we
investigate in this paper, the mapping of the cDNAs to the
genome has to be very accurate. For instance, if one wants to
use the data to study proximal promoters, the 59 end of the
cDNA has to be correctly mapped, as a missing first exon can
move the apparent transcription start site tens of kilobases
downstream from the real start site. If one wants to use the
data to study splice variation, it is necessary that all splice
boundaries are correctly identified. This includes correctly
identifying rare splice variations that may give important

information about the underlying splicing mechanisms.
Finally, accurate mapping of 39 UTRs is an important
prerequisite for the algorithms that predict microRNA
targets, as these algorithms generally require multi-species
alignments of 39 UTRs [12,13].
The main structural problem with existing algorithms for

fast cDNA-to-genome alignment is their ad hoc scoring
schemes that cannot appropriately trade off the likelihoods
of different gene structures against the likelihoods of differ-
ent sequencing errors. Moreover, their scoring functions
cannot easily be adapted to the particulars of the dataset
under study. The speed of mapping is another challenge.

Figure 11. BLAT Mapping of a cDNA to the defensin Locus on Chromosome 8 Together with the SPA Mapping of the Same cDNA to a Locus on

Chromosome 11

The figure was made using UCSC’s genome browser [11].
DOI: 10.1371/journal.pgen.0020024.g011

Figure 10. Part of the defensin Locus on Chromosome 8 Together with the Mappings of SPA and BLAT of Two cDNAs That Map to This Locus

The figure was made using UCSC’s genome browser [11].
DOI: 10.1371/journal.pgen.0020024.g010
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Mammalian genomes contain several billion nucleotides, and
current full-length mRNA and expressed sequence tag
libraries comprise several million transcripts. To be able to
keep the mappings up-to-date with the genome assembly one
needs to be able to map all transcripts in a matter of days on a
moderately sized computing cluster, i.e., 100 CPUs or fewer.
This requires average running times per cDNA on the order
of seconds, which can only be achieved using heuristic
algorithms.

The approach to the problem of mapping cDNAs to the
genome that we introduce here is novel in several aspects.
First, it is the first rigorous fully probabilistic approach to this
problem that evaluates the quality of possible mappings by
taking both the likelihood of the implied gene structures and
the likelihood of the implied sequencing errors explicitly into
account. This involves assigning prior probabilities to
individual gene structures and constructing a likelihood
model for the errors that are introduced during cDNA
sequencing. Both of these components can be completely,
and automatically, adapted to the organism under study, and
to the experimental procedure that was used to obtain the
cDNA sequences. In contrast to other algorithms that use
simple gap penalties our model allows for arbitrary distribu-
tions of intron, insertion, and deletion lengths.

Another novel aspect of our approach is our model for the
splice boundaries. In contrast to the simpler models used by
other algorithms, we allow a general distribution P(s1s2s3s4)
for the probabilities that an intron starts with the dinucleo-
tide s1s2 and ends with s3s4. We developed a Bayesian
inference procedure that uses a set of mappings in which
the precise locations of the splice boundaries are left
ambiguous to infer the probabilities P(s1s2s3s4).

The parameters in our probabilistic models need not be
specified externally but can be estimated by the algorithm
itself. This is done by starting from a default set of parameters
and iteratively mapping the data and re-estimating the
parameters from the resulting mappings to fine-tune both
the parameters of the probabilistic model and the mappings
that are produced using it. The model also explicitly accounts
for the possibility of the cDNA being mistakingly reverse-
complemented, and it reports information about such cases.

We implemented our probabilistic model in a fast mapping
algorithm called SPA. The algorithm is sufficiently fast to
enable the mapping of the 102,143 cDNAs of the FANTOM3
dataset to the mouse genome in one night on a 50-CPU Linux
cluster. This speed allows us to map all available mouse
expressed sequence tag and cDNA sequences in a matter of
days and update our mappings whenever a new genome
assembly version becomes available. We intend to provide
such a database of mappings in the near future.

We compared the performance of SPA with that of four
other mapping programs—Sim4, GMAP, BLAT, and Spidey—
using a dataset [6] of over 20,000 human full-length cDNAs.
Both under SPA’s scoring model and under scoring models
that are optimally adapted to each of the other algorithms we
showed that there are more than ten times as many cDNAs
that are better mapped by SPA than by any of the other
algorithms. Comparing mapping statistics globally we found
that SPA mapped significantly more nucleotides to matching
nucleotides in the genome than any of the other algorithms.
The largest improvements are due to better mappings of the
59 and 39 ends of the cDNAs and due to the better quality of

the alignments around the splice boundaries. These improve-
ments have important consequences for downstream studies
since these are precisely the important areas for studying
promoters, regulatory sites in 39 UTRs, and the mechanisms
of alternative splicing. We also compared each set of
mappings with a reference set of trusted protein coding
exons [9] and found that SPA’s mappings matched more
nucleotides of these trusted exons than any of the other
algorithms. Finally, we compared the conservation statistics
[10] of all mappings. We found that, at any level of
conservation, the number of nucleotides with at least that
level of conservation was higher in SPA’s mappings than in
the mappings of any of the other algorithms.
An interesting result to emerge from our splice boundary

inference procedure is the novel set of putative splice
boundaries AG-CC, TG-CC, AG-GC, TG-GC, AC-CC, and
TC-CC that together account for almost 1% of the splice
boundaries in the human dataset. One of these boundaries,
TG-CC, also occurs within the top ten splice boundaries of
the mappings of the FANTOM3 cDNAs.
We mapped the 102,143 full-length mouse cDNAs of the

FANTOM3 dataset with SPA and compared the mappings
with the FANTOM3 mappings obtained using BLAT. Again
we found that SPA matched significantly more nucleotides,
and that SPA had an overall lower number of errors. The
most significant differences are again in the improved
mappings of 59 and 39 ends, and the improved mappings
around splice boundaries. We also compared the mappings of
SPA and BLAT for cDNAs that intersect the genomic loci of
two families of paralogous genes. For the family of defensin
genes we found two cDNAs that BLAT erroneously mapped
to large genomic loci that span multiple defensin genes. The
SPA mappings, in contrast, were much more compact and did
not intersect any known defensin genes.
Even though SPA significantly improves on current map-

ping algorithms and we believe that it provides the current
state of the art in mapping cDNAs to the genome, there are
still several limitations to our approach. The first limitation is
in our relatively simple probabilistic model of gene structures.
Within our Bayesian framework it would have been straight-
forward to implement more sophisticated probabilistic
models for gene structures, e.g., such as those used in gene-
prediction programs like Genscan [14]. We decided, however,
to keep our gene structure model simple for the following
reasons. First, we want our model to apply equally to coding
and noncoding transcripts, and more sophisticated models
are generally suited for protein coding genes only. Second, we
want to let the cDNA data ‘‘speak for themselves’’ as much as
possible and minimize the influence of the gene structure
prior. Models such as the one used by Genscan [14] have many
parameters, most of which are not well-known for organisms
that are less studied than human or mouse, and some of which
are uncertain even for well-studied organisms. By keeping our
model simple we avoid biasing our mappings with a prior
whose parameters have not been correctly estimated, and we
make it easier to apply our algorithm to cDNAs from less
studied organisms. One thing that could be improved is the
distribution over exon lengths, which our model effectively
assumes is exponential, whereas the observed distribution of
exon lengths is more complex [15].
Probably more than 50% of the remaining ‘‘errors’’ in the

SPA mappings are due to unmapped bases at the 59 and 39
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ends of the cDNAs. These are often caused by initial and
terminal exons that are more than 500 kilobases away from
the other exons in the gene, or by ends of the cDNA that
cannot be mapped at all in the neighborhood of the locus
where the rest of the cDNA maps. We believe that some of
these are the result of errors in the assembly, and SPA could
be further improved by making it take the possibility of
assembly errors explicitly into account, and letting it report
areas of suspected genome misassembly. Another fraction of
the unmapped 59 and 39 ends could be the result of chimeras,
i.e., transcripts that are a fusion of a 59 end from one locus
and a 39 end from another locus [16]. Currently SPA is not
taking the possibility of chimeric cDNAs into account, but it
would be straightforward to adapt the algorithm to do so.
That is, since SPA already provides mappings for all genomic
loci to which the cDNA can be (partly) mapped, it would be
easy to have the algorithm check, in cases of unmapped 59 or
39 ends, whether a full mapping can be obtained by
combining the 59 end mapping of one locus with the 39 end
mapping of another locus. Finally, SPA currently does not
take into account the possibility of genomic polymorphisms,
but rather assumes that all differences between the mapped
cDNA and the genome derive from sequencing errors. For
organisms such as human and mouse this is unlikely to affect
the quality of the mappings since the polymorphism rate is
generally significantly lower than the rate of sequencing
errors. However, for some organisms the polymorphism rate
can exceed the sequencing error rate and may be highly
heterogeneous across the chromosomes. Such cases could be
dealt with by allowing the mismatch probability to vary across
the cDNA.

The most promising yet much more challenging direction
for future work is not to map a single cDNA at a time but to
take the information from the entire set of cDNAs into
account at the same time in the mapping procedure. For
instance, by recognizing that the same small ‘‘insertion’’
between two exons occurs in multiple cDNAs, one would
realize that this ‘‘insertion’’ is really a small exon that failed to
map to the genome. While it is clear that considering multiple
cDNAs at the same time can significantly improve the quality
of the mappings, the development of a rigorous probabilistic
model for such an approach requires that we specify priors
not merely over single gene structures, but rather over all
possible splice variations of a gene. That is, we will have to
move from probabilistic models for single transcript ‘‘genes’’
to probabilistic models for transcript clusters that derive
from a common genomic region. We imagine that SPA’s
mappings of the FANTOM3 cDNAs, together with the splice
analysis pipeline that we developed previously [15,17], will
provide a first step in this direction.

Materials and Methods

As described in the Results the posterior probability P(mjc,g) that
our model assigns to a mapping m given a cDNA c and a genome g is
given in terms of the prior probability P(mjg) of the gene structure of
m and the probability P(cjm) of the sequencing errors that the
mapping m implies. In the following sections we derive P(cjm) and
P(mjg) in detail and give explicit expressions for the log-posterior
probability s(mjc,g) ¼ log[P(mjc,g)] of any mapping m. Below we show
how the problem of finding a mapping m with optimal score can be
reduced to the problem of finding an optimal alignment under an
appropriately adapted scoring scheme. Then we derive in detail how
an optimal alignment can be found by dynamic programming.

Following that, we detail the heuristic algorithm for finding the best
mapping and, in particular, explain how a set of defined positions is
obtained for each cDNA and how this set is expanded recursively
whenever the quality of the mapping requires this. Finally, we explain
the details of the procedure for inferring the parameters that
maximize the posterior probability of a given set of alignments.

Transcript-to-cDNA error model. To calculate the probability
P(cjm) of the sequencing errors we assume the following model of
the sequencing process: as the cDNA is ‘‘copied’’ from its mRNA
template from beginning to end there is a probability Pd(k) at each
position to skip the next k nucleotides of the transcript and a
probability Pi(n) to insert n random nucleotides into the cDNA. Every
nucleotide that is incorporated into the cDNA has a constant
probability pmm to be mutated. We assume that all misincorporations
are equally likely, so that the probability of obtaining a particular
mismatching nucleotide is pmm/3. Whenever an insertion of n
nucleotides occurs we assume that the inserted nucleotides are
randomly chosen, such that the probability of obtaining an insertion
with n particular nucleotides is Pi(n)4

�n. The quantities Pd(0) and Pi(0)
give the probabilities of not deleting and not inserting any nucleotides
respectively between consecutive nucleotides of the transcript. Under
this model we have for the probability P(cjm) of the observed cDNA c
given the mapping m:

PðcjmÞ ¼ ð pmÞnm
� pmm

3

�nmm Y‘
k¼0
ðPd ðkÞÞnd ðkÞ PiðkÞ

4k

� �niðkÞ
" #

; ð3Þ

where nm is the number of matching nucleotides in the alignment, pm
¼ 1 � pmm is the probability of a match, nmm is the number of
mismatching aligned nucleotides, nd(k) is the number of deletions of
length k, and ni(k) is the number of insertions of length k into the
cDNA. For future use, we define the following scores

sm ¼ logðpmÞ ð4Þ

smm ¼ logðpmmÞ � logð3Þ ð5Þ

sdðkÞ ¼ log½PdðkÞ� ð6Þ

siðkÞ ¼ log½PiðkÞ� � klogð4Þ: ð7Þ

Using this notation we can write for the logarithm of the probability
s(cjm) ¼ log[P(cjm)]:

sðcjmÞ ¼ nmsm þ nmmsmm þ
X‘

k¼0
ndðkÞsdðkÞ þ niðkÞsiðkÞ: ð8Þ

Gene structure prior. In our model the prior probability P(mjg) of
the mapping m given the genome g depends on the lengths of the
introns and exons of m and on the sequences at the splice boundaries.
Note that the lengths of the exons and introns are independent of the
genome sequence g and that g enters into the probabilities of only the
splice boundaries of m. We thus use the general identity

PðmjgÞ ¼ PðgjmÞPðmÞ
PðgÞ ; ð9Þ

with P(m) the probability of the intron and exon lengths of m, P( gjm)
the probability of observing the genome sequence g given the gene
structure m, and P( g) the probability of observing the genome.

We assume the following simple model for the distribution of
intron and exon lengths of a transcript: scanning the transcript from
its starting position in the genome there is a probability Pint(k) at each
position to insert an intron of length k between the current
nucleotide of the transcript and the next. Note that the probability
to extend the exon by another nucleotide is Pint(0). Thus, generally, if
the gene structure has ne exons that contain Be nucleotides in total,
and nint(k) introns of length k we have

PðmÞ ¼ ½Pintð0Þ�Be�ne
Y‘
k¼1
½PintðkÞ�nintðkÞ ð10Þ

for the probability of obtaining the intron and exon lengths of m.
Note that nint(0) ¼ Be � ne is the number of times that no intron is
introduced between neighboring exonic nucleotides.

We further assume that the gene structure depends on the genome
sequence g only through the nucleotides that occur at the splice
boundaries. That is, we assume there are probabilities Psb(s1s2s3s4) for
an intron to start with nucleotides s1s2 and end with nucleotides s3s4.
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Under this model the probability P(gjm) of observing the genome
sequence g, given the locations of the splice boundaries, is given by

PðgjmÞ ¼ 4�jgjþ4nint
Y

s1s2s3s4

½Psbðs1s2s3s4Þ�nsbðs1s2s3s4Þ; ð11Þ

where nint is the number of introns, nsb(s1s2s3s4) is the number of
splice boundaries s1s2s3s4, and jgj is the length of the genome. Note
that we assume that every nucleotide of the genome outside of the
splice boundaries has a probability 1/4. Finally, the probability P(g) of
observing all nucleotides in the genome is simply given by

PðgÞ ¼ 4�j gj: ð12Þ

For future reference, we define the following notation:

sintðkÞ ¼ log½PintðkÞ� ð13Þ
ssbðs1s2s3s4Þ ¼ log½44Psbðs1s2s3s4Þ�: ð14Þ

Using this notation and Equations 9, 11, and 12, we obtain the
following expression for the logarithm of the probability s(mjg) ¼
log[P(mjg)] of the gene structure given the genome

sðmjgÞ ¼
X

s1s2s3s4

nsbðs1s2s3s4Þssbðs1s2s3s4Þ þ
X‘

k¼0
nintðkÞsintðkÞ: ð15Þ

Total score. Putting together s(cjm) and s(mjg), and defining the
total log probability s(mjc,g) ¼ log[P(mjc,g)] we have

sðmjc; gÞ ¼ sðcjmÞ þ sðmjgÞ þ constant; ð16Þ

where the constant equals �log[P(cjg)] and does not depend on the
mapping m. Since we are interested only in finding the mapping m
that maximizes the posterior probability P(mjc,g) we ignore this
constant from now on. Written out more explicitly, our ‘‘score’’
s(mjc,g) for a mapping m given a cDNA c and genome g becomes

sðmjc; gÞ ¼ nmsm þ nmmsmm þ nsbðs1s2s3s4Þssbðs1s2s3s4Þ

þ
X‘

k¼0
niðkÞsiðkÞ þ ndðkÞsdðkÞ þ nintðkÞsintðkÞ: ð17Þ

Thus, our final score for a mapping and gene structure m depends on
the number of matched and mismatched nucleotides, the splice
boundaries, and the number of insertions, deletions, and introns of
each length k. In the next section we describe how the transcript with
maximal score s(mjc,g) can be identified through dynamic program-
ming. For cDNAs that contain no or a negligible number of
sequencing errors the score s(mjc,g) will be dominated by the number
of matched nucleotides nm and the optimal mapping will be simply
the mapping with the maximum number of matching nucleotides.
For exon boundaries that can be mapped in multiple ways without
introducing mismatches the splice boundary scores ssb will ensure
that the mapping with the most likely splice boundary is chosen. If no
canonical splice boundary is present at an exon junction the score
will trade off the likelihood of different sequencing errors around the
splice boundary against the likelihood of different non-canonical
boundaries. If a gap occurs in the cDNA the score will trade off the
probability of an intron of that size with its splice boundaries, against
the probability of a deletion of the same size. Much more complex
trade offs of course occur in practice. For example, one mapping may
have a small exon of length four flanked by certain splice boundaries
and introns of length k1 and k2, while an alternative mapping has a
single intron of length k1 þ k2 in combination with four inserted
nucleotides, and the score will use the distributions of intron lengths,
splice boundaries, and cDNA insertions to determine which of these
is most likely. Since all these distributions can be specified by the user
and can be estimated from reference mappings, this gives SPA the
capability of correctly assessing the likelihood of very complicated
cases of ambiguous mappings that other algorithms cannot properly
deal with.

Obtaining the MAP transcript through cDNA-to-genome align-
ment. A mapping m, in our sense of the word, can be specified by first
specifying an alignment of the cDNA to the genome, and then
specifying for each cDNA gap which part of that gap should be
considered intron (including the possibilities ‘‘none’’ or ‘‘all’’). Note
that, given an alignment between cDNA c and genome g, we can
determine the set of introns that maximize the likelihood of the
resulting mapping m by calculating, for each gap in the cDNA, the
combination of intron/deletion that maximizes the likelihood for that
gap. For example, assume that in the alignment nucleotides i þ 1
through j� 1 in the genome correspond to a gap in the cDNA. If we
interpret this gap entirely as a deletion it will contribute a factor

sint(0) þ sd(j � i � 1) to the score of the mapping. If we interpret it
entirely as an intron it will contribute sint(j� i� 1)þ ssb(siþ1siþ2sj�2sj�1)
þ sd(0). If we assume the intron starts at iþ 1þ k and ends at j� 1� l
then the contribution to the mapping score is sint(j� i�k� l�1)þ sd(k
þ l)þ ssb(siþkþ1siþkþ2sj�l�2sj�l�1). To find the optimal mapping given the
cDNA gap we thus have to find the combination of k and l that
maximizes the score. We thus define the following ‘‘cDNA gap’’
scoring function:

scgði; jÞ ¼ max½sintð0Þ þ sdðj � i� 1Þ;
maxk;l sintðj � i� k� l� 1Þ þ sdðkþ lÞ þ ssbðsiþkþ1siþkþ2sj�l�2sj�l�1Þ�:

ð18Þ

This is the maximum possible contribution to the mapping score from
any cDNA-to-genome alignment that contains a cDNA gap from
nucleotides iþ 1 through j� 1 in the genome. The overall maximum
probability mapping can now be found by finding the maximum
probability cDNA-to-genome alignment, using the scoring function
scg(i,j) to score gaps from i to j in the cDNA. From now on, when we
refer to an alignment it should be understood that we mean the
maximumprobabilitymappingm that is consistent with the alignment.

Any alignment of the cDNA to the genome can be specified by
giving all pairs of cDNA and genome nucleotides that are mapped to
each other. That is, if a total of n nucleotides are mapped between the
cDNA and genome, then an alignment can be given as a set of n pairs
(ik,jk) corresponding to the positions of the kth mapped pair in the
cDNA and genome respectively. Between every two consecutive pairs
of mapped nucleotides (ik,jk) and (ikþ1,jkþ1) the nucleotides at positions
ikþ1 through ikþ1�1 in the cDNA correspond to a gap in the genome,
and the nucleotides jkþ1 through jkþ1�1 in the genome correspond to
a gap in the cDNA (both of these gaps may be length zero).

We now show that the score s(mjc,g) of an alignment can be written
as a sum of contributions s[(ikþ1,jkþ1)j(ik,jk)]. Every alignment is
initialized with an empty alignment (i0,j0) ¼ (0,0) that considers the
whole cDNA to be an insertion and has a score si(l), with l the length
of the cDNA. We also define scg(0, j ) ¼ 0 (mapping the first cDNA
nucleotide to position j of the genome has a score that does not
depend on j). We now define the ‘‘jump score’’ s[(i,j)j(i9, j9)] as the
change in score when an alignment that ended at (i9, j9) is extended by
adding the pair (i, j) to it. This score is given by

s½ði; jÞjði9; j9Þ� ¼ smði; jÞ þ siði� i9� 1Þ þ scgðj9; jÞ þ siðl� iÞ � siðl� i9Þ;
ð19Þ

where sm(i,j)¼ sm if nucleotides i and j match, and sm(i, j)¼ smm if they
do not. The terms contributing to the jump score are illustrated in
Figure 12.

It is now easy to verify that, using the definition of the jump score
(Equation 19), the total score of an alignment, as given by Equation
17, can be written as

Figure 12. Illustration of the Contributions to the ‘‘Jump Score’’ When

Extending an Alignment Ending at (i9, j9) by Adding a Pair of Mapped

Nucleotides at (i,j )

DOI: 10.1371/journal.pgen.0020024.g012
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sðmjc; gÞ ¼
Xn
k¼1

s½ðikþ1; jkþ1Þjðik; jkÞ�: ð20Þ

Dynamic programming solution. Let s(i,j) be the score of the best
alignment that ends with aligning position i in the cDNA to position j
in the genome. We can obtain s(i,j) by considering all previous
‘‘parent’’ positions (i9,j9) with i9 , i and j9 , j:

sði; jÞ ¼ max
i9 , i; j9 , j

s½ði; jÞjði9; j9Þ� þ sði9; j9Þ: ð21Þ

This method is guaranteed to find the optimal alignment of the cDNA
to the genome, but it is clear that it is generally computationally
infeasible. For a chromosome of length C and a cDNA of length l the
number of scores that need to be checked scales as C2l2, e.g., 1022 for a
cDNA of length l ¼ 1,000 and a chromosome of length C ¼ 108

nucleotides.
However, we generally do not need to check all parent positions

(i9,j9) to find the one that maximizes the score at (i,j). We can calculate
an upper bound dsmax on the jump scores s[(i,j)j(i9,j9)] and proceed as
follows. Calculate the scores s[(i,j)j(i9,j9)] for each parent pair (i9,j9)
starting with the pair (i9,j9) that has the highest score s(i9,j9) and
proceeding through the parent pairs in order of decreasing score.
Keep track of the best score s�ði; jÞ ¼ sði9; j9Þ þ s½ði; jÞjði9; j9Þ� that has
been obtained from all parent pairs considered thus far. If, for the
current parent pair under consideration, the maximal obtainable
score s(i9,j9)þ dsmax is smaller than s�ði; jÞ, then we know that s�ði; jÞ is
the optimal score at (i,j).

We can improve speed further by treating the case (i9,j9)¼ (i� 1, j�
1) separately. In the overwhelming majority of cases the maximal
score at (i,j) is obtained by extending the mapping from the
immediately preceding pair of positions (i� 1,j� 1). Since insertions,
deletions, and introns are relatively rare, the maximal possible jump
score dsmax associated with jumps that include a gap of size at least
one in cDNA or genome is much lower than the score for jumping
from the immediately preceding pair. We thus first calculate the score
s(i,j)¼ s(i� 1,j� 1)þ s[(i,j)j(i� 1,j� 1)] separately and then proceed to
check all other parent pairs using an upper bound dsmax over all
possible ‘‘jump scores’’ that include a gap of at least length one.

With this procedure the search for the best parent will typically
end within a small number of steps, and in return we pay a relatively
small computational cost for keeping the parent pairs in a list
ordered by their scores s(i9,j9). The overall time complexity using this
procedure scales as Cllog(Cl). This is already small enough that, in
principle, the full dynamic programming could be run for a cDNA
and genomic locus of moderate size (e.g., less than 1,000 and 105

nucleotides, respectively). However, it is still orders of magnitude too
slow to map large numbers of cDNAs.

Heuristic alignment strategy. Note that our dynamic programming
scheme does not require that a score s(i,j) is calculated for all possible
positions (i,j) in the dynamic programming matrix. We can preselect
any subset of positions (i,j) and apply the dynamic programming only
to these ‘‘defined positions.’’ That is, for every defined position (i,j) we
only consider parent positions (i9,j9) that are also defined.

Our heuristic mapping strategy is to first locate areas of homology
between cDNA and genome, and to then restrict the dynamic
programming to positions that are in or near the areas of homology
between cDNA and genome. Specifically, we proceed as follows. (1)
We use the BLAT gfServer [3] to identify genomic loci from which the
cDNA may derive. BLAT generally reports multiple loci and we retain
all loci that are within 5% of the locus with the highest score (using
BLAT’s score). When the length of the best locus is less than 3/2 the
length of the cDNA (indicating a potential pseudogene), we also
retain all loci that are longer than 3/2 the length of the cDNA and that
have scores within 20% of the top scoring locus. We consider at most
20 different loci. We extend each locus by 2,000 nucleotides to the left
and right and run the following steps separately for each locus. (2) We
perform a ‘‘tiling step’’ with ‘‘tile size’’ k: we identify all perfect k-mer
matches between the locus and cDNA, merge overlapping matches,
and extend them diagonally until the first mismatches on both sides.
All positions in these diagonals are added to the list of defined
positions. In addition, we add a ‘‘fuzz’’ (a diagonally oriented
rectangle) of defined positions of length r þ 3k/2 and width 2r at
both ends of each diagonal. By default we set the radius r¼ 4 and the
initial tile size is k¼ 16. (3) We perform an initial identification of the
optimal alignment through the defined positions so obtained. (4) We
check for insertions (unmapped nucleotides) at the start or end of the
cDNA. Insertions of bases at the 39 end that consist entirely or almost
entirely of adenosines are likely to correspond to poly-A tails that
were not removed, and these are not considered insertions but are

flagged as probable poly-A tails. If insertions exist we add 50,000
nucleotides to the locus at the corresponding end or ends and
perform a tiling of this region in the genome with the inserted
portion of the cDNA. All defined positions obtained in this tiling are
added to the global list of defined positions, and a new optimal
alignment is constructed. (5) If insertions (at the start, end, or
internally) of length four or more exist, the tile size is reduced from k
to k�4 and a re-tiling of the unmapped portion of the cDNA and the
corresponding region in the genome is performed. All defined
positions so obtained are added to the global list of defined positions.
In addition, a fuzz of defined positions of length rþ 3k/2 and width 2r
is added at all splice boundaries that are not GT-AG and at insertions
of length less than four. With this expanded list of defined positions a
new optimal alignment is produced. (6) Step 5 is repeated until all
insertions have disappeared or tile size k ¼ 4 has been reached.

To check for misoriented cDNAs the above procedure is
performed both with the original cDNA, and with its reverse-
complement. We assign a prior probability p (which is also estimated
from a set of mappings) to the probability that the cDNA is
misoriented. SPA reports the reverse-complemented alignment and
flags the cDNA as misoriented if smoþ log(p) . scoþ log(1� p), with
smo the score of the optimal alignment of the reverse-complemented
cDNA, and sco the score of the optimal alignment of the cDNA in
correct orientation.

To guarantee that the processing time for each cDNA stays within
certain bounds there are internal upper bounds on the number of
defined positions that are allowed. If the original tiling of locus and
cDNA produced more than dmax defined positions then the tile size is
increased by four and the entire procedure is repeated starting with
this larger tile size. This process is repeated until the initial number
of defined positions becomes less than dmax.

When extending the locus by 50,000 nucleotides at the 59 end or 39
end we allow at most emax new defined positions. Finally, at each re-
tiling the number of defined positions is allowed to grow by at most
rmax. If this upper bound is exceeded at some point during re-tiling,
the program exits re-tiling and reports the optimal alignment
obtained thus far.

All the parameters that control our heuristics and upper bounds
can be changed by the user. This gives one the flexibility to perform a
more thorough search and alignment for ‘‘problem cDNAs’’ that give
bad alignments while ensuring processing speed when running in
batch on large numbers of cDNAs. All the results that we report here
were obtained with the default settings dmax¼ 120,000, emax¼ 50,000,
and rmax ¼ 25,000.

Estimating gene structure and sequencing error parameters. Given
a set of mappings we infer the set of parameters that maximize the
overall posterior probability of the mappings as follows. Starting
from the first matched nucleotide, each mapping is scanned from left
to right, and stepping from the last mapped pair of nucleotides to the
next mapped pair of nucleotides the following statistics are recorded:
(1) the numbers of matching and mismatched pairs of aligned
nucleotides, (2) the number of times nik that k nucleotides are inserted
in the cDNA, with ni0 the number of times no insertion is observed
between consecutive mapped nucleotides, and (3) the number of
times nd

k that k nucleotides are deleted from the transcript, and (4) the
number of times nintk an intron of length k occurs. If the mappings do
not explicitly distinguish deletions from introns we record simply the
number ngk of cDNA gaps of length k.

The parameters pm and pmm¼ 1� pm are set to the fractions of all
mapped pairs that are matches and mismatches respectively.

To illustrate the procedure for inferring the distribution of
insertion, deletion, and intron lengths, Figure 13 shows the length
distribution of alignment gaps in the SPA mappings of the
FANTOM3 dataset. An essentially identical figure is obtained if one
uses the BLAT mappings instead of the SPA mappings. The blue
curve shows the length distribution of genome gaps, i.e., insertions,
and the red curve shows the length distribution of cDNA gaps, i.e.,
introns and/or deletions. The distributions of genome gaps and cDNA
gaps are almost identical at small lengths. Beyond lengths of about 50
there is a steep rise in the number of cDNA gaps, with a peak around
85, and a very long tail stretching beyond 100,000. It is intuitively
clear that essentially all cDNA gaps of lengths less than 40 correspond
to deletions, and that almost all cDNA gaps of length more than 50
correspond to introns. This is also confirmed by explicit studies of
intron length distributions [18]. Thus, when no distinction is made
between introns and deletions in the reference mappings, we
estimate the distributions Pd(n) and Pint(n) by assuming that all cDNA
gaps of length less than 30 are deletions, and that all others are
introns.

In principle we could estimate the distribution Pi(k) directly from
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the observed counts, i.e.,PiðkÞ ¼ nik=n with n ¼
P‘

i¼0 nik. However, this
is not satisfactory for large k since, as Figure 13 shows, we do not have
enough observations to estimate Pi(k) from the data for each k.
Therefore, we chose to set Pi(k) directly from the data for k � 3, and
estimate Pi(k) for k . 3 by a smoothly decreasing function of k. Based
on the distributions nik that we have observed in various datasets we
chose to model Pi(k) with an exponential exp(�ak) for large k. We thus
set PiðkÞ ¼ nik=n for k � 3, and for k . 3 we assume

PiðkÞ ¼ ½1� Pið0Þ � Pið1Þ � Pið2Þ � Pið3Þ�ð1� e�aÞe�aðk�4Þ: ð22Þ

We estimate a by maximizing the likelihood of the counts nik given
Equation 22. The maximum likelihood value of a is given by

a ¼ log
hki � 3
hki � 4

� �
; ð23Þ

with hki the average length of the insertions, averaged over all
insertions of length four or more.

If the reference mappings distinguish the introns from the
deletions we estimate the distributions Pd(k) and Pint(k) in a way
similar to the estimation of Pi(k). For deletions we again set
PdðkÞ ¼ nd

k=n directly for k � 3, and for k . 3 we again assume an
exponentially decaying distribution

PdðkÞ ¼ ½1� Pdð0Þ � Pdð1Þ � Pdð2Þ � Pdð3Þ�ð1� e�bÞe�bðk�4Þ ð24Þ

and for the estimate of b we have

b ¼ log
hki � 3
hki � 4

� �
; ð25Þ

where hki is the average length of deletions of length four or more.
The distributions of intron lengths that we have observed for

various mappings do not seem to fit a simple functional form and we
thus decided to estimate Pint(k) empirically over the entire range of
lengths. We record the lengths ls and ll of the shortest and longest
intron in the reference dataset and divide the range ll � ls into 100
equally spaced bins on a logarithmic scale. For all k in a bin we set the
probability Pint(k) equal to the frequency of introns with lengths
falling in that bin divided by the length of the bin. For introns larger
than ll we simply set the probability equal the probability of the
largest intron, i.e., Pint(k) ¼ Pint(ll) for k . ll. As Figure 13 shows, the
frequency of introns drops very sharply as one approaches length ls
from above and we thus set Pint(k) to a very small number for k , ls,
thereby effectively excluding introns that are smaller than the
smallest observed in the reference set.

Note that when one wants to map a large set of cDNAs from an
organism for which no reference mappings are available, one may
estimate appropriate parameters for this dataset by first running SPA
with a set of default parameters, using the resulting mappings as the
set of reference mappings, and estimating the parameters from them.
If necessary this procedure may be repeated. Once the parameters
are inferred, a final run of SPA with these parameters yields the final

mappings. This is the procedure that we applied to obtain the SPA
mappings.

Remapping of high mismatch-rate cDNAs. We observed that,
although the rate of mismatches in almost all cDNAs matched the
rate pmm estimated from the mappings, a small fraction of cDNAs (on
the order of 1%) showed a much higher mismatch rate. To optimize
the mappings of these high mismatch-rate cDNAs we decided to
classify all mappings into a low mismatch-rate class and a high
mismatch-rate class, to estimate the mismatch rates in these classes
separately, and to remap all cDNAs in the high mismatch-rate class
with the high mismatch rate.

For each cDNA c we count the number of matching nucleotides mc
and the number of mismatching nucleotides nc in the mapping. We
assume that the mappings are drawn from a mixture in which a
fraction q has a high mismatch rate h, and a fraction 1� q has a low
mismatch rate l. Under this mismatch model the probability P of the
data is given by

P ¼
Y
c

½hnc ð1� hÞmcqþ l nc ð1� lÞmc ð1� qÞ�: ð26Þ

We then determine the parameters q, h, and l that maximize P for the
given mappings. Using these parameters we calculate for each cDNA c
the posterior probability

Hc ¼
hnc ð1� hÞmcq

hnc ð1� hÞmcqþ lnc ð1� lÞmc ð1� qÞ ð27Þ

that the cDNA stems from the high mismatch-rate class. Finally, we
remap all cDNAs with Hc � 0.5 using the high mismatch rate h.

Inferring splice boundary probabilities. To infer the splice
boundary probabilities Psb(s1s2s3s4) we first identify all the splice
boundaries in the mappings that map without any errors in the ten
positions to the left and right of the boundary. We refer to these here
as trusted boundaries. As illustrated in Figure 1, a splice boundary
can be degenerate in that it can be moved to the left or right without
introducing any errors in the mappings. For each trusted boundary
we determine how much the splice boundary can be moved to the left
and right without introducing errors.

For each trusted boundary b we denote the number of different
possible error-free splice boundaries as kb, and denote the quadruplet
of nucleotides formed by the first two nucleotides and last two
nucleotides of the intron that is obtained when the splice boundary is
put at the ath of the kb positions as~sa. Imagine that we have chosen a
splice boundary position ab for each boundary b. We call such a
collection of positions an ‘‘assignment’’ A of splice boundaries to the
data D. Given an assignment A and a set of splice boundary
probabilities p~s the probability of the data D is given by

PðDjp;AÞ ¼
Y
~s

ðp~s Þn~s ðAÞ; ð28Þ

with n~s ðAÞ the number of times boundary~s occurs in the assignment
A. To obtain the posterior probability P(pjD) of splice boundary
probabilities given the data D we need a prior probability P(p) over
splice boundary probabilities and we need to sum over the ‘‘nuisance
parameters’’ A. Formally this gives us

PðpjDÞ ¼
P

A PðDjp;AÞPðpÞR
d~p
P

A PðDj~p;AÞPð~pÞ
; ð29Þ

where P(p) is the prior probability for the set of splice boundary
probabilities p~s and the integral d~p is over all splice boundary
probability distributions ~p~s � 0 with

P
~s ~p~s ¼ 1. It can be argued [19]

that an ignorance prior on the probabilities p~s is given by a uniform
distribution over their logs

PðpÞ}
Y
~s

ðp~s Þ�1: ð30Þ

Putting all this together we have

PðpjDÞ ¼
P

A

Q
~s ðp~s Þn~s ðAÞ�1P

A

R Q
~r ð~p~r Þn~r ðAÞ�1d~p

: ð31Þ

Finally, the expectation value hp~s i for a given component p~s is given
by

hp~s i ¼
P

A

R
p~s
Q

~r ðp~r Þn~r ðAÞ�1dpP
A

R Q
~r ð~p~r Þn~r ðAÞ�1d~p

: ð32Þ

The integrals can be performed analytically to yield

Figure 13. Distributions of Gap Lengths in the SPA Alignments of the

FANTOM3 Dataset

The blue curve shows the total number of occurrences of genome gaps,
i.e., cDNA insertions, of different lengths. The red curve shows the total
number of occurrences of any gaps, i.e., deletions or introns, in the cDNA
as a function of gap length. Both axes are shown on a logarithmic scale.
DOI: 10.1371/journal.pgen.0020024.g013
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hp~s i ¼
P

A
n~s ðAÞ
n

Q
~rC½n~r ðAÞ�P

A

Q
~rC½n~r ðAÞ�

; ð33Þ

with n the total number of splice boundaries in the data. Note that we
can interpret this expression as follows. We consider all assignments
A and give each assignment A a weight WðAÞ ¼

Q
~s C½n~s ðAÞ�. We then

calculate the proportions n~s ðAÞ=n of each splice boundary ~s in
assignment A and average them over the assignments using the
weights W(A). Note that, by applying Stirling’s approximation, the
weights W(A) can be shown to approximately equal e�nH(A), with H(A)
the entropy of the frequency distribution n~s ðAÞ=n of splice
boundaries in assignment A. That is, the smaller the entropy of the
distribution of observed frequencies in assignment A, the larger the
weight W(A) of this assignment in the average.

In practice there are too many possible assignments to explicitly
sum over all of them, and we use Monte-Carlo Markov chain
sampling to estimate the sum as follows. (1) Start with a random
assignment A of the splice junctions. (2) Pick a boundary b at
random. (3) For all a, calculate the assignment weights Wa that are
obtained when assigning the splice junction to the ath position. (4)
Assign the splice boundary to position a with probability

pa ¼ Wa=ð
Xkb
k¼1

WkÞ: Note that, because Cðnþ 1Þ=CðnÞ ¼ n, pa is simply

proportional to the total number of occurrences n~sa of ~sa at all
other splice boundaries in the current assignment. (5) Return to
Step 2.

During this sampling, we measure the average frequencies n~s=n of
each of the possible splice junctions ~s. Note that once a particular
splice junction ~s no longer occurs in the assignment, it can never
reappear. That is, the sampling automatically minimizes the number
of different splice boundary sequences~s.

For the mappings of the mouse and human datasets we ran this
sampling algorithm several times and verified that the averaged
frequencies n~s=n average to the same values in all runs for each
organism. These average frequencies then give the splice boundary
probabilities Psb(s1s2s3s4). We have implemented the Monte-Carlo
Markov chain sampling algorithm in a separate C program that will
be distributed with the SPA code so that users may estimate their own
splice boundary probabilities from their own sets of trusted
boundaries.

Performance comparison on human full-length cDNAs. We
performed a first mapping of the dataset of human full-length
cDNAs using SPA with a ‘‘default’’ set of parameters for the
distributions P(mjg) and P(cjm). These initial parameters were
estimated from BLAT alignments of the set of human RefSeq [20]
mRNAs and contain increased splice boundary probabilities for the
known splice sites GT-AG, GC-AG, and AT-AC. We estimated a new
set of parameters from these mappings and remapped the high
mismatch-rate cDNAs as described above. We then performed a
second round of mappings with these new parameters. Finally, we
produced a final set of parameters from this second round of
mappings and confirmed that the parameters estimated after the first
and second round of mappings are almost identical.

Since Sim4 and Spidey are much slower than BLAT, GMAP, and
SPA, they have to be provided with relatively small genomic loci for
each cDNA in order to run the whole dataset in a reasonable amount
of time. For fairness of comparison, for each cDNA we ran Sim4 and
Spidey on the same set of loci from the BLAT gfServer as SPA was run
on. We produced BLAT alignments using the –fine option. BLAT
does not explicitly distinguish deletions from introns, and we chose
to consider every deletion of more than 30 nucleotides an intron.

For GMAP and Spidey we found that a number of output files gave
inconsistent alignments. In GMAP’s case these were very rare. In a few
cDNAs the cDNA sequence in GMAP’s output did not exactly match
the cDNA in the input. In Spidey’s case there was a significant
number of cDNAs where the mapping contained exons whose
genomic coordinates overlapped. There were also a few cases where
the reported exon lengths did not match the number of bases in the
reported alignment. We considered all cDNAs with such corrupted
mappings as unmapped. For Spidey there were also a significant
number cases in which the reported genomic loci were incorrect by
one or a few nucleotides. We fixed these errors using a post-
processing script and still considered these mappings.

We applied our parameter estimation procedure to the mappings
of Sim4, GMAP, BLAT, and Spidey, including the splice boundary
inference, to obtain parameter sets adapted to the mappings of each
of these algorithms. For each algorithm X we scored all its mappings
and all SPA’s mappings using the parameter set estimated from X’s
mappings. The distributions of the score differences for each

algorithm are shown as the dashed lines in Figure 4. Note that SPA
does not consider introns of length less than 30. To score the
alignments of the other algorithms using SPA’s scoring we assigned a
log probability of �10,000 to each intron of length less than 30.

For each 39 end insertion in each of the mappings we calculated
the fraction of A nucleotides in this end segment of the cDNA.
Whenever this fraction was 0.8 or larger we considered the end
insertion a poly-A tail. The number of nucleotides in poly-A tails is
shown in Table S1.

We found that the initial and terminal exons that were mapped by
only some of the algorithms contained a higher fraction of non-
canonical boundaries, boundaries lying in genome gaps, et cetera.
Therefore, to compare the quality of the alignments around splice
boundaries we restricted the analysis to those boundaries that
occurred at positions in the cDNA that were mapped by both
algorithms being compared. That is, for each combination of SPA
and another algorithm X, we compared the mapping of each cDNA
and extracted the segment of the cDNA that was mapped by both
algorithms. More specifically, we determined the first and last cDNA
nucleotide mapped by SPA, and the first and last nucleotide mapped
by X, and intersected the two cDNA segments bounded by these starts
and ends. We then extracted only the splice boundaries that lay
within this intersection. For each splice boundary we counted the
number of mismatches, insertions, and deletions that lay within ten
alignment positions of the splice boundary, and summed these over
all cDNAs. We also determined the fraction of the boundaries that
did not match a known splice site, i.e., GT-AG, GC-AC, or AT-AC.

For the conservation statistics we downloaded the phastcon
profiles [10] from the UCSC genome database [21]. For each
combination of SPA and one of the other algorithms we determined
the set of genomic nucleotides S that occurred only in SPA’s
mappings, and the set of genomic nucleotides O that occurred only
in the mappings of the other algorithm. For each conservation score c
we then calculated the difference in the number of nucleotides with
at least conservation score c that were unique to SPA’s mappings and
the number of nucleotides with conservation score at least c that were
unique to the other algorithm’s mappings. These distributions are
shown in the left panel of Figure 6.

For the right panel of Figure 6 we compared the distribution of
conservation scores of the nucleotides S that were unique to SPA’s
mappings with the distribution of conservation scores of the
nucleotides O that were unique to the mappings of each of the other
algorithms. Formally, we divided the interval from zero to one into
100 equally sized bins and determined the percentages pS(c) ¼ S(c)/S
and pO(c)¼O(c)/O of nucleotides at each conservation score that were
unique to the respective mappings. The right panel of Figure 6 shows
the ratio pS(c)/pO(c) of these distributions. Thus, whenever the curve in
the right panel is above one, it means that the nucleotides with that
conservation score were relatively more common in the set S than
they were in the set O.

Supporting Information

Table S1. Statistics of the Mappings of the Set of Human cDNAs

Found at DOI: 10.1371/journal.pgen.0020024.st001 (37 KB PDF).

Table S2. Statistics of the Mappings of the FANTOM3 Mouse Full-
Length cDNAs

Found at DOI: 10.1371/journal.pgen.0020024.st002 (36 KB PDF).
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