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S2 Appendix. Ensemble Kalman filter and Gaussian 1

anamorphosis transformation 2

Because the state variables, the model parameters and the observations involved in the 3

model are characterized by positive bounded distributions, a Gaussian transformation is 4

required to correctly perform the update step of the Ensemble Kalman filter (EnKF) 5

and back-calculate variables that are physically consistent. The idea is to transform the 6

cumulative distribution function (CDF) of each variable into a Gaussian CDF through a 7

nonlinear, invertible function. The transformation we used is the empirical 8

anamorphosis function as described in [1]. For each state variable, parameters, and 9

observations, this transformation simply build the empirical CDF associated to the 10

ensemble, F (j) = (j − 0.5)/N , sorting the ensemble by their rank, j = 1, . . . , N . The 11

Gaussian values corresponding to each ensemble element are computed as the quantiles 12

associate to F (j), z(j) = G−1(F (j)), where G−1 is the inverse standard Gaussian CDF. 13

Then, the update step is performed following the unbiased square root implementation 14

of EnKF [2] applied to the transformed Gaussian variables (see Fig S2.1: 15

za,(j) = zf,(j) +K
(
ỹ − ỹf,(j)

)
(S2.1) 16

where ỹ and ỹf,(j) are the Gaussian transformation associated to the real observations 17

y and the model ones yf,(j), respectively. The mass probability distribution of the 18
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Fig S2.1. DA scheme. In the forecast step, the empirical pdf of the state variables
(red) is propagated in time by solving the SIRB model for each realization of the
ensemble (gray lines) from time t to t+ 1. Then, in the update step, the empirical pdf
described by the model trajectories (blue) is corrected based on the discrepancy
between the measured incidence pdf (y green) and the forecasted incidence (y in blue),
in such a way to obtain a starting point closer to the true system dynamics for the
subsequent forecast.

negative binomial associated to the observations is used to compute the quantiles for 19

the Gaussian transformation. K is an empirical approximation of the Kalman filter, 20

where the correlations between forecast and observations are computed through the 21

ensemble (for more details see, e.g., [1, 2]). 22

The Gaussian variables associated to I ,R, and B which are defined at the commune 23

level, are independently updated with respect the Gaussian transformed observation of 24

the weekly reported cases in that commune. The Gaussian transformed parameters 25

(m,D, φ, β, µB , ρ, σ), which are uniform on the domain, are updated with respect the 26

observations upscaled to the department level, in order to capture the global trend of 27

the epidemic and remove local noise. 28

The final step of the empirical anamorphosis transformation requires to 29

back-transform the updated ensemble from the Gaussian into the original physical 30

space, in order to obtain the updated state variables xa,(j). This is achieved by 31

computing the standard Gaussian CDF of za,(j) and linearly interpolating them with 32

respect to F (j), j = 1, . . . , N . This inverse operation requires particular attention on 33
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how to handle the tails of the Gaussian distribution, which are not directly defined in 34

the interpolation. This step is fundamental when the observations fall outside or on the 35

tails of the ensemble distribution, meaning that the overall ensemble would require a 36

large correction toward the observations. However, most of the updated variables have 37

physical constraints that should not be crossed. For example we know that I > 0, R > 0, 38

and I +R < H. For this reason, the tails are here modeled by setting boundary values 39

corresponding to the extremes of the CDF, F (0) = 0 and F (N+1) = 1, which correspond 40

to ±∞ in Gaussian variables. In particular, since the number of infected individuals 41

might be subject to strong fluctuations during an epidemiological week, we set the lower 42

and upper bounds of I in each node as I(0) = 0.5I(1) and I(N+1) = 2I(N). Analogous 43

bounds are set for the bacteria concentration, which equations are linearly dependent to 44

the number of infected individuals. The boundaries for the recovered individuals and 45

the model parameters are computed via linear extrapolation from the ensemble values. 46

In addition to these constraints, to reduce the possible filter inbreeding problem on 47

the updated parameters, which might cause the rapid underestimation of their variance 48

and of the model uncertainty (e.g., [3, 4]), we use an adaptive inflation of the variance 49

associate to the observation error, thus amplifying the covariances used in the 50

computation of the Kalman gain (e.g., [3, 4]). The idea is to repeat the update step by 51

gradually increasing the measurement error variance, here controlled by the parameter p 52

of the negative binomial distribution. p is decreased until the parameter variances σϑa
k

53

are higher than a desired tolerance. At the i-th repetition of the update, we set the 54

parameter equal to p/ci1, with c1 > 1, and the update is accepted if σϑa
k
> c2σϑf

k
for 55

each parameter, with 0 < c2 < 1. This condition controls the decrease of the parameter 56

variances during the simulation and, thus, of the probability space explored by the 57

ensemble. The proposed approach is justified in our application by the high uncertainty 58

associated with the epidemiological data, whose error variance is largely unknown. 59

Concerning the EnKF setup, the results presented in the following are obtained with 60

N = 1000, c1=4, and c2=0.8, and a maximum of update repetition set to 4. The 61

condition Si = Hi − Ii −Ri > 0, for i = 1, . . . , n, is checked for each realization of the 62

ensemble, and is required to accept the updated state variables. The state variables of 63

the realizations that do not satisfy this condition are not updated. 64
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