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Figure 47: κ2 (NT ,m) for the 2-sided continuous-covariate correction, as shown for m = 32, . . . , 2048, with different colors
corresponding to different values of NT (higher values of NT correspond to lower values of κ2). The large-m values of κ2

are listed within the legend.

Given NT we choose κ2 = κ2 (NT ) (e.g., if there were 2 continuous-covariate-components per patient we would choose
κ2 ≈ 0.34). This then implies that the sub-scores for j ∈ JB or k ∈ KB will be:

[
Z

[T ]
ROW

]2
j
∼ m2n4

M2N4
(2g − 1)

2
, and

[
Z

[T ]
COL

]
k
∼ m2n

M2N
(2g − 1) .

Consequently, when the covariates of B are drawn from µ (T |Q), we expect that on average with respect to µ (Q) the
signal produced by B will be.

[ZROW]2j ∼ 0 and [ZCOL]k ∼ 0.

To summarize so far: we’ve introduced a method for calculating row- and column-scores which corrects for multi-
dimensional continuous-covariates in the following sense. A bicluster B with its covariates drawn isotropically from the
covariate-space RNT will produce a signal comparable to what that bicluster would have produced in our original algorithm
(i.e., a row-signal of (m/M) (n/N)

2
(2g − 1) and a column-signal of (m/M)

2
(n/N) (2g − 1)). If the covariates associated

with B are not isotropically distributed in R
NT , but are instead concentrated with respect to angle in R

NT , then the signal
produced by B will be demoted. A bicluster B with its covariates drawn from only a half-space of RNT will, on average,
produce a signal of 0. A bicluster B with its covariates drawn from an even more narrow cone of RNT will produce a
negative signal. And finally, in the extreme scenario where each covariate of B is identical, the row-signal of B will be
−
(
1/κ2 − 1

)
(m/M) (n/N)

2
(2g − 1) and the column-signal −

(
1/κ2 − 1

)
(m/M)

2
(n/N) (2g − 1).

In order for this kind of covariate-correction to be useful, the number of patients mB in any planted bicluster B must

be sufficiently large. Specifically, mB must be large enough that the averages
[
Z

[T ]
ROW

]2
j
and

[
Z

[T ]
COL

]
k
correctly reflect the

covariate-distribution of B. This typically happens when mB & O
(
2NT

)
or so. If mB . 2NT then there are unlikely to be

very many patients in each orthant of RNT ; the averages
[
Z

[T ]
ROW

]2
j
and

[
Z

[T ]
COL

]
k
are unlikely to be accurate estimates of

the covariate-distribution of B, and are likely to be large even if B’s covariates are drawn from an isotropic distribution.
Thus, if mB is insufficiently large, even the signals produced by covariate-balanced biclusters will be demoted, and our
algorithm will not perform well. Based on this observation, we see that the mB required for covariate-estimation grows
exponentially with NT , but is not too large for small NT ; for NT = 2 the required mB is roughly a few dozen or so (see
Figs 48, 49 and 50).

Before we move on, we mention another kind of continuous-covariate correction; one that we’ll refer to later as a
‘1-sided’ correction.

[
Z

[t] 1s
ROW

]
j
=

∑̃

j fixed, j′∈D, j′ 6=j;

k′ 6=k

DjkDj′kTj′tDj′k′Djk′ , for each t ∈ {1, . . . .NT } ,
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Figure 48: Panels A and B illustrate the setup for the numerical experiments shown in Figs 49 and 50, respectively.
These numerical experiments illustrate the performance of our algorithm on a simple planted-bicluster problem involving
continuous covariates with dimension NT = 2. For each numerical experiment we let D be a large M ×M random matrix
with entries chosen independently from a distribution with median 0. We let T be anM ×2 matrix of covariates with each
row chosen randomly from an isotropic distribution on R

2. For illustration, the rows of T are represented as unit-vectors
in R

2. Once we have chosen T , we select a randomly-oriented half-space H of R2 and then determine the subset JH of
rows of D which have covariates-vectors lying in H . In our illustration we depict one such randomly-oriented H with a
white semicircle, and the complement Hc with a grey semicircle. We’ve organized the rows of D so that the rows in JH are
on top and the rows of JHc are on the bottom. In Panel-A we implant within D a small m×m bicluster B1 that is rank-1
with error-ε. To implant B1 we choose the m rows and columns at random. Note that B1 will typically be balanced with
respect to the covariates; roughly half the rows of B1 will come from JH , and half will come from JHc . We also implant
within D a second rank-1 error-ε ‘red-herring’ bicluster B2 of size m×m. We choose m columns at random from D, and
m rows from JH to implant B2. Note that bicluster B2 is not balanced with respect to the covariates. Note that our
illustration is slightly misleading; B1 and B2 will not necessarily be disjoint. Rather, because they are randomly chosen,
the row- and column-subsets of B1 and B2 will typically have a small overlap. For the purposes of this simple numerical
experiment the entries in this overlap are randomly assigned to either B1 or B2. In Panel-B we implant B1 and B2 as
before, except that B2 is of size 2m× 2m. We also implant a rank-1 error-ε B3 of size 4m× 4m with rows restricted to
JHc . For each numerical experiment we calculate the average auc A1 for the bicluster B1, as well as the average auc A2

for bicluster B2 (as well as A3 for B3 if it exists). Our goal is to find the first, despite the masking effect of the latter. As
shown in Fig 49, an m×m B2 does not compromise the effectiveness of our algorithm all that much. However, as shown
in Fig 50, the presence of a larger B2 and B3 interfere with our algorithm’s ability to successfully detect B1 when M is
insufficiently large.

69



lo
g  

  (m
)

M

0.45

0.65

0.55

0.50

0.60

-3.0 +1.0-1.0

M=64 M=128 M=256 M=512

M=1024 M=2048 M=4096 M=8192

A=1

A=0.5

A=1

A=0.5

Performance of biclustering algorithm with continuous-covariates
A for balanced bicluster

A for imbalanced bicluster

lo
g  

  (m
)

M

0.45

0.65

0.55

0.50

0.60

-3.0 +1.0-1.0

M=64 M=128 M=256 M=512

M=1024 M=2048 M=4096 M=8192

A

B

Figure 49: These numerical experiments illustrate the performance of our algorithm on a simple planted-bicluster problem
involving continuous covariates with dimension NT = 2 (see Fig 48A). In panel-A we show the trial-averaged value of
A1 as a function of ε

√
m and logM (m). In panel-B we show the trial-averaged value of A2. The presence of B2 slightly

impacts our algorithm’s performance (compare with Fig 26). Note that, when M is insufficiently large (in this case . 64),
our algorithm focuses on B2 rather than B1.
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Figure 50: These numerical experiments illustrate the performance of our algorithm on a simple planted-bicluster problem
involving continuous covariates with dimension NT = 2 (see Fig 48B). In panel-A we show the trial-averaged value of A1

as a function of ε
√
m and logM (m). In panel-B we show the trial-averaged value of max (A2, A3) which is usually A3.

The presence of B2 and B3 make it difficult for our bicluster to detect the smaller B1 when the M is low. Note that,
when M . 1024, our algorithm focuses on B2 or B3 rather than B1.
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[
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[t] 1s
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]
k
=

∑̃

j′,j∈D, j′ 6=j;
k fixed, k′ 6=k

DjkDjk′Dj′k′Tj′tDj′k, for each t ∈ {1, . . . .NT } .

This 1-sided correction only counts the continuous-covariates associated with the j′ row-index, ignoring the contribution
from Tj,t. The associated row- and column-scores are:

[
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[T ] 1s
ROW

]2
j
=

1

κ2

∑̃
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ROW
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,
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,

[ZROW]j =
[
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ROW

]
j
−
[
Z

[T ] 1s
ROW

]
j
, [ZCOL]k =

[
Zbase
COL

]
k
−
[
Z

[T ] 1s
COL

]
k
.

The 1-sided correction is essentially the same as the 2-sided correction with regards to the row-subscores. However,
the 1-sided correction is rather different for the column-subscores. Under the 1-sided correction the column-subscores
only capture the norm (rather than the norm-squared) of the averaged continuous-covariate vector accumulated across
biclusters that include column-k. This difference won’t affect the D-only situation very much, but will have ramifications
when we include the X-matrix of controls in section 12.

11 Correcting for Sparsity

Up to this point we’ve been assuming that the entries of the original data-matrix take on a range of values, both positive
and negative. Our notion of low-rank was predicated on this assumption: Indeed, we’ve spent our time analyzing how
our loop-scores function when the underlying data-matrix was drawn from an isotropic gaussian distribution, assuming
that any planted-biclusters were drawn from an eccentric (nonisotropic) gaussian distribution. Because binarization is
built into our algorithm, our analysis immediately carries forward to the situation where the original data is binary rather
than continuous, provided that we assume the underlying data-matrix was drawn from a binarized version of an isotropic
gaussian, and that any planted-biclusters were drawn from binarized versions of eccentric gaussians.

All of this analysis depends on one thing: our algorithm assumes that the fraction of negative entries within the data-
matrix is comparable to the fraction of positive entries. If the original data-matrix has a surplus of, say, negative entries,
then the binarized version of the data-matrix will be ‘sparse’ (i.e., the fraction of positive entries will be much less than
0.5, and the fraction of negative entries will be much greater than 0.5). Such a sparse matrix is likely to contain large
submatrices consisting of mostly negative entries, simply due to their abundance. As we originally described above, our
algorithm will typically focus on these large submatrices, even though they are not statistically significant. The reason for
this behavior is that the abundance of negative entries gives rise to an abundance of ‘all-negative loops’ (i.e., rank-1 loops
involving only negative entries). The loop-score we describe in section 2 treats all rank-1 loops the same way – each adds
one to the total score – regardless of whether or not those loops consist of positive or negative entries (or a mixture of the
two). Therefore, the large number of all-negative loops drowns out the other (more significant) rank-1 loops, obscuring
the presence of any significant biclusters.

To rectify this behavior we can correct for sparsity. The main idea is to rescore the loops so that rank-1 loops consisting
of entries that are otherwise abundant do not add much to the score, whereas rank-1 loops containing entries that are
otherwise rare add more to the score. To describe this correction let’s assume that our M ×N data-matrix D is binary,
with sparsity p (i.e., a fraction p of entries equal to +1, and a fraction q = 1 − p of the entries equal to −1). We set
α = p− q to be the column mean of each column of D, and 1/δ = 4pq to be the inverse of the variance of each column.
Using this notation we define:

[ZROW]j =

∑̃

j fixed, j′ 6=j;
k′ 6=k

[Djk − α] · δ · [Dj′k − α] [Dj′k′ − α] · δ · [Djk′ − α] ,

[ZCOL]k =

∑̃

j′ 6=j;
k fixed, k′ 6=k

[Djk − α] [Djk′ − α] · δ · [Dj′k′ − α] [Dj′k − α] · δ.

These scores ‘normalize’ D by subtracting the mean from each entry and then dividing by the standard-deviation.
This normalization ensures that, when considering a large random matrix in the large M,N limit, the mean row- and
column-score will remain close to 0 and the variance of the row- and column-scores will remain close to 2/

(
MN2

)
and

2/
(
M2N

)
, respectively (regardless of the fixed sparsity-coefficient p). Any rank-1 loop composed of common entries (e.g.,

the abundant negative entries in our earlier example) will only add a small amount to the total score, whereas a rank-1
loop composed of rare entries (e.g., positive entries) will add a larger amount to the total score.
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Figure 51: This figure illustrates the setup for the numerical experiments shown in Fig 52. These numerical experiments
illustrate the performance of our algorithm on a simple planted-bicluster problem involving a sparse matrix with sparsity-
coefficient p = 0.0625. For each numerical experiment we let D be a large M ×M random matrix with entries chosen
independently and randomly to be +1 with probability p = 0.0625, and −1 with probability q = 1 − p. Within D
we implant an ε-error m ×m bicluster B1 with sparsity-coefficient 2p, and another ε-error 2m × 2m bicluster B2 with
sparsity-coefficient p. These biclusters are both approximately rank-1, and are generated using the method described in
section 5.2, with m, ε and the sparsity-coefficient given as parameters. Both biclusters are implanted randomly. Note
that our illustration is slightly misleading; B1 and B2 will not necessarily be disjoint. Rather, because they are randomly
chosen, the row- and column-subsets of B1 and B2 will typically have a small overlap. For the purposes of this simple
numerical experiment the entries in this overlap are randomly assigned to either B1 or B2. For each numerical experiment
we calculate the average auc A1 for the bicluster B1, as well as the average auc A2 for bicluster B2. Our goal is to find
both B1 and B2, even in the presence of the abundant negative entries within D. Because of the tradeoff between size,
noise and sparsity, there will be combinations of m, ε and p for which B2 is prioritized over B1, and vice-versa.

To be more specific, of the 16 different possible loops within a binary-matrix, 8 will be rank-1 and 8 will be rank-2
(recall Fig 20). The 8 rank-1 loops fall into three categories: (a) four negative entries, (b) two negative and two positive
entries, and (c) four positive entries. These categories contribute, respectively, p2/q2, 1, and q2/p2 to the summands
above. The 8 rank-2 loops fall into two categories: (d) three negative entries and one positive entry, and (e) three positive
entries and one negative entry. These categories contribute, respectively, −p/q and −q/p to the summands above.

To relate this to the planted-bicluster problem, let’s consider anM×N data-matrixD with sparsity-coefficient p < 0.5.
Let’s implant within D a rank-1 error-ε m×n bicluster B with a potentially different sparsity-coefficient p̃ with p < p̃ < 0.5.
We’ll generate B using the algorithm described in section 5.2. If ε

√
m is not too large, the bicluster B will produce a

row-sigal of approximately (m/M) (n/N)
2
η and a column-signal of approximately (m/M)

2
(n/N) η, where η is given by:

η ∼ g

{
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p2

q2
+ ξ2,2 + ξ0,4

q2

p2

}
− (1− g)

{
ξ4,0

p

q
+ ξ2,2

1

2

(
p

q
+
q

p

)
+ ξ0,4

q

p

}
, with

ξ4,0 =
(
p̂4 + q̂4

)
, ξ2,2 = 4

(
p̂3q̂ + p̂2q̂2 + p̂q̂3

)
, and ξ0,4 = 2p̂2q̂2,

and p̂ and q̂ = 1 − p̂ given by the construction in section 5.2 (i.e., using sparsity-coefficient p̃). The terms ξ4,0, ξ2,2 and
ξ0,4 represent the distribution of loops from categories (a), (b) and (c), respectively, from within the outer product uv⊺

used in the construction of B. In the limit ε
√
m→ 0 and p≪ 0.5, the signal-factor η can be approximated by:

η ∼
{
ξ4,0

p2

q2
+ ξ2,2 + ξ0,4

q2

p2

}
, with ξ4,0 ∼ 1− 2p̃+

1

2
p̃2, ξ2,2 ∼ 2p̃− p̃2, and ξ0,4 ∼ 1

2
p̃2, implying

η ∼
(
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1

2
p̃2
)
p2

q2
+ 2p̃− p̃2 +

1

2
p̃2
q2

p2
∼ 1

2

(
p̃

p

)2

.

The overall signal produced by B depends on the size of B and the noise (as before), but also on the sparsity coefficient p̃
of B, which influences p̂ and η. The signal-factor η typically grows with p̃ and, ultimately, there is a tradeoff: a bicluster
B1 which is small but has a higher p̃ may produce a signal that is just as great as another bicluster B2 that is large but
has a lower p̃. For example, the bicluster B1 may have more rank-1 loops containing rare positive-entries; their presence
causes the loops of B1 to count for more than the typical loops of B2. An example along these lines is provided in Figs
51 and 52.

Sparsity arises in practice when attempting to analyze genotyped data; single-nucleotide-polymorphisms (SNPs) can
involve minor-allele-frequencies (MAFs) that are quite small (e.g., 0.1 or smaller), giving rise to sparsity-coefficients that
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Figure 52: These numerical experiments illustrate the performance of our algorithm on a simple planted-bicluster problem
involving a sparse matrix (see Fig 51). In panel-A we show the trial-averaged value of A1 as a function of ε

√
m and

logM (m). In panel-B we show the trial-averaged value of A2. Note that our algorithm typically finds both B1 and B2,
despite the abundance of negative entries in D. Depending on the parameters, either B1 or B2 can be prioritized.

74



are very far from 0.5 (e.g., ≤ 0.01 or ≥ 0.99). Moreover, the different columns k of the data-matrix often correspond to
different SNPs with different MAFs and hence different sparsity-coefficients pk. We can generalize our sparsity-correction
to account for this scenario by defining:

[ZROW]j =

∑̃

j fixed, j′ 6=j;
k′ 6=k

[D − 1α⊺]jk ∆kk [D
⊺ − α1⊺]kj′ [D − 1α⊺]j′k′ ∆k′k′ [D⊺ − α1⊺]k′j ,

[ZCOL]k =

∑̃

j′ 6=j;
k fixed, k′ 6=k

[D⊺ − α1⊺]kj [D − 1α⊺]jk′ ∆k′k′ [D⊺ − α1⊺]k′j′ [D − 1α⊺]j′k ∆kk,

where ~α ∈ R
N is the N × 1 vector of means αk = pk − qk, ∆ ∈ R

N×N is the diagonal matrix with entries ∆−1
kk = 4pkqk,

and ~1 ∈ R
M is the M ×1 vector of all ones. Both these row- and column-scores can be computed using two binary matrix-

matrix multiplications as well as O (1) matrix-vector multiplications and O (max(M,N)) vector-vector dot-products (see
section 12 for details).

12 Putting it all together

So far we’ve discussed modifications to our algorithm that account for cases-vs-controls, categorical- and continuous-
covariates, as well as sparsity. One of our goals was to ensure that these modifications were not mutually exclusive; they
can all be combined into one algorithm which accounts for all of the above. When combining these modifications we end
up calculating a variety of sub-scores which contribute in various ways to our final row- and column-scores. Within the
context of our methodology, we have chosen to perform the following steps in order:

1. Correct for sparsity.

2. Correct for continuous covariates.

3. Given Ireq, correct for categorical covariates.

4. Correct for cases versus controls.

Based on our experience, we believe that the sparsity correction should be performed first, because the sparsity
correction alters the weight of each loop. After that, the correction for continuous-covariates should come before the
correction for categorical-covariates; this ensures that each category refers to its own distribution of continuous-covariates.
Finally, the correction for categorical-covariates should come before the correction for cases-vs-controls; this ensures that
biclusters which are balanced across case-categories are not unfairly penalized by an imbalance across control-categories.
Two examples which have motivated our choices are given in Fig 53.

The main user-specified input-parameter is Ireq, which is used in Step-3 to dictate the number of covariate-categories
a bicluster must extend across in order to be considered by the algorithm. Technically speaking, Step-2 also involves a
parameter κ2, which dictates how broadly a bicluster must be distributed in continuous-covariate-space in order to be
considered. While κ2 could in principle be modified by the user, we typically set κ2 so that, on average, biclusters produce
no signal when they are drawn from only half of covariate-space (see Fig 47).

Before we describe our general procedure, we briefly review our notation. We’ll consider a situation where the pa-
tients are segregated into Icat different covariate-categories (e.g., study, batch-number, recording location, etc). We’ll
use the post-script i to track the category-number. We’ll denote by MDi and MXi the number of case- and control-
patients in category-i. Each patient will also be associated with N different genetic-measurements. Each of these genetic-
measurements will, in general, give rise to its own sparsity-coefficient pk (for k = 1, . . . , N) calculated across the entire
patient population. The genetic-data for the case- and control-patients in category-i is contained in the data-matrices Di
and Xi, of size MDi×N and MXi×N , respectively. The matrix-entry Di (j, k) contains the kth-genetic-measurement for
the jth-case-patient from category-i. The matrix-entry Xi (j, k) contains the same for the jth-control-patient. In addition
to the genetic-data, each patient will also be associated with an NT -dimensional vector of continuous-covariates. These
continuous-covariates are contained in covariate-matrices TDi and TXi, of size MDi × NT and MXi × NT , respectively.
The row-vector TDi (j, t) for t = 1, . . . , NT contains the continuous-covariates for the jth case-patient in category-i. The
row-vector TXi (j, t) for t = 1, . . . , NT contains the same for the jth-control-patient. In the expressions below we’ll use the
dummy-variable ‘Q’ below to denote either D or X ; e.g., MQi could be either MDi or MXi. We’ll also use the notation
1Qi to refer to the MQi × 1 vector of all ones.

After binarizing all the matrices involved we calculate the sparsity coefficients:

pk =

∑̃

i,j ;
Q={D,X}

⌊Qi (j, k)⌋ , where ⌊x⌋ = max (0, x) .
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Figure 53: Examples illustrating the order of corrections for our full algorithm. In Panel-A we show a situation with both
continuous- and categorical-covariates. The continuous-covariates are drawn from an NT = 2 dimensional space (right
side). There are two covariate-categories, male and female. The bicluster B shown extends across many males as well
as many females. While the females in B have continuous-covariates drawn isotropically from R

NT , the males in B all
have continuous-covariates drawn from the same half-space H ∈ R

NT (indicated by the white semicircle). If we were to
correct for categorical-covariates before correcting for continous-covariates, the signal produced by B would be high, which
is incorrect in this case. If, instead, we correct for continuous-covariates before correcting for categorical-covariates, the
signal produced by B will be correctly reduced to zero. In Panel-B we show a situation with both categorical-covariates as
well as cases-vs-controls. The bicluster B extends across both male-cases and female-cases, but only across male-controls.
If we were to correct for cases-vs-controls before correcting for categorical-covariates, the score for B would be reduced to
zero, even though B is balanced across the cases in a manner not exhibited across the controls. If, instead, we correct for
categorical-covariates before correcting for cases-vs-controls, the signal produced by B will be high, as it should be.
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Using these sparsity coefficients we define the probabilities qk = 1 − pk, the means αk = pk − qk, and the variances
δ−1
k = 4pkqk. These means and variances allow us to define the N × 1 vector ~α and the N ×N diagonal matrix ∆ with
diagonal-entries δk. We then compute the base sub-scores for each combination of Q = D and Q′ ∈ {D,X}, for each pair
of categories i, i′:

[
ZQ,Q′; i,i′; base
ROW

]
j
=

∑̃

Q, i, Q′, i′ fixed ;

j fixed in Qi, j′ in Q′i′;
j′ 6=j if Q=Q′ and i=i′

k′ 6=k

[Qi− 1Qiα
⊺]j,k ∆kk [Q

′i′ − 1Q′i′α
⊺]j′,k

× [Q′i′ − 1Q′i′α
⊺]j′,k′ ∆k′k′ [Qi− 1Qiα

⊺]j,k′ ,

[
ZQ,Q′; i,i′; base
COL

]
k
=

∑̃

Q, i, Q′, i′ fixed ;
j in Qi, j′ in Q′i′;

j′ 6=j if Q=Q′ and i=i′

k fixed, k′ 6=k

[Qi− 1Qiα
⊺]j,k [Qi− 1Qiα

⊺]j,k′ ∆k′k′

× [Q′i′ − 1Q′i′α
⊺]j′,k′ [Q

′i′ − 1Q′i′α
⊺]j′,k ∆kk ,

as well as the covariate-dependent sub-scores for each t = 1, . . . , NT :

[
Z

Q,Q′; i,i′; [t]
ROW

]
j
=

∑̃

Q, i, Q′, i′ fixed ;

j fixed in Qi, j′ in Q′i′;

j′ 6=j if Q=Q′ and i=i′

k′ 6=k

[Qi− 1Qiα
⊺]j,k ∆kk [Q

′i′ − 1Q′i′α
⊺]j′,k [TQ′i′ ]j′,t

× [Q′i′ − 1Q′i′α
⊺]j′,k′ ∆k′k′ [Qi− 1Qiα

⊺]j,k′ [TQi]j,t ,

[
Z

Q,Q′; i,i′; [t]
COL

]
k
=

∑̃

Q, i, Q′, i′ fixed ;

j in Qi, j′ in Q′i′;

j′ 6=j if Q=Q′ and i=i′

k fixed, k′ 6=k

[Qi− 1Qiα
⊺]j,k [TQi]j,t [Qi− 1Qiα

⊺]j,k′ ∆k′k′

× [Q′i′ − 1Q′i′α
⊺]j′,k′ [TQ′i′ ]j′,t [Q

′i′ − 1Q′i′α
⊺]j′,k ∆kk .

Combining these sub-scores allows us to correct for continuous-covariates within each combination of Q, Q′, i, i′:

[
Z

Q,Q′; i,i′; [T ]
ROW

]2
j
=

1

κ2

∑̃

t

⌊
Z

Q,Q′; i,i′ ; [t]
ROW

⌋2
j
, and

[
Z

Q,Q′; i,i′; [T ]
COL

]
k
=

1

κ2

∑̃

t

[
Z

Q,Q′; i,i′; [t]
COL

]
k
,

where κ2 = κ2 (NT ) as defined in section 10. We then define sub-scores for each Q, Q′, i, i′.
[
ZQ,Q′; i,i′

ROW

]2
j
=
⌊
ZQ,Q′; i,i′; base
ROW

⌋2
j
−
[
Z

Q,Q′; i,i′; [T ]
ROW

]2
j
, and

[
ZQ,Q′; i,i′

COL

]
k
=
[
ZQ,Q′; i,i′; base
COL

]
k
−
[
Z

Q,Q′; i,i′ ; [T ]
COL

]
k
.

We correct for categorical covariates by choosing the Ireq-largest element across i′ for each row-sub-score, and the I2req-
largest element across i, i′ for each column-sub-score (see section 9):

[
ZQ,Q′; i
ROW

]
j
=
[
Z

Q,Q′; i,#Ireq
ROW

]
j
, and

[
ZQ,Q′

COL

]
k
=

[
Z

Q,Q′; #I2
req

COL

]

k

.

Finally, we correct for cases-vs-controls by subtracting the control-sub-scores from the case-sub-scores (see section 8):

[ZROW]j =
[
ZD,D; i
ROW

]
j
−
[
ZD,X; i
ROW

]
j
for j ∈ Di, and [ZCOL]k =

[
ZD,D
COL

]
k
−
[
ZD,X
COL

]
k
.

An example illustrating this combination of corrections is shown in Figs 54 and 55. This example illustrates the
performance of our algorithm on a planted-bicluster problem involving both anM ×N case-matrix D as well as a 2M ×N
control-matrix X , where N = 3M . Within D and X , the case- and control-patients (i.e., rows) are randomly assigned
to one of Icat = 3 categories, with MDi = M/3 and MXi = 2M/3 respectively. In addition, we endow each patient with
a randomly generated continuous-covariate vector of dimension NT = 2. The genes (i.e., columns) have varying degrees
of sparsity; one-third of the columns have a sparsity-coefficient p = 0.125, one-third have p = 0.25, and one-third have
p = 0.5.

Within these case- and control-matrices we implant several rank-1 ε-error biclusters, each with sparsity p = 0.25. The
size of these implanted biclusters will depend on m and n, where n is related to m by ensuring that logN (n) = logM (m)
(i.e., if m =

√
M , then n =

√
N).
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Case-specific and balanced: The first bicluster we implant is an m × n bicluster B0 restricted to the cases. The
bicluster B0 is implanted within D by choosing m rows and columns at random; consequently, B0 is a case-specific
bicluster that is typically balanced across all 3 covariate-categories and continuous-covariates.

Case-specific and somewhat balanced: The next three biclusters we implant, B1 B2 and B3, are each of size 3m/2×
3n/2 and are restricted to the cases. Each of these bicluster has its rows and columns chosen at random from D,
with the restriction that B1 excludes category-1, B2 excludes category-2, and B3 excludes category-3; each of these
three case-specific biclusters is balanced with respect to the continuous-covariates, but only extends across 2 of the
3 covariate-categories.

Case-nonspecific: The next bicluster we implant, B4, is of size 9m/2 × 3n/2, and extends across both the cases and
controls. This bicluster has 1/3 of its rows drawn randomly from D and 2/3 drawn from X ; B4 will be balanced
with respect to the continuous- and categorical-covariates, but will not be case-specific (extending into the controls).

Case-specific but imbalanced: The final two biclusters we implant, B5 and B6, are each of size 3m/2 × 3n/2, and
are restricted to the cases. Each of these biclusters has its rows and columns chosen at random from D, with the
restriction that B5 be restricted to rows that have continuous-covariates drawn from a randomly oriented half-
space H ∈ R

NT , and B6 be restricted to rows that have continuous-covariates drawn from the complement Hc.
Consequently, each of these two case-specific biclusters will be balanced with respect to the categorical-covariates,
but not the continuous-covariates.

All of our biclusters have columns drawn randomly; each will typically overlap all of the different sparsity-domains in
D and/or X . Note that the illustration in Fig 54 is misleading; the biclusters will not necessarily have disjoint columns
(nor strongly overlapping rows). Rather, because they are randomly chosen, the row- and column-subsets of each bicluster
will typically have a small overlap. For the purposes of this numerical experiment we implant each bicluster in the order
described above: any overlapping entries will be overwritten by the next bicluster in the list (with the imbalanced biclusters
taking precedence).

For each numerical experiment we calculate the average auc A0 for the bicluster B0, as well as the average auc A1 for
bicluster B1 and so forth. In our first numerical experiment shown on the left of Fig 55 we set Ireq = 3; We are looking
for biclusters that span all of the covariate-categories, and we are not interested in finding B1 B2 or B3. With this choice
of Ireq = 3, our goal is to find B0 despite the masking effects of the other biclusters. In our second numerical experiment
shown on the right of Fig 55 we set Ireq = 2; We are looking for biclusters that span at least 2 of the 3 covariate-categories.
With Ireq = 2 we are satisfied with either B0 B1 B2 or B3, but we still don’t want to find B4 B5 or B6, since these are
either case-nonspecific or imbalanced with respect to the continuous-covariates.

2-sided versus 1-Sided continuous-covariate correction: As we alluded to earlier, it is possible to correct for
continuous-covariates in step-2 by using a ‘1-sided’-correction, rather than the 2-sided correction described above. These
1-sided corrections involve altering the covariate-dependent sub-scores:

[
Z

Q,Q′; i,i′; [t] 1s
ROW

]
j
=

∑̃

Q, i, Q′, i′ fixed ;

j fixed in Qi, j′ in Q′i′;

j′ 6=j if Q=Q′ and i=i′

k′ 6=k

[Qi− 1Qiα
⊺]j,k ∆kk [Q

′i′ − 1Q′i′α
⊺]j′,k [TQ′i′ ]j′,t

× [Q′i′ − 1Q′i′α
⊺]j′,k′ ∆k′k′ [Qi− 1Qiα

⊺]j,k′ ,

[
Z

Q,Q′; i,i′; [t] 1s
COL

]
k
=

∑̃

Q, i, Q′, i′ fixed ;

j in Qi, j′ in Q′i′;
j′ 6=j if Q=Q′ and i=i′

k fixed, k′ 6=k

[Qi− 1Qiα
⊺]j,k [Qi− 1Qiα

⊺]j,k′ ∆k′k′

× [Q′i′ − 1Q′i′α
⊺]j′,k′ [TQ′i′ ]j′,t [Q

′i′ − 1Q′i′α
⊺]j′,k ∆kk .

Note that these covariant-dependent subscores depend on [TQ′i′ ]j′,t, but not [TQi]j,t. These 1-sided-subscores are then
combined:

[
Z

Q,Q′; i,i′; [T ] 1s
ROW

]2
j
=

1

κ2

∑̃

t

⌊
Z

Q,Q′; i,i′ ; [t] 1s
ROW

⌋2
j

[
Z

Q,Q′; i,i′; [T ] 1s
COL

]2
k
=

1

κ2

∑̃

t

[
Z

Q,Q′; i,i′; [t] 1s
COL

]2
k
,
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Figure 54: This figure illustrates the setup for the numerical experiments shown in Fig 55. See text for description.
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Figure 55: These numerical experiments illustrate the performance of our algorithm on the planted-bicluster problem
described in Fig 54. In panel-A we show the trial-averaged value of A0 as a function of ε

√
m and logM (m). In panel-B

we show the trial-averaged value of A1, A2 and A3. In panel-C we show the trial-averaged value of A4, A5 and A6. The
left side of each panel displays results with Ireq = 3, the right side with Ireq = 2. Note that, when Ireq = 3 the goal
was to find B0, as this was the only case-specific bicluster that was balanced across all the continuous-covariates and
covariate-categories. On the other hand, when Ireq = 2 the goal was to find the most dominant of B0 B1 B2 and B3,
as each of these case-specific biclusters were balanced across all the continuous-covariates while extending across at least
2 covariate-categories. Note that our algorithm typically achieves these goal, despite the presence of the other biclusters
B4 B5 and B6.
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and contribute to the sub-scores for each Q, Q′, i, i′ as follows:

[
ZQ,Q′; i,i′

ROW

]
j
=
[
ZQ,Q′; i,i′; base
ROW

]
j
−
[
Z

Q,Q′; i,i′; [T ] 1s
ROW

]
j[

ZQ,Q′; i,i′

COL

]
k
=
[
ZQ,Q′; i,i′; base
COL

]
k
−
[
Z

Q,Q′; i,i′; [T ] 1s
COL

]
k
.

As mentioned earlier in section 10, these 1-sided corrections don’t change the row-scores much, but do alter the column-

scores. Under the 1-sided correction the column-subscores Z
Q,Q′; i,i′; [T ] 1s
COL now capture the norm (rather than the norm-

squared) of the averaged continuous-covarate-vector accumulated across any biclusters intersecting column-k.
With regards to case-specific biclusters, both the 2-sided and 1-sided continuous-covariate corrections accomplish the

same general goal. That is to say, both correction schemes reduce the score of case-specific biclusters that are imbalanced
with respect to the space of continuous-covariates, while leaving unaffected the scores of case-specific biclusters that are
balanced in covariate-space (at least to to first order). However, these two correction-schemes differ in how they treat
certain kinds of biclusters that straddle both cases and controls. The 2-sided correction penalizes biclusters that include
a comparable number of cases and controls, regardless of how those cases and controls are distributed in covariate-space.
The 1-sided correction also penalizes biclusters that include a comparable number of cases and controls, but behaves
differently in one important situation: The 1-sided correction does not penalize biclusters that include both cases and
controls as long as (i) the cases are balanced in covariate-space, and (ii) the controls are imbalanced in covariate-space.
An illustration of this difference is given in Fig 56.

These two different strategies for continuous-covariate correction are useful in different applications. For example,
the 1-sided correction is useful if we want to discover a covariate-independent case-specific signature from amongst a
heterogenous group of controls. This kind of correction may be appropriate if we expect many different regions in
covariate-space to each give rise to their own biclusters (which we should then need to correct for). On the other hand,
the 2-sided correction is more conservative, and is more useful for highlighting case-specific biclusters that are robust to
changes in the control population. This kind of correction may be appropriate if we want to isolate biclusters that remain
significant when compared with arbitrary groups of controls (rather than merely covariate-balanced groups of controls);
this kind of goal can be relevant for developing robust risk-prediction models.

Role of binarization: In the prescription above we choose to binarize T . This binarization allows for a more efficient
calculation (see next section), but somewhat compromises the accuracy of the covariate-correction. More specifically, after

binarization, the covariate-dependent subscores [Z
Q,Q′; i,i′ ; [T ]
ROW ]j (resp. [Z

Q,Q′; i,i′; [T ]
COL ]k) only approximate the magnitude

(resp. magnitude-squared) of the averaged-covariate-vector associated with any biclusters including row-j (resp. column-
k). Once we binarize T , then this averaged-covariate-vector will depend not only on whether or not the relevant biclusters
are imbalanced with respect to any half-space H , but also on the orientation of that half-space. For example, assuming
the existence of a bicluster B that is fully imbalanced with respect to H , it is possible for H to be oriented in such a way
that the covariate-correction does not fully demote the scores associated with B (e.g., the normal vector defining H can
lie along a coordinate axis in covariate-space).

To avoid this scenario, and to ensure that all imbalanced biclusters are appropriately penalized, we could have included
multiple versions of T , each randomly rotated (in covariate-space) before binarization. With this redundancy, we could
calculate the covariate-dependent sub-scores (referred to in the previous paragraph) for each version of T , taking e.g.,
the highest magnitude across the versions. One issue with this approach is that there is a trade-off between speed and
accuracy; the more versions of T we include, the more accurate an estimate we can produce, but the longer it takes to
produce this estimate. At some point it becomes more efficient to simply skip the T -binarization step altogether, and just
include the full covariate-vector for T .

For our GWAS example at the beginning (see section 1.4), as well as for our numerical-examples throughout, we’ve
seen that these more sophisticated correction techniques are unnecessary; the simplest covariate-correction has sufficed.
That is to say, we’ve binarized T , and only used a single version (with no additional random rotations).

13 Notes regarding computation

As we touched on earlier, the binarization step in our algorithm sets the stage for the efficient storage and manipulation
of matrices and vectors. Many of the laborious computations involved in calculating the row- and column-scores can be

accomplished without the use of floating-point operations. As an example, consider the row-sub-score
[
Z

Q,Q′; i,i′; [t]
ROW

]
j
,

with i = i′, and Q = Q′ = D. In the following equations we’ll refer to the MDi × 1 vector 1Di as simply 1, and suppress
the post-scripts i and i′ to ease the notation. We’ll use matlab conventions for referring to indices: Dj,: and D:,k refer to
the jth-row and kth-column of D, respectively. We’ll also denote the entry-wise product as ‘.∗’, and the entry-wise power
as ‘.ˆ’. I.e., [Q. ∗Q′]ij = QijQ

′
ij , and

[
Q.2
]
ij
= Q2

ij .
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Figure 56: This figure illustrates some of the differences between the 2-sided and 1-sided continuous-covariate correction.
In each situation we illustrate a data-matrix containing casesD and controlsX . We assume that this data-matrix contains
a bicluster B which includes both a case-specific and control-specific component of comparable size. We’ll focus on the
differences that result when these components of B occupy different regions in covariate-space. For ease of illustration,
we’ve divided covariate-space into a half-spaceH (white), and its complementHc (grey). Each of the four panels illustrates
a different arrangement; the case- and control-specific components of B are either balanced or imbalanced with regards to
the continuous-covariate. Panel 1 (Case Balanced): When the case-component is balanced but the control-component is
imbalanced we see the greatest difference between the 2-sided and 1-sided scheme; the former fully demotes the column-
score of B (reducing it to 0), whereas the latter does not penalize B at all. Panel 2 (Both Balanced): When both
components of B are balanced, both the 2-sided and the 1-sided schemes fully demote the column-score (reducing it to 0).
Panel 3 (Both Imbalanced): When both components of B are imbalanced, both the 2-sided and the 1-sided schemes fully
demote the column-score (reducing it to 0). Panel 4 (Control Imbalanced): When the control-component is balanced but
the case-component is imbalanced, both the 2-sided and the 1-sided schemes greatly lower the column-score, reducing it
to a negative value.
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The sub-score
[
Z

D,D; i,i′; [t]
ROW

]
j
can be calculated by first computing the MD ×MD correlation-matrix ‘C’, defined via:

C = (D − 1α⊺)∆ (D⊺ − α1⊺) = D∆D⊺ − 1α⊺∆D⊺ −D∆α1⊺ + (α⊺∆α) 11⊺,

then computing [
Z

full sum; [t]
ROW

]
j
= Cj,: · diag (T:,t) · C:,j = C.2

j,: · T:,t,
[
Z

j′=j; [t]
ROW

]
j
= Tj,t · C.2

jj ,

[
Z

k′=k; [t]
ROW

]
j

= (D − 1α⊺).2j,: ∆
.2 (D⊺ − α1⊺).2 T:,t

=
(
11⊺ − 2 [D. ∗ 1α⊺] + 1α.2⊺

)
j,:

∆.2
(
11⊺ − 2 [D⊺. ∗ α1⊺] + α.21⊺

)
T:,t,

[
Z

j′=j& k′=k; [t]
ROW

]
j
= Tj,: ·

[
1j1

⊺
: ∆

.21: − 4 ·Dj,:diag (α)∆
.21: + 6 · 1jα.2⊺

: ∆.21: − 4 ·Dj,:diag
(
α.3
)
∆.21: + 1jα

.4⊺
: ∆.21:

]
,

and forming the combination:

[
Z

D,D; i,i′; [t]
ROW

]
j
=

Tj,t
(M − 1)N (N − 1)

{[
Z

full sum; [t]
ROW

]
j
−
[
Z

j=j′ ; [t]
ROW

]
j
−
[
Z

k′=k; [t]
ROW

]
j
+
[
Z

j′=j& k′=k; [t]
ROW

]
j

}
.

All the terms in these expressions can be rearranged to only involve matrix-vector products, with the exception of D∆D⊺

in the calculation of C.
The matrix D is binary, and therefore a matrix-matrix product such as DD⊺ can be calculated using a binary matrix-

matrix product. This binary matrix-matrix product does take O
(
M2N

)
operations, but can be computed rapidly by

appealing to bitwise operations rather than floating-point operations. These bitwise operations typically allow for multiple
matrix entries to be processed simultaneously. For example, if ~u = Dj,: and ~v = Dj′,: are two binary row-vectors from
D, then the dot-product ~u⊺ · ~v can be calculated by first breaking up ~u and ~v into disjoint chunks, each comprising R
adjacent bits:

~ur = [~urR−R+1, . . . , ~urR] , ~vr = [~vrR−R+1, . . . , ~vrR] for r = 1, . . . , N/R,

and then using bitwise operations on each pair of chunks ~ur, ~vr:

~u⊺~v = N − 2
∑

r=1,...,N/R

popcount (xor (~ur, ~vr)) .

In the above calculation we assume that R is the number of bits that can be conveniently loaded at once (e.g., R =
128 ∗ (16 − 1) = 1920), and that N is a multiple of R (or that ~u and ~v have been extended in length and appropriately
masked or padded). The xor operation refers to a bitwise ‘exclusive-or’, and the popcount operation sums the number of
nonzero bits.

Our situation is slightly more complicated than the simple example above because the diagonal matrix ∆ is not binary;
rather than simply forming ~u⊺~v, we have to form ~u⊺∆~v, which cannot be easily computed using only bitwise operations.
Fortunately, in practice the size of ∆ is usually very large (e.g., N & 105), and the variances δ−1

k = 4pkqk are bounded
above by 1 and usually bounded below by a constant greater than 0. We take advantage of this observation by sorting the
columns of D so that the diagonal entries of ∆ are monotonically ordered. We then approximate each block of R entries
of ∆ by a single constant equal to their average:

δ̄r =
1

R
(δrR−R+1 + · · ·+ δrR) ,

and then calculate:
~u⊺∆~v =

∑

r

δ̄r {Nr − 2 · popcount (xor (~ur, ~vr))} ,

where Nr is the number of column-indices in chunk r. This procedure allows us to generate D∆D⊺, and ultimately C, by
using O

(
M2N/R

)
bitwise-operations, rather than O

(
M2N

)
floating-point multiplications.

The column-sub-score
[
Z

D,D; i,i′; [t]
COL

]
k
has a similar structure, and can be calculated by first computing

[
Z

full sum; [t]
COL

]
k

=
(
D⊺

k,: − αk1
⊺
:

)
diag (T:,t)Cdiag (T:,t) (D:,k − 1:α

⊺
k) ,

[
Z

k′=k; [t]
COL

]
k
=
[(

1k1
⊺ − 2D⊺

k,:. ∗ αk1
⊺ + α.2

k 1
⊺
)
T:,t

]
·
[(

1k1
⊺ − 2D⊺

k,;. ∗ αk1
⊺ + α.2

k 1
⊺
)
T:,t

]
,
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[
Z

j′=j; [t]
COL

]
k
=
(
1k1

⊺ − 2D⊺
k,:. ∗ αk1

⊺ + α.2
k 1

⊺
)
· diag

(
T .2
:,t

)
·
(
11⊺ − 2D. ∗ 1α⊺ + 1α.2⊺

)
∆1:

[
Z

j′=j& k′=k; [t]
COL

]
k
= ∆k,k ·

[
1k1

⊺
: − 4 ·D⊺

k,:. ∗ αk1
⊺ + 6 · α.2

k 1
⊺ − 4 ·D⊺

k,:. ∗ α.3
k 1

⊺ + α.4⊺
k 1⊺

]
· T .2

:,t,

and then forming the combination:

[
Z

D,D; i,i′; [t]
COL

]
k
=

∆k,k

(N − 1)M (M − 1)

{[
Z

full sum; [t]
COL

]
k
−
[
Z

k′=k; [t]
COL

]
k
−
[
Z

j′=j; [t]
COL

]
k
+
[
Z

j′=j& k′=k; [t]
COL

]
k

}
.

As in the case with the row-sub-score, all the expressions within this column-sub-score involve matrix-vector products,
with the exception of D∆D⊺ in C, which requires a matrix-matrix product.

Re-Binarization of C: We pause to remark on the calculation of

[
Z

temp; [t]
COL

]
k
:= D⊺

k,:diag (T:,t)Cdiag (T:,t)D:,k within
[
Z

full sum; [t]
COL

]
k
.

In practice N is typically much larger than any MQi; i.e., for genome-wide-association-studies (GWAS) the total number
of genetic-measurements (i.e., SNPs) can be on the order of 105−6 or more, while the total number of patients is only
on the order of 103−4. This implies that, even though calculating D⊺

k,:diag(T )Cdiag(T:,t)D:,k for each k is technically
O (NM) floating-point operations, this calculation can often be the bottleneck for our entire algorithm. In these cases
it is advantageous to take advantage of the fact that both D and T are binary-matrices. Although C is not a binary-
matrix itself, we can represent C using a collection of b binary-matrices (one such binary-matrix for each significant bit

of C we wish to preserve). This kind of representation allows us to calculate Z
temp; [t]
COL using b binary matrix-matrix

calculations, each requiring O
(
NM2/R

)
bitwise-operations. We find that this procedure is often more efficient than the

direct calculation of Z
temp; [t]
COL , and is sufficiently precise so long as we preserve sufficiently many bits of C (i.e., if b is

sufficiently high). When the sparsity-coefficients pk are all close to 0.5, such as in gene-expression-analysis, then 8 bits of
C are typically sufficient (i.e., we choose b & 8). In cases where the sparsity coefficients pk extend from close to 0 up to
0.5, such as in GWAS, more bits of C are necessary, and we typically choose b & 24. This re-binarization can be applied
not only to the matrix C that we introduced at the beginning of section 13, but also to the other correlation-matrices

involved in the calculation of
[
Z

Q,Q′; i,i′; [t]
ROW

]
j
and

[
Z

Q,Q′; i,i′; [t]
COL

]
k
which have a similar structure to C.

More rows than columns: Some applications involve data-matrices D and X with more rows than columns (e.g.,
MQ > N). In these situations the calculations above are not efficient; they require O(M2

QN) work, when O(MQN
2) work

would be preferable. To arrange the calculation so that only O(MQN
2) work is required, we can first calculate the N ×N

matrix E:
E = (D⊺ − α1⊺) diag (T:,t) (D − 1α⊺) ,

and then compute [
Z

full sum; [t]
ROW

]
j
= (D − 1α⊺) ·∆ · E ·∆ · (D⊺ − α1⊺) , and

[
Z

full sum; [t]
COL

]
k
= Ek,: ·∆ · E:,k = E.2

k,: · diag (∆) .

Parallelization and Timing: The full algorithm described in section 12 involves both case- and control-matrices, as
well as Icat covariate categories and NT continuous-covariate coefficients. There are many different ways to organize this
calculation, with different considerations pertaining to different computing architectures. Our current implementation at
the time of this writing uses different nodes to process the different trials (e.g., the original data as well as label-shuffled-
trials from H0x). For each trial running on a given node, we use different processors within the node to calculate the
scores associated with different combinations of Q′, i, i′, and t. This implementation is certainly not always optimal
(e.g., in the D-only case), but is reasonably efficient for many applications. For example, the GWAS data-set shown in
Example-3 was processed over a weekend; the computation used 65 nodes (one for the original-data, and 64 others for the
label-shuffled-trials from H0x), each with 16 processors (Intel Xeon Processor E5-2650 v2). The total computation-time
per-node was . 12 hours, with γ set to 0.05 and b = 32 bits retained for each correlation-matrix. If, instead, we had only
retained b = 8 bits (which is sufficient for many problems) and not corrected for the NT = 2 continuous covariates, then
the total computation-time per-node would have been reduced by a factor of ∼ 12. If necessary, a further reduction in
computation-time could be obtained by increasing γ.
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Figure 57: Row-traces for the bicluster shown in Example-1b from section 1.2. This bicluster was found by running our
loop-counting algorithm on the data shown in Fig 5. For this example we corrected for cases-vs-controls; we compare
our original-data to the distribution we obtain under the null-hypothesis H0. On the left we show the row-trace as a
function of iteration for the original-data (red) as well as each of the 256 random shuffles (blue). On the right we replot
this same trace data, showing the 5th, 50th and 95th percentile (across iterations) of the H0 distribution. Because we are
not correcting for any covariates, the column-traces are identical to the row-traces.

14 Notes regarding application

Our biclustering algorithm produces three lists as output. The first lists the rows and columns of the data-matrix in the
order in which they were eliminated. The second lists the average row-score taken across the remaining data-matrix at
each iteration. The third lists the average column-score taken across the remaining data-matrix at each iteration. We
refer to these average row- and column-scores as row- and column-traces; they are both equal to the trace of DD⊺DD⊺

in the D-only situation, but will in general be different when correcting for cases-vs-controls and covariates. In practice
it is often critical to determine

• How to interpret the algorithm’s output,

• How significant this output is,

• Whether or not a bicluster was found, and what the boundaries of the bicluster are.

• How to find the second, third, and subsequent biclusters.

The answers to these questions are, in general, application dependent. We comment on some of our experiences below.

14.1 Interpreting the output:

We have run our algorithm in the context of gene-expression analysis and genome-wide-association-studies (i.e., GWAS).
In both cases we were comparing case-patients to control-patients, at times correcting for various covariates. In the context
of gene-expression-analysis we had the luxury of normalizing the data so that the sparsity-coefficient for each column was
pk = 0.5. This choice of normalization meant that we did not need to correct for sparsity; each αk = 0 and δk = 1. Because
each loop contributed either a +1 or a −1 to our total score, the row- and column-traces produced by loops within D were
bounded between −1 and +1. Similarly, the traces produced by loops entering X were also bounded between ±1. The
full trace produced by our algorithm was thus bounded by ±2, and was usually in the interval [0, 1]. We could interpret
the output in this situation relatively easily: If, after sufficiently many iterations, the row- or column-traces grew large
(i.e., came close to +1), then the remaining rows and columns should form a highly correlated low-rank bicluster. An
illustration along these lines is shown in Figs 57 and 58, which corresponds to our Example-1b for gene-expression-analysis.
A similar illustration is given in Figs 59 and 60, which corresponds to our Example-2 for gene-expression-analysis (which
involves categorial covariates). Similarly, Figs 61 and 62 correspond to Example-1a.

For GWAS the same interpretation is not valid; the GWAS data is itself binary because each allele is either dominant or
recessive. This means that we do not have the luxury of normalizing the data to alter the sparsity-coefficients; typically the
sparsity-coefficients for genotyped-data range from close to 0 all the way up to 0.5. This range of sparsity-coefficients makes
interpreting the output of our algorithm more difficult. It is now possible for any loop to contribute a large magnitude to
the total scores. The row- and column-traces are no longer bounded by a small number like ±1 or ±2, and often rise to
be much higher towards the end of the iterations when the few remaining columns have extreme sparsity-coefficients. In
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Figure 58: We show a scatterplot of the data shown in Fig 57. Each row-trace shown on the left in Fig 57 is plotted
as a single point in 2-dimensional space; the horizontal-axis corresponds to the maximum row-trace and the vertical-axis
corresponds to the average row-trace (taken across the iterations). The original-data is indicated with a ‘⊗’, and each of the
random shuffles with a colored ‘•’. The p-value for any point ~w in this plane is equal to the fraction of label-shuffled-traces
that have either an x-position larger than xw or a y-position larger than yw, where xw and yw are the x- and y-percentiles
associated with the most extreme coordinate of ~w (details given in section 14.2). Each random shuffle is colored by its
p-value determined by the label-shuffled-distribution. By comparing the original-trace with the shuffled-distribution we
can read off a p-value for the original-data of . 0.008.
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Figure 59: Row-traces for the bicluster shown in Example 2 in section 1.3. This bicluster was found by running our loop-
counting algorithm on the data shown in Fig 8. For this example we corrected for cases-vs-controls as well as the categorical-
covariates of gender and ethnicity. Because we corrected for categorical-covariates, we compare our original-data to the
distribution we obtain under the null-hypothesis H0x. On the left we show the row-trace as a function of iteration
for the original-data (red) as well as each of the 2048 random shuffles (blue). Note that the different traces terminate
at different iteration-numbers. This is due to the fact that different trials eliminate the various covariate-categories at
different iteration-numbers; for each trace we only include iterations for which all covariate-categories remain. On the
right we replot this same trace data, showing the 5th, 50th and 95th percentile (across iterations) of the H0x distribution.
While not exactly identical to the row-traces, the column-traces are very similar (not shown).
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Figure 60: We show a scatterplot of the data shown in Fig 59. The format of this figure is similar to that of Fig 58. By
comparing the original-trace with the shuffled-distribution we can read off a p-value for the original-data of ∼ 0.027.
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Figure 61: Row-traces for the bicluster shown in Example-1a from section 1.2. This bicluster was found by running our
half-loop algorithm on the data shown in Fig 2. For this example we corrected for cases-vs-controls; we compare our
original-data to the distribution we obtain under the null-hypothesis H0. On the left we show the row-trace as a function
of iteration for the original-data (red) as well as each of the 512 random shuffles (blue). On the right we replot this
same trace data, showing the 5th, 50th and 95th percentile (across iterations) of the H0 distribution. Because we are not
correcting for any covariates, the column-traces are identical to the row-traces.
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Figure 62: We show a scatterplot of the data shown in Fig 61. The format for this scatterplot is similar to that shown in
Fig 58, except that the original-trace lies far to the upper-right of the distribution drawn from H0 (see arrowhead). By
comparing the original-trace with the shuffled-distribution we can read off a p-value for the original-data of . 1/512 (i.e.,
bounded above by the reciprocal of the number of samples drawn from H0).
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z-score for row-trace for original-data (red) and H0x (blue)

Scatterplot of max vs average z-score
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Figure 63: Z-scores for the bicluster shown in section 1.4. This bicluster was found by running our algorithm on the
GWAS data-set referenced in 1.4. For this example we corrected for cases-vs-controls, as well as continuous-covariates
and sparsity. Because we corrected for continuous-covariates, we compare our original-data to the distribution obtained
under H0x. Because the data-set had many columns with extreme sparsity-coefficients, the magnitude of our row- and
column-traces is not particularly meaningful by itself. A more meaningful measurement is the z-score of the row- and
column-traces (calculated with respect to the label-shuffled distribution). On top we plot this z-score as a function of the
number of rows remaining. The original-trace is shown in red, and the 64 random shuffles from H0x are shown in blue.
On the bottom we show a scatterplot of the maximum z-score (horizontal) and average z-score (vertical) taken across the
iterations. The format for this scatterplot is similar to that shown in Fig 58, except that the original-trace lies far to the
right of the distribution drawn from H0x (see arrowhead). By comparing the original-trace to the shuffled-distribution,
we can read off a p-value of . 1/64 (i.e., bounded above by the reciprocal of the number of samples drawn from H0x).
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this situation the most natural way to determine whether a low-rank structure has been found is to compare the traces
for the original data to traces obtained after label-shuffling the data (see the next subsection).

14.2 Determining significance:

Our typical hypothesis (say, H1) is that there exists some disease-related structure in the case-patients that is not exhibited
by the control-patients. This is in contrast to the null-hypothesis (H0) in which the case- and control-labels are actually
arranged randomly and have no disease-related structure. Under this null-hypothesis the traces we observe after running
our algorithm on the original data should be similar to the traces we would find if we were to shuffle the case-control
labels randomly (across patients). To draw a sample from this null-hypothesis H0, we shuffle the case-control labels of
the patients indiscriminantly while retaining the same number of cases and controls. If we are correcting for covariates,
then we restrict our null-hypothesis slightly (H0x) so that the random-shuffles respect the covariates. For example, if we
were correcting for gender as a categorical-covariate, we would shuffle the labels of case-males only with control-males,
and shuffle the labels of case-females only with control-females. If we were correcting for a continuous-covariate, we would
shuffle the case-control labels of patients in each orthant of covariate-space.

For each label-shuffled trial we rerun our algorithm, and collect the output. Each trial does not depend on any of
the other trials, and they can all be processed in parallel. This library of label-shuffled traces produces a distribution
associated with H0 (or H0x). We use this label-shuffled distribution to calculate a p-value for the traces produced by the
original data.

Example-1 and Example-2:
The row- and column-traces each have one value per iteration. Two of the most straightforward measurements for

each trace are (i) the maximum value, and (ii) the average value, with the latter computed using a measure where each
trace-value contributes a weight proportional to the number of rows or columns eliminated during that iteration. When
considering gene-expression-data these two measurements are useful and have a natural interpretation. On one hand, (i)
traces that reach a high maximum during a late iteration correspond to small but tightly-correlated biclusters. On the
other hand, (ii) traces that may not have an exceptionally high maximum value but are consistently above the median
for many consecutive iterations correspond to larger but more loosely-correlated biclusters. The biclusters shown in
Example-1a, Example-1b and Example-2 illustrate the first phenomenon (i), as shown in Figs 61, 57 and 59.

We can compare our original-data with the label-shuffled-distribution to obtain a p-value for our original-trace. We
have done this using the 2-dimensional scatterplots shown in Figs 62, 58 and 60. For illustration, consider Fig 60. Each
of the L = 2048 label-shuffled-traces has an x- and a y-position on this scatterplot. We’ll denote the position of trace-l
by (xl, yl). Let’s also denote by F (x) the fraction of label-shuffled traces with an xl < x, and by G (y) the fraction of
label-shuffled traces with a yl < y. Let’s further denote by x (F ) the x-position of the F th-percentile of the xl samples
(i.e., x (F ) is the inverse of F (x)). Let’s also denote by y (G) the y-position of the Gth-percentile of the yl samples (i.e.,
y (G) is the inverse of G (y)). Now we can calculate the p-value of any location ~w = (wx, wy) in the x, y-plane as follows.

1. Calculate F (wx) and G (wy),

2. Let H = max (F (wx) , G (wy)) be the more extreme of the two.

3. Calculate x (H) and y (H),

4. find the set Ω = {l such that either xl ≥ x (H) or yl ≥ y (H)}.

5. Set the p-value for ~w to be the fraction of label-shuffled-traces in Ω: i.e., p-value = p (wx, wy) = |Ω| /L.

We remark that this method of calculating p-values is ‘self-consistent’; the distribution of p-values across the label-
shuffled traces will be uniform by construction. Specifically, the collection of p (xl, wl) taken across l will be uniformly
distributed in [0, 1] and the empirical cdf of these p-values will be a diagonal line with slope 1. The more standard
bonferroni-correction p = max (F (wx) , G (wy)) is an overestimate and will not produce a uniform distribution of p-values
across the label-shuffled traces when F and G are correlated.

Note that the label-shuffled null-hypothesis H0x is ‘nested-within’ (and more restrictive than) the null-hypothesis H0.
Specifically, the collection of label-permutations allowed under H0x is a subset of the label-permutations allowed under H0.
The label-shuffles which mix patients in different covariate categories (allowed under H0) are typically less likely to exhibit
the same structures as the label-shuffles allowed under H0x. As a result, a smaller fraction of the trials drawn from H0
are likely to ‘look like the real data’, as compared with H0x. Consequently, the p-value obtained from the H0-distribution
will typically be smaller (i.e., indicating a more significant result) than the more conservative p-value obtained using the
more reasonable H0x-distribution.

Example-3:
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When considering GWAS data the maximum and average of the trace are not useful measurements because of the
varying sparsity-coefficients in the data. Because of these varying sparsity-coefficients, the trace can take on values far
outside the interval [−1, 1], as is typical when there are only a few iterations remaining. Standard measurements such as
the max- and average-trace are strongly influenced by the values of the trace during the final few iterations. To account
for this bias, we transform each trace by replacing its value at each iteration with its z-score calculated with respect to
the distribution of the label-shuffled-traces at that iteration. The max and average of the transformed-traces have an
analogous interpretation to the original measures (i) and (ii) described earlier, except that the correlations revealed should
be interpreted relative to the label-shuffled distribution, rather than in an absolute sense. Traces that reach a high z-score
during a late iteration correspond to biclusters which, although small, are more tightly-correlated than the typical small
bicluster seen at that iteration. Traces that have a high average z-score correspond to biclusters that are larger, but
somewhat less correlated. The bicluster shown in Example-3 illustrates this latter phenomenon, as shown in Fig 63.

14.3 Delineating a bicluster:

Example-1 and Example-2:
One way to visualize the structure highlighted by the biclustering algorithm is to calculate a ‘shape-matrix’ S. To

create S we first order the rows and columns of the original data-matrix in terms of their importance (i.e., the longest
retained rows and columns come first). With this ordering we define Sjk as the average trace of the ‘corner-submatrix’
obtained by considering the j most important rows and the k most important columns. This calculation can be performed
for each j and k, revealing the subsets of rows and columns for which the trace is high. The decay of Sjk as j and k
increase will indicate the shape of the structure found. We llustrate some shape-matrices in Figs 64 and Figs 65, which
correspond to our Example-1a and Example-1b. The shape-matrix in Fig 66 corresponds to our Example-2, while the
shape-matrices in Fig 67 correspond to some other biclusters we have found in other gene-expression data-sets.

We note that, towards the end of our iteration, there are not always sufficiently many patients remaining to represent
all the covariate-categories (e.g., in Fig 66 Icat = 4). When the number of remaining covariate-categories drops (e.g., when
the last noncaucasian female is eliminated), our algorithm reduces the number of covariate-categories Icat involved in the
score-calculation, and reduces Ireq as necessary. This abrupt change in Icat and Ireq results in the discontinuities of S in
the j-direction seen in Fig 66B. When defining p-values and delineating the bicluster we only consider iterations where all
the initial covariate-categories are represented.

To actually delineate a bicluster we invoke a user-specified threshold τ ∈ (0, 1); in this case τ = 0.7. Given τ , We find
the j, k for which Sjk is equal to the fraction τ of its maximum, and jk is as large as possible. In other words, we find
the largest corner-submatrix with average-trace τSmax. As an example, the biclusters shown in Figs 64, 65 and 66 were
delineated using this technique.

This procedure (i.e., picking out a corner-submatrix) does indeed do a reasonable job of delineating rectangular
biclusters when they exist, and is not very sensitive to τ when the rectangular biclusters are sharply defined. Nevertheless,
this kind of delineation does not always tell the whole story; corner-submatrices are not always the best indicator of
the various sorts of structure that can be revealed by S in practice. For example, as seen in Figs Figs 64 and 67, our
algorithm can often reveal patterns within gene-expression data that are not quite rectangular. These shape-matrices
may indicate some of the more complicated underlying structures discussed in section 7.3. Thus, in summary, it is
important to note that bicluster-delineation will always be somewhat arbitrary; in practice there will rarely be a clear-cut
boundary to any bicluster. Because of this arbitrariness, we have structured our methodology so that the details regarding
bicluster-delineation do not affect the bicluster’s p-value (which only depends on the traces, and not the threshold τ).

Example-3:
The S-matrix described above is useful when the goal is to pick out a small sharply-correlated bicluster – i.e., when the

traces output by our algorithm are significantly high towards the end of the iterations. However, if the output-traces are
not high towards the end of the iterations, then this S-matrix may not be particularly meaningful. This situation arises in
Example-3, where the output-traces are significantly higher than the H0x-distribution for the first several iterations, but
not towards the end (see Fig 63). If we were to try and use the S-matrix to to delineate this bicluster, then we would need
to compare the Sjk produced by the original-data with the Sjk produced by the random-shuffles from H0x; the former
would only be significantly greater than the latter when j is in the thousands and k is in the hundreds-of-thousands –
clearly not a sharp delineation of any kind. Thus, for Example-3, we choose to delineate the bicluster by using the last
peak of the output-trace relative to the H0x-distribution (i.e., the last peak of the z-score). This final peak occurs with
115 case-patients and 706 alleles remaining (i.e., the submatrix shown in Fig 11).

14.4 Finding secondary biclusters:

So far we have been concerned with finding a single bicluster hidden within a large data-matrix. In practice of course, many
large data-sets are home to multiple biclusters, some of which are distinct and some of which overlap to varying degrees.
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Figure 64: Illustration of ‘shape-matrix’ S for Example-1a shown in Fig 3. In Panel-A we show a subset of the D-matrix
rearranged according to the output of our algorithm, with the most important rows and columns listed first. We show all
MD = 340 patients, but only the 10000 most important of the N = 11711 genes. The upper left corner holds the bicluster
shown in Fig 3A, as indicated by the cyan box. In Panel-B we show the shape-matrix S, which records the row-trace for
each corner-submatrix of the output shown in Panel-A. Specifically, given the rearranged version of D shown in Panel-A,
we calculate Sjk to be the row-trace associated with rows {1, . . . , j} and columns {1, . . . , k}. The entry of S for j = 65 and
k = 3984 corresponds to the submatrix within the cyan box, and is indicated with a cyan ‘×’. This shape-matrix reveals
a rather smeared-out bicluster; while there are many rows and columns that clearly participate, the shape of the bicluster
is not obviously rectangular. Consequently, the delineation of a ‘corner-submatrix’ will depend somewhat sensitively on
the methodology used (e.g., the particular value of τ we use to choose the corner).
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Figure 65: Illustration of ‘shape-matrix’ S for Example-1b shown in Fig 6. The format of this figure is similar to that
of Fig 64. We show all MD = 340 patients, but only the 10000 most important of the N = 16738 genes. The entry of
S for j = 45 and k = 793 corresponds to the submatrix within the cyan box, and is indicated with a cyan ‘×’. This
shape-matrix reveals a rather rectangular bicluster; the delineation of this bicluster is not very sensitive to our threshold
of τ = 0.7.
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Figure 66: Illustration of ‘shape-matrix’ S for Example-2 shown in Fig 9. The format of this figure is similar to that of Fig
64. We show all MD = 55 patients, but only the 4096 most important of the N = 17942 genes. The entry of S for j = 14
and k = 966 corresponds to the submatrix within the cyan box, and is indicated with a cyan ‘×’. This shape-matrix
reveals a rather rectangular bicluster; the delineation of this bicluster is not very sensitive to our threshold of τ = 0.7.
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Various shape matrices for other biclusters

Figure 67: Illustration of some other shape-matrices we obtained when running our algorithm on various gene-expression
data-sets. Some of these shape-matrices suggest rectangular biclusters, but others suggest more ‘smeared-out’ structures,
some similar to the kinds of structures discussed in section 7.3.

What does our algorithm do when the data-set has multiple biclusters, and how do we find these multiple biclusters?
As we’ve discussed above in section 4, our algorithm usually finds the most ‘dominant’ bicluster within the data; that

is, the bicluster that produces the greatest signal (i.e., the largest and/or most tightly correlated bicluster). This first
most dominant bicluster will often be highlighted by the corners of the shape matrix ‘S’ described in section 14.3. In some
cases secondary biclusters will also be highlighted by the shape matrix, trailing the first (see Fig 33).

Situations as clean as Fig 33 don’t usually arise in practice, however, and we’ve found it useful to search for secondary
biclusters using repeated passes of our algorithm. More specifically, after running our algorithm for the first time (and
delineating the most dominant bicluster), we then rerun our algorithm from scratch, scrambling the data within the first
detected bicluster to destroy any signal it might create. This second pass of our algorithm will then locate the second
most dominant bicluster. After this we can perform a third pass, scrambling the first two biclusters and so forth.

Note that when we scramble the data within the biclusters we have found so far, we should respect the constraints
compatible with our null hypothesis (e.g., H0, H0x, etc.). For example, if we were considering categorical-covariates we
should scramble the data within a bicluster by randomly interchanging/replacing matrix-entries within (but not across)
covariate-categories. This procedure ensures that we destroy (most of) the signal associated with the previously discovered
biclusters without introducing any large new spurious signals.

We remark that secondary passes of our algorithm only rarely produce traces that are as high as those produced by
the first pass (after all, the secondary biclusters typically have a weaker signal than the first). Nevertheless, we currently
believe that it is best to assess the p-value of secondary biclusters by comparing their traces with the original shuffled-
distribution of traces used to assess the most dominant bicluster (rather than with a new shuffled-distribution associated
with second passes of our algorithm). We adopt this methodology because it is conservative: we use the same standard to
assess both secondary and primary biclusters, even though this standard may underestimate the significance of secondary
biclusters.

The results of this approach for Example-2 are shown in Fig 68. Note that the first trace is the most pronounced. This
phenomenon is typical for the gene-expression data sets we have analyzed; while certainly not impossible, it is rare for a
secondary bicluster to be more significant than a previously found bicluster.
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Figure 68: Here we show the row-traces for the secondary biclusters associated with Example-2 from section 1.3. These
biclusters were found by successively rerunning our algorithm on the data shown in Fig 8 after scrambling any previously
found biclusters. In the background we indicate the distribution of traces drawn from the shuffled-distribution (blue lines).
These are identical to those shown in Fig 59. In the foreground we indicate the row-traces for the various passes of our
algorithm (red numbers and lines). The first pass (corresponding to the most dominant bicluster) was shown previously
in Fig 59).

15 Additional Applications

We have focused so far on the detection of low-rank biclusters. The simplest situation involves locating a ‘rank-1’ bicluster
B hidden within anM×N data-matrixD. Because the bicluster B can be approximated with a single outer-product u ·v⊺,
we have chosen to consider loops (i.e., 2×2 submatrices) within D. The low-rank structure of B ensures that loops within
B are likely to be rank-1 (rather than rank-2). Moreover, the rows and columns of D that intersect B will contribute to
many more rank-1 loops than the rows and columns that don’t. Using these observations, our algorithms accumulates
the loops within D; exposing B in the process. We’ve also discussed how to search for low-rank biclusters within a
data-matrix involving cases and controls, considering along the way how to account for sparsity as well as categorical- and
continuous-covariates.

Our methods can be easily extended to tackle many related problem. For example, we can treat ‘genetic controls’,
look for ‘rank-0’ biclusters (i.e., differentially-expressed biclusters), and even look for ‘triclusters’. We discuss these topics
briefly below.

15.1 Accounting for genetic-controls:

In some applications the goal is to find biclusters that are not merely specific to a subset of case-rows, but also to a subset
of case-columns. Such a situation may arise in gene-expression analysis when the goal is to find biclusters restricted to
one set of genes that do not extend to encompass the gene-expression measurements taken from another set of genes. As
an example, let’s return to the Example-2 in section 1.3. The particular bicluster we already found in section 1.3 involved
many genes and pathways that are already known to affect colon-cancer; these genes are involved in many pathways
related to DNA-replication, DNA-repair, mitosis, etc. Instead of focusing on these well-known pathways, we might want
to deliberately ignore them and search for signals within other genes; hopefully discovering genes that participate in less
well understood pathways.

One way to go about this is to classify some of the genes in our data-set as ‘control-genes’; i.e., genes that we deliberately
want to avoid when searching for low-rank structure. For this example we’ll use as genetic-controls a list of genes that are
already well-recognized to affect colon-cancer (see the discussion towards the end of sec 1.3). To recap: we generate our
set of control-genes by first choosing three of the most well documented genes which influence colon-cancer: MLH1, MSH2
and MSH6. Our second step involves using ‘Seek’ (see [M42]) to generate a list of genes that are commonly co-expressed
alongside these three cancer-related genes. We then define our control-genes to be all the genes in this list which have
a combined co-expression value (with MLH1, MSH2 and MSH6) of at least 0.75. The control-gene set generated this
way comprises 1659 of our original 17941 genes. As we alluded to above, this control-gene set is strongly enriched for
DNA-replication, DNA-repair, mitosis, etc. (e.g., p-values on the order of 1e-20 or below); these are the pathways we
want to ignore. We’ll classify the remaining 16282 genes as ‘case-genes’, and search for a bicluster within these case-genes
that does not exhibit a low-rank structure that is shared by a significant fraction of the control-genes.

We can divide our measurements into the following data-matrices:
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• the MD ×ND case-matrix D: The entry Dj,k is the kth case-gene measurement from the jth-case patient.

• the MX ×ND control-matrix X : The entry Xj,k is the kth case-gene measurement from the jth-control patient.

• the MD ×NY control-matrix Y : The entry Yj,k is the kth control-gene measurement from the jth-case patient.

• the MX ×NY control-matrix W : The entry Wj,k is the kth control-gene measurement from the jth-control patient.

Our goal will be to find co-expressed subsets of genes within the case-population; we would like to find a low-rank bicluster
within D. As before, we are most interested in biclusters which are case-patient-specific and don’t extend to include many
control-patients from X . In addition, we would also like to focus on biclusters which are case-gene-specific, and don’t
extend to include many gene-expression measurements from the control-genes that are commonly co-expressed with MLH1,
MSH2 and MSH6 (i.e,. Y ). Put another way, we are interested in finding co-expressed subsets of genes that are (as best
as possible) isolated to the case-patient-population and restricted to the ‘undiscovered’ subset of case-genes.

In order to accomplish this goal, we can extend the techniques used above, counting loops as before. This time,
however, we’ll also count loops that go through D and Y , as well as loops that go through all four data-matrices D, X , W
and Y . Similar to the situation with both cases and controls (see section 8), we’ll flip the sign on loops passing through
X , and also flip the sign of loops passing through Y . Consequently, we’ll end up positively counting loops passing through
W . One way of understanding this choice of signs is that (i) we want to reward low-rank loops that are fully contained
in D, and (ii) penalize low-rank loops that extend from D to X or from D to Y . The reason we want to reward low-rank
loops that pass through all four data-matrices (i.e., through W ) is that we want to ensure that biclusters are not unfairly
penalized when the data-set has ambient correlations. Put another way, we would like the average row- and column-scores
of random data (with no planted biclusters) to be 0. We choose the sign associated with the W -loops so that this average
score remains 0 even when the random data is drawn from a non-isotropic gaussian (rather than an isotropic gaussian).

The row-scores built using this intuition take the following form (see Fig 69):

[
ZDDDD
ROW

]
j
=

∑̃

j fixed, j′∈D, j′ 6=j;

k′ 6=k

DjkDj′kDj′k′Djk′ ,
[
ZDXXD
ROW

]
j
=

∑̃

j fixed, j′∈X;
k′ 6=k

DjkXj′kXj′k′Djk′

[
ZDDY Y
ROW

]
j
=

∑̃

j fixed, j′∈D, j′ 6=j;

k∈D, k′∈Y

DjkDj′kYj′k′Yjk′ ,
[
ZDXWY
ROW

]
j
=

∑̃

j fixed, j′∈X;
k∈D, k′∈Y

DjkXj′kWj′k′Yjk′ ,

and are combined as follows:

[ZROW]j =
[
ZDDDD
ROW

]
j
−
[
ZDXXD
ROW

]
j
−
[
ZDDY Y
ROW

]
j
+
[
ZDXWY
ROW

]
j
.

The column-scores, on the other hand, take the following form:

[
ZDDDD
COL

]
k
=

∑̃

j′,j∈D, j′ 6=j;
k fixed, k′ 6=k

DjkDjk′Dj′k′Dj′k,
[
ZDDXX
COL

]
k
=

∑̃

j∈D, j′∈X;
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DjkDjk′Xj′k′Xj′k.

[
ZDY YD
COL

]
k
=

∑̃

j′,j∈D, j′ 6=j;
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DjkYjk′Yj′k′Dj′k,
[
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]
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∑̃
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DjkYjk′Wj′k′Xj′k.
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[ZCOL]k =
[
ZDDDD
COL

]
k
−
[
ZDDXX
COL

]
k
−
[
ZDY YD
COL

]
k
+
[
ZDYWX
COL

]
k
.

A simple example illustrating this scenario is shown in Figs 70 and 71, where we consider a variation on the planted-
bicluster problem involving both a planted case-specific bicluster and various planted non-specific biclusters involving both
the patient- and genetic-controls.

When we actually carry out this method on the data from section 1.3 we do indeed find a significant bicluster, shown
in Figs 72-75. Not only is this bicluster significant with respect to the label-shuffled hypothesis, but it is also enriched
strongly for many different pathways. The most strongly enriched pathways include substrate-specific channel-activity
(p=3e-8), passive-transmembrane-transporter-activity (p=1e-7) and cation-transport (p=1.5e-6); all of which are distinct
from the most prominent pathways affiliated with the control-genes (as desired).
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Figure 69: Illustration of the different kinds of loops that contribute to the row-score in the presence of genetic-controls.
In the left panel we show some loops which contribute to the row-score; on the right we show some loops which contribute
to the column-score. In each panel we illustrate an MD ×ND case-matrix D (upper left) and an MX ×ND control-matrix
X (bottom left). In addition, we illustrate an MD × NY matrix of genetic-controls Y (upper right) and an MX × NY

matrix of genetic-controls for the control-patients W (bottom right). Some of the loops are contained entirely within D,
some extend from D to X , some extend from D to Y , and some extend to include D, X , W and Y . We count the first
and last type of loop positively if they are rank-1, and negatively if they are rank-2. We count the second and third type
of loop positively if they are rank-2, and negatively if they are rank-1.

15.2 Searching for ‘rank-0’ (i.e., differentially-expressed) biclusters:

As mentioned above, our algorithms accumulate the loops within D. While conceptually straightforward, the accumulation
of these loops requires a matrix-matrix multiplication, limiting the efficiency of our approach (i.e., requiring at least
O(max(M,N)MN) work).

If, instead of attempting to find generic rank-1 biclusters, we restrict our search to a particular kind of rank-1 biclus-
ter, we can overcome this limitation and make our algorithms even more efficient (e.g., requiring only O(MN) work).
Specifically, we can greatly reduce the run-time of our algorithm if we decide to search only for special rank-1 biclusters
B ∼ 1 · v⊺; i.e., where the column-vector ‘u’ has been replaced by a vector of all-ones. These biclusters are characterized
as follows: each column of the bicluster is either high (i.e., mostly above the median for that column) or low (i.e., mostly
below the median for that column). This means that, after binarization, the ‘high’ columns of the bicluster are mostly
‘+1’, and the ‘low’ columns are mostly ‘−1’. Put another way, the rows/columns of the bicluster clump together near
a single point in high-dimensional space; the bicluster is effectively rank-0. These biclusters can also be thought of as
‘differentially-expressed’: the genes in the biclusters are each differentially-expressed when comparing the patients in the
bicluster to the rest of the population.

To detect these rank-0 biclusters we don’t actually need to consider full loops; simpler half-loops will suffice (see Fig
76). The accumulation of half-loops is substantially easier than the accumulation of full loops, and does not require
a matrix-matrix multiplication. Consequently, our methodology can be applied to the case of rank-0 biclusters with a
reduced computational cost of only O(MN log(max(M,N))) work.

All of our corrections involving sparsity, categorical- and continuous-covariates work just as well here. The formulae
in section 12 can be carried forward, replacing all the loops with the associated half-loops. Specifically, we redefine our
base-scores as follows:

[
ZQ,Q′; i,i′; base
ROW

]
j
=

∑̃

Q, i, Q′, i′ fixed ;

j fixed in Qi, j′ in Q′i′;
j′ 6=j if Q=Q′ and i=i′

k∈Q

[Qi− 1Qiα
⊺]j,k ∆kk [Q

′i′ − 1Q′i′α
⊺]j′,k ,

[
ZQ,Q′; i,i′; base
COL

]
k
=

∑̃

Q, i, Q′, i′ fixed ;

j in Qi, j′ in Q′i′;
j′ 6=j if Q=Q′ and i=i′

k fixed,

[Qi− 1Qiα
⊺]j,k ∆kk [Q

′i′ − 1Q′i′α
⊺]j′,k ,
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Figure 70: This figure illustrates the setup for the numerical experiments shown in Fig 71. These numerical experiments
illustrate the performance of our algorithm on a simple planted-bicluster problem involving both case- and control-patients,
along with case- and control-genes. The case-genes associated with the case- and control-patients are stored in matrices
D and X , respectively. The control-genes associated with the case- and control-patients are stored in matrices Y and W ,
respectively. For each numerical experiment we let D be a largeM ×M random matrix with entries chosen independently
from a distribution with median 0. We construct X , Y , andW in a similar fashion, except that X , Y and W are 2M×M ,
M ×M and 2M ×M , respectively. For each experiment we implant within the case-matrix D a small m ×m bicluster
B1 that is rank-1 with error ε. The rows and columns of B1 are chosen at random. We also implant a second rank-1
error-ε ‘red-herring’ bicluster B2 within both the case-matrix D as well as the control-matrix X . To implant B2 we first
randomly choose 3m/2 case-genes K and 3m/2 case-patients JD from D, as well as 3m control-patients JX within X . We
then construct a 3 · 3m/2× 3m/2 bicluster B2 that is rank-1 with error ε, and implant the top third of B2 into the chosen
case-patients JD and the bottom two-thirds of B2 into the chosen controls JX (in each case using the chosen case-genes
K). We implant another bicluster B3 in a similar fashion, except that B3 extends across both D and Y , and the total
size of B3 is 3m/2× 2 · 3m/2. To implant B3 we first randomly choose 3m/2 case-genes KD from D and another 3m/2
control-genes KY from Y , as well as 3m/2 case-patients J from D. After constructing the rank-1 error ε matrix B3, we
implant the left half of B3 into the chosen case-patients J and case-genes KD, while implanting the right half of B3 into
the chosen case-patients J and control-genes KY . Finally, we implant a fourth bicluster B4 which extends across D, X ,
W and Y . The bicluster B4 is of total size 3 · 3m/2 × 2 · 3m/2, and we create and implant it in a manner analogous
to biclusters B2 and B3 above. We remark that our illustration is somewhat misleading, as the biclusters B1, B2, B3,
and B4 are not typically disjoint. Because the row- and column-subsets for these biclusters are chosen randomly, there is
typically a small overlap between them. For the purposes of this numerical experiment we implant each bicluster in the
order described above: any overlapping entries will be overwritten by the next bicluster in the list (with biclusters B2,
B3, B4 taking precedence). For each numerical experiment we calculate the average auc A1 for B1, A2 for B2, and so
forth. Our goal is to find B1, despite the masking effect of the larger biclusters.
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Figure 71: These numerical experiments illustrate the performance of our algorithm on a simple planted-bicluster problem
involving both case- and control-patients as well as case- and control-genes (see Fig 70). In panel-A we show the trial-
averaged value of A1 associated with the case-specific bicluster B1 as a function of ε

√
m and logM (m). In panel-B we show

the maximum of the trial-averaged values of A2, A3 and A4 associated with the other biclusters. While the presence of
genetic-controls makes it more difficult for our algorithm to detect B1 (e.g., compare panel-A with Fig 42), our algorithm
is still generally successful when log10 (ε

√
m) . 0 and logM (m) & 0.5.
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Figure 72: This figure illustrates the GSE17536 gene-expression data-set used in section 15.1. Each row corresponds to a
patient, and each column to a ‘gene’ (i.e., gene-expression measurement): the color of each pixel codes for the intensity of
a particular measurement of a particular patient (see colorbar to the bottom). We divide the 175 patients into MD = 55
case-patients and MX = 120 control-patients; colorectal cancer was determined to be the significant cause of death for
the former, but not the latter. We also divide the 17941 genes into ND = 16286 case-genes and NY = 1659 control-genes;
the control-genes are those that are significantly co-expressed alongside genes MLH1 MSH2 and MSH6, whereas the case-
genes are the remainder. We use these patient- and gene-classifications to delineate the case-matrix D, as well as the
control-matrices X , Y and W . The covariates (gender and ethnicity) for each patient are shown to the far right, (i.e.,
grey vs black).
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Figure 73: This figure illustrates the bicluster discovered after applying the loop-counting algorithm described in section
15.1 to the data-set shown in Fig 72. We’ve shown only the mD case-patients and nD genes involved in the bicluster,
listed in the order given by the output of the algorithm (the patients and genes placed in the upper-left corner are those
that have been retained the longest).
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Figure 74: This figure illustrates the same bicluster shown in Fig 73, except that we’ve rearranged the rows and columns to
highlight the co-expression pattern more clearly. The control-patients (and control-genes) are also rearranged in accordance
with the dominant right (and left, respectively) singular vectors of the bicluster. As can be seen, there is a striking pattern
of correlation across the 20 case-patients and 768 case-genes within the bicluster. Moreover, this co-expression pattern is
not exhibited across a comparable fraction of the control-patients or control-genes.
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Figure 75: On top we show row-traces associated with the bicluster shown in Fig 74. On the left we show the row-trace
as a function of iteration for the original-data (red) as well as each of the 2048 random shuffles (blue) generated under the
null hypothesis. On the right we replot this same trace data, showing the 5th, 50th and 95th percentile (across iterations)
of the shuffled-distribution. On the bottom we show a scatterplot of maximum- and average-row-traces (taken across the
iterations) for both the original data and the shuffled-trials. Each row-trace from the graph above is plotted as a single
point in 2-dimensional space; the horizontal-axis corresponds to the maximum row-trace and the vertical-axis corresponds
to the average row-trace (taken across the iterations). The original-data is indicated with a ‘⊗’, and each of the random
shuffles with a colored ‘•’. The color of each ‘•’ indicates the p-value associated with that position in x,y-space. By
comparing the original-trace with the shuffled-distribution we can read off a p-value of 0.021 for the bicluster drawn from
the original-data.
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Figure 76: Detecting a rank-0 bicluster within a case-matrix alone. In Panel-A we show a large M ×N binarized matrix
D (black and white pixels correspond to values of ±1, respectively). In the upper left corner of D we’ve inserted a
large rank-0 bicluster B (shaded in pink). Our algorithm considers all 2 × 1 submatrices (i.e., ‘half-loops’) within D.
Several such half-loops are highlighted via the thin blue rectangles (the top and bottom of each rectangle pick out a 2× 1
submatrix). Generally speaking, the entries of a half-loop are equally likely be matched or mismatched. Some half-loops,
such as the half-loop shown in red, are entirely contained within B. These half-loops are more likely to be matched
than mismatched. In Panel-B we show some examples of mismatched and matched half-loops. Given a half-loop with
row-indices j, j′ and column-index k, the parity of the half-loop is determined by the sign of DjkD

⊺
kj′ . Our algorithm

accumulates a ‘half-loop-score’ for each row j and each column k. The half-loop-score for a particular row j is given
by
∑

j′,kDjkD
⊺
kj′ = [DD⊺1]j . The half-loop-score for a column k is given by [1⊺D]k · [D⊺1]k. In Panel-C we show the

distribution of half-loop-scores we might expect from the rows within D. The blue-curve corresponds to the distribution
of scores expected from the rows/cols of D that are not in B, whereas the red-curve corresponds to the distribution of
scores expected from the rows/cols of B.
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and redefine the (2-sided) covariate-dependent sub-scores for each t = 1, . . . , NT as follows:

[
Z

Q,Q′; i,i′ ; [t]
ROW

]
j
=

∑̃

Q, i, Q′, i′ fixed ;

j fixed in Qi, j′ in Q′i′;
j′ 6=j if Q=Q′ and i=i′

k∈Q

[TQi]j,t [Qi− 1Qiα
⊺]j,k ∆kk [Q

′i′ − 1Q′i′α
⊺]j′,k [TQ′i′ ]j′,t ,

[
Z

Q,Q′; i,i′; [t]
COL

]
k
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j in Qi, j′ in Q′i′;
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⊺]j,k ∆kk [Q

′i′ − 1Q′i′α
⊺]j′,k [TQ′i′ ]j′,t .

After substituting these new definitions, the subsequent combination of sub-scores remains unchanged.
We pause to remark that we can also redefine our 1-sided covariate-dependent sub-scores as follows:

[
Z

Q,Q′; i,i′; [t] 1s
ROW

]
j
=

∑̃

Q, i, Q′, i′ fixed ;

j fixed in Qi, j′ in Q′i′;
j′ 6=j if Q=Q′ and i=i′

k∈Q

[Qi− 1Qiα
⊺]j,k ∆kk [Q

′i′ − 1Q′i′α
⊺]j′,k [TQ′i′ ]j′,t ,

[
Z

Q,Q′; i,i′; [t] 1s
COL

]
k
=

∑̃

Q, i, Q′, i′ fixed ;
j in Qi, j′ in Q′i′;

j′ 6=j if Q=Q′ and i=i′

k fixed,

[Qi− 1Qiα
⊺]j,k ∆kk [Q

′i′ − 1Q′i′α
⊺]j′,k [TQ′i′ ]j′,t .

After this redefinition, we use the same subsequent combination of sub-scores as discussed in section 12 (i.e., the combi-
nation appropriate for a 1-sided covariate-correction).

One advantage to the half-loop algorithms described above is that they are very easy to analyze. In fact, much of
our previous analysis remains unchanged; the main difference being that we replace the probability gl,ε,m with the new
probability ĝε. Recall that we previously defined the former to be the probability that a loop drawn from a low-rank
submatrix is rank-l, whereas we now define the latter to be the probability that a half-loop drawn from a rank-0 submatrix
is of matched sign. While gl,ε,m depends on both the noise-level ε as well as the submatrix size m, the probability ĝε only
depends on the level of noise, and not on the size m. To generate a rank-0 submatrix with noise level ε, we draw each
entry independently and randomly to be either ±1 with a probability chosen so that g1,ε,m equals ĝε.

A second advantage to the half-loop algorithms is that they can be used to search for differentially-expressed biclusters
where each gene is either high across the cases and low across the controls, or vice-versa. These structures are – by
definition – rank-1 structures that extend across both the case- and control-populations; they were deliberately ignored
by the control-correction described in section 8, but can easily be found using the half-loop algorithms above.

A simple example illustrating this approach is shown in Figs 77 and 78. A more complicated example is shown in Figs
79 and 80. These two examples are structured almost identically to the numerical experiments described in Figs 24 and
54, the only difference being that we implant rank-0 biclusters, rather than merely low-rank biclusters. As these examples
illustrate, our half-loop algorithm is not quite as good as our full loop-counting algorithm. Nevertheless, it is an order of
magnitude faster, a feature that may be of interest when analyzing large data-sets.

When we actually carry out our half-loop method on the data from section 1.4, we do indeed find a rank-0 bicluster,
shown in Figs 81-85. This rank-0 bicluster is strongly enriched for many different pathways, the most prominent of which
include: neurogenesis (p=1.6e-9), neuron-differentiation (p=5.2e-9), axon-guidance (p=3.4e-6), enzyme-linked receptor-
protein signaling pathway (p=6e-5), ion-channel-binding (1.6e-4), peptidyl-tyrosine physphorylation (5e-4) and ephrin-
receptor-activity (8e-4). As in the example shown in section 1.4, this bicluster was found within the neurotypical patients,
and may highlight genes that play a protective role with regards to the psychiatric disorder associated with this data-set.

15.3 Searching for triclusters:

There are often situations where the data-paradigm we’ve assumed – involving N measurements taken acrossM patients –
doesn’t suffice. For example, in a clinical study there may be M patients, each of which are subjected to P different kinds
of treatments (e.g., therapy regimes, medications, etc). For each of these P treatments, N variables may be measured for
each patient. Within this paradigm, the data isn’t best represented as a 2-dimensional array (e.g., a matrix), but rather
as a 3-dimensional array (i.e., a box or a cube) comprising both rows and columns, as well as ‘layers’. In formal terms, we
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Figure 77: This figure illustrates the setup for the numerical experiments shown in Fig 78. The setup for these experiments
is almost identical to the setup shown in Fig 24, with the exception that the planted bicluster is not merely low-rank,
but rather rank-0. A rank-0 bicluster is characterized by its size, as well as by the probability ĝε that a half-loop drawn
from the bicluster will be of matched sign. We generate our rank-0 biclusters by choosing each entry independently and
randomly so that the probability ĝε is equal to the g1,ε,m we would associate with a rank-1 biclster.
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Figure 78: This figure illustrates the numerical experiments described in Fig 77. We show the trial-averaged value of
A as a function of ε

√
m and logM (m). Note that, while our half-loop algorithm does indeed detect the bicluster when

ε
√
m . 1/10 and m &

√
M , it does not do as good a job as our full loop-counting algorithm (compare with Fig 26).
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Figure 79: This figure illustrates the setup for the numerical experiments shown in Fig 80. The setup for these experiments
is almost identical to the setup shown in Fig 54, with the exception that all the planted biclusters are not merely low-rank,
but rather rank-0. As in Fig 78, we generate our rank-0 biclusters by choosing each entry independently and randomly so
that the probability ĝε is equal to the g1,ε,m we would associate with a rank-1 biclster.
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Figure 80: This figure illustrates the numerical experiments described in Fig 79. In panel-A we show the trial-averaged
value of A0 as a function of ε

√
m and logM (m). In panel-B we show the trial-averaged value of A1, A2, A3. In panel-C we

show the trial-averaged value of A4, A5, A6. The left side of each panel displays results with Ireq = 3, the right side with
Ireq = 2. Note that, when Ireq = 3 the goal was to find B0, as this was the only case-specific bicluster that was balanced
across all the continuous-covariates and covariate-categories. On the other hand, when Ireq = 2 the goal was to find the
most dominant of B0 B1 B2 and B3, as each of these case-specific biclusters were balanced across all the continuous-
covariates while extending across at least 2 covariate-categories. Note that our half-loop algorithm does a modest job of
achieving these goal, even in the presence of the other biclusters B4 B5 and B6. Note also that this half-loop algorithm
is not quite as good as our original loop-counting algorithm (compare with Fig 55).
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Figure 81: In this figure we illustrate the rank-0 bicluster found within the GWAS data-set discussed in Example-3 (see
sections 1.4 and 15.2). This figure has the same format as Fig 11; the bicluster is shown on in the topmost portion of
the inset, while a random selection of other case-patients and control-patients are shown below. While the distribution of
genetic-data within this bicluster does not appear to be all that different from the other patients, the bicluster is indeed
quite different from the remaining patients. See Fig 82 for more details.
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Figure 82: The bicluster shown in the top of Fig 81 was not obviously distinct from the remaining cases and controls.
However, the structure within this bicluster can be revealed by first calculating the dominant right principal component
of the bicluster, and then projecting each patient’s associated genetic information onto that principal component. In this
figure we show histograms collecting the magnitude of this projection. While the absolute magnitude of the projection is
not very large for any of the patients (which is why the bicluster was not visually distinct from the remaining patients),
the actual values of the projection are quite distinct – the patients within the bicluster are indeed well-separated from the
other patients. We can quantify this separation by calculating the Auc associated with the projected values, yielding in
this case an Auc of A > 0.98.

imagine our data arranged into an array D of dimension M × N × P , where Dj,k,l corresponds to the kth measurement
of the jth-patient as they undergo therapy l.

Within this 3-dimensional array, it is often prudent to search for subsets of patients that exhibit some kind of simple
structure across a subset of measurements as well as a subset of treatments. Such a ‘tricluster’ would correspond to a
‘sub-cube’ of the data, rather than simply a submatrix. The techniques we discussed earlier can readily be extended to
search for these kinds of objects as well.

For exposition, let’s consider the ‘planted-tricluster’ problem. We’ll assume that the data-array D contains a hidden
m× n× p sub-array B involving patient-subset JB, measurement-subset KB, and treatment-subset LB (i.e., JB, KB and
LB are unknown). The sub-array B will exhibit structure not exhibited by the rest of D, and our goal will be to locate
the tricluster B (i.e,. to find the row- column- and layer-subsets JB, KB and LB).

We’ll assume that each entry of D that is not in B is drawn independently and randomly from, say, a median-0
distribution, but that the entries of B are drawn from a more structured distribution. For simplicity let’s assume B is
formed from a collection of outer-products; one for each pair of array-dimensions:

Bj,k,l = u1jv
1
k + u2jw

2
l + v3kw

3
l ,

where ~u1, ~u2 ∈ R
m, and ~v1, ~v3 ∈ R

n, and ~w2, ~w3 ∈ R
p. are each randomly chosen (but unknown) vectors that describe

the low-rank structure within B.
As before, we’ll binarize D, sending each entry to either +1 or −1, depending on its sign. Once we binarize D, we can

calculate the following scores:

[ZROW]j =

∑̃

j fixed, j′ 6=j;
k′ 6=k ; l

DjklDj′klDj′k′lDjk′l +

∑̃

j fixed, j′ 6=j;
k ; l′ 6=l

DjklDj′klDj′kl′Djkl′ ,

[ZCOL]k =

∑̃

k fixed, k′ 6=k;
j′ 6=j ; l

DjklDjk′lDj′k′lDj′kl +

∑̃

k fixed, k′ 6=k;
j ; l′ 6=l

DjklDjk′lDjk′l′Djkl′ ,

[ZLYR]l =

∑̃

l fixed, l′ 6=l;
j′ 6=j ; k

DjklDjkl′Dj′kl′Dj′kl +

∑̃

l fixed, l′ 6=l;
j ; k′ 6=k

DjklDjkl′Djk′l′Djk′l,

corresponding to the row-, column- and layer-scores, respectively. Once we’ve calculated these scores, we can remove the
rows, columns and layers with low scores, and repeat the entire process. As before, this process will focus on the rows,
columns and layers of B with high probability as long as m &

√
M , n &

√
N and p &

√
P .

The reason this process works is that – as before – the scores accumulate the ranks of the various loops within D.
However, unlike the simpler situation discussed in section 2, D is a 3-dimensional array (and not merely a matrix).
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Figure 83: The bicluster shown in Fig 81 is significant with respect to our label-shuffled hypothesis H0x. This figure has
the same format as Fig 63, and shows Z-scores for the bicluster shown in Fig 81. This bicluster is significant with respect
to our label-shuffled hypothesis H0x, yielding a p-value of . 0.03.
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Figure 84: This figure has the same format as Fig 14, and shows the distribution of continuous-covariate components across
the remaining case-patients as our algorithm proceeds. As before, our algorithm ensures that the covariate-distribution
remains relatively well-balanced.
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Figure 85: This figure has the same format as Fig 18, and shows the relative abundance of each study as our algorithm
proceeds. As before, our algorithm is able to ensure that the remaining case-patients are drawn from a reasonable mixture
of the studies.

Consequently, there are 3 different kinds of loops within D, each traversing a different pair of array-dimensions (see Fig
86). Any loop within D that does not lie entirely within B is just as likely to be rank-1 as it is to be rank-2. On the other
hand, loops within D that are entirely contained within B are more likely to be rank-1 than rank-2. This probability
is not 100%, but it is still significantly greater than 50%, with the exact value dependent on how the ~u1, ~u2, . . . , ~w3 are
drawn. Moreover, this probability is still significantly greater than 50% even in the presence of a moderate amount of
noise (e.g., if B were not exactly a sum of outer products).

A numerical experiment corroborating this intuition is shown in Fig 87. Techniques along these lines have been used
to find triclusters in clinical data involving several patients, measurements and therapies. See [M44] for some preliminary
results.

16 Various properties of multivariate gaussians

This section serves as somewhat of an appendix to section 2, collecting various observations about gaussian distributions.

16.1 one-dimensional gaussian:

We use ρσ (x) to refer to the normal distribution N
(
0, σ2

)
on x:

ρσ (x) =
1√
2πσ

exp

(−x2
2σ2

)
, with mean 0 and variance σ2.

Note that the gaussian distribution ρσ satisfies:

d

dx
ρσ (x) = − x

σ2
ρσ (x) , implying

∫ +∞

−∞
xk+2ρσ (x) dx = −σ2

∫ +∞

−∞
xk+1

(
d

dx
ρσ

)
dx = (k + 1)σ2

∫ +∞

−∞
xkρσ (x) dx.

Consequently, the first few moments of ρσ are given by:

∫
dρσ = 1,

∫
xdρσ = 0,

∫
x2dρσ = σ2,

∫
x3dρσ = 0,

∫
x4dρσ = 3σ4,

implying that, if x is drawn from ρσ (x), then the mean of x2 will be σ2 and the variance of x2 will be
(
3σ4 − σ4

)
= 2σ4.

One can also show that the 1-dimensional fourier-transform F of a 1-d gaussian is another 1-d gaussian:

F {ρσ} (k) =
1√
2π

∫ +∞

−∞
e−ikxρσ (x) dx =

1

σ
ρ1/σ (k) .
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Figure 86: Illustration of the loops within a 3-dimensional array. We sketch the structure of a 3-dimensional data-array
D, with J rows, K columns and P ‘layers’. Each entry Dj,k,l will lie in the cube shown. The loops within D can be
divided into 3-categories: (a) iso-layer loops that stretch across 2 rows and 2 columns, (b) iso-column loops that stretch
across 2 rows and 2 layers, and (c) iso-row loops that stretch across 2 columns and 2 layers. The row-score [ZROW]j
aggregates all the iso-column and iso-layer loops associated with row-j. The column-score [ZCOL]k aggregates all the
iso-row and iso-layer loops associated with column-k. The layer-score [ZLYR]l aggregates all the iso-row and iso-column
loops associated with layer-l.
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Figure 87: This numerical experiment involves a ‘planted-tricluster’ problem, where we implant an m×m×m tricluster
B within an M ×M ×M array D. The setup of this experiment is shown to the far left. Each entry of D is chosen
independently and randomly from a distribution with median 0. The tricluster B is constructed by first forming a sum
of three outer products: Bj,k,l = u1jv

1
k + u2jw

2
l + v3kw

3
l , and then flipping the sign of a randomly-chosen fraction f of

the entries of B. We choose the sign-flipping probability f as described in section 5.1 (i.e., f depends on ε
√
m). Our

loop-counting algorithm produces a list of row-, column- and layer-indices of D in the order in which they are eliminated;
those indices retained the longest are expected to be members of B. For each numerical experiment we calculate the auc
AR (i.e., area under the receiver operator characteristic curve) associated with the row-indices of B with respect to the
output list from our algorithm. We calculate the auc AC and AL for the columns and layers similarly. Finally, we use
A = (AR + AC + AL)/3 as a metric of success; values of A near 1 mean that the rows, columns and layers of B were
retained the longest by our algorithm. Values of A near 0.5 mean that our algorithm failed to detect B. On the right-hand
side we show the trial-averaged value of A as a function of ε

√
m and logM (m) for a few values of M . Note that our

loop-counting algorithm is generally successful when ε
√
m is sufficiently small and m is sufficiently large.
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16.2 convolution of two one-dimensional gaussians:

It is well known that the convolution of two one-dimensional gaussians is yet another gaussian:

[ρα ⋆ ρβ ] (x) =

∫ ∞

−∞
ρα (x− y) ρβ (y) dy = ργ (x) , where α

2 + β2 = γ2.

This can be understood by noting the fourier-transform above and appealing to the convolution theorem (i.e., F {ρα ⋆ ρβ} =
F {ρα}F {ρβ}). This can also be understood by considering a random vector xN with N independently chosen entries,

each either −1 or +1. Obviously, any particular entry of xN has mean 0 and variance 1. Therefore the sum SN =
∑n=N

n=1 xNn
is a random variable with mean 0 and variance N ; when N is large SN will be drawn from ρ√N . Now, considering a

situation where α2 + β2 = γ2, we immediately see that Sγ2 must be drawn from ργ , whereas Sα2 and Sβ2 are drawn from

ρα and ρβ respectively. Given that there is a one-to-one mapping between vectors xγ
2

and vectors xα
2 ⊕ xβ

2

, the random
variables Sγ2 and Sα2 + Sβ2 must have the same distribution. Consequently, ργ must be equal to ρα ⋆ ρβ.

16.3 two-dimensional gaussian:

We also use ρa,b,θ (~x) to refer to the mean 0 anisotropic multivariate gaussian distribution in 2-dimensions with variances
a2 and b2, and first principal-component oriented at angle θ. That is to say:

ρa,b,θ (~x) =
1

2πab
exp

(
−1

2
~x⊺Rθ

[
1
a2

1
b2

]
R⊺

θ~x

)
,

where Rθ =

[
cos θ − sin θ
+sin θ cos θ

]
.

In terms of visualization, the contours of ρa,b,θ are ellipses with one principal axis pointing in the θ-direction, and the
other principal axis perpendicular to the θ-direction; these elliptical contours will have principal radii proportional to a
and b, respectively.

Using our notation, we see that ρa,b,0 (~x) is separable: ρa,b,0 (~x) = ρa (x1) ρb (x2). Thus, we can think of ρa,b,θ (~x) as:

ρa,b,θ (~x) = ρa,b,0 (R−θ · x) = ρa (x1 cos θ + x2 sin θ) · ρb (−x1 sin θ + x2 cos θ) .

These observations can be easily used to show that the 2-dimensional fourier-transform F of a 2-d gaussian is yet another
2-d gaussian:

F [ρa,b,θ (~x)]
(
~k
)

=
1

2π

∫
ρa,b,θ (~x) exp

(
−i~k⊺ · ~x

)
dx1dx2 = F [ρa,b,0 (~x)]

(
R−θ · ~k

)

=

[
1

a
ρ1/a ⊗

1

b
ρ1/b

](
R−θ · ~k

)
=

1

ab
ρ1/a,1/b,0

(
R−θ · ~k

)

=
1

ab
ρ1/a,1/b,θ

(
~k
)
.

Note that ρ1/a,1/b,θ has the same orientation as ρa,b,θ, but with inverted principal-values.

16.4 isotropic two-dimensional gaussian:

Note that ρσ,σ,θ is an isotropic gaussian distribution in 2-dimensions with variance σ, and does not depend on θ; the
contours of ρσ,σ,θ are circles. A vector [x1, x2] drawn from ρσ,σ,0 can be constructed via ρσ,σ,0 (~x) = ρσ (x1) ρσ (x2).
Because ρσ,σ,0 is isotropic, the vector [x1, x2] will have an orientation ω = arctan (x2/x1) drawn uniformly from [0, 2π],

and a magnitude r =
√
x21 + x22 drawn from the Rayleigh distribution

r

σ2
exp

(−r2
2σ2

)
=

√
2πr

σ
ρσ (r) on r ∈ |0,∞) , with mean σ

√
π/2 and variance σ2 (2− π/2) .

16.5 restriction of two-dimensional gaussian to quadrants:

In general, given a gaussian ρa,b,θ, the fraction p of this gaussian restricted to the first and third quadrants is

p (a, b, θ) =
1

π
arccot

((
b

a
− a

b

)
1

2
sin 2θ

)
.
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This can be determined by first observing that p is the integral of ρα,b,θ over the domain Ω with boundaries given by the
x and y axes, subtending an angle of π:

Ω = {(r, θ) ‖θ ∈ [0, π/2] or [π, 3π/2]} .
With this definition of Ω, we can write:

p (a, b, θ) =

∫

Ω

ρa,b,θ (~x) d~x.

Given this formulation, we can first rotate space (and Ω) by −θ:

p (a, b, θ) =

∫

R⊺
θ
Ω

ρa,b,θ (Rθ~x) d~x =

∫

R⊺
θ
Ω

ρa,b,0 (~x) d~x,

and then dilate space (and R⊺
θΩ) by Σ = diag(1/a, 1/b):

p (a, b, θ) =

∫

ΣR⊺
θ
Ω

ρa,b,0
(
Σ−1~x

)
dΣ−1~x =

∫

ΣR⊺
θ
Ω

ρ1,1,0 (~x) d~x.

Within this final formulation the integrand is a uniform isotropic gaussian ρ1,1,0, and so p (a, b, θ) is simply 1/2π times
the angle subtended by the transformed domain Ω′ = ΣR⊺

θΩ. This angle in turn can be determined by applying ΣR⊺
θ to

the boundaries of Ω (i.e., to the x and y axes), yielding the formula above.

16.6 approximation of orthonormal û, v̂:

If we randomly draw the numbers u1, . . . , um and v1, . . . , vm independently from ρ√
1/m

, then each u2j and v2j will be

drawn from a distribution with mean (1/m) and variance
(
2/m2

)
. Thus, when m is large, the random variables |u|2 and

|v|2 will be drawn from a gaussian-distribution with mean 1 and variance 2/m. Each term ujvj , on the other hand, will be
drawn from a gaussian distribution with mean 0 and variance 1/m2, implying that the random variable u ·v is drawn from
ρ1/m. Thus, the unit vector û = u/ |u| is likely within O (1/

√
m) of u. Because û and v are independent, the unit-vector

ṽ = v − ûû⊺v is likely within O (1/
√
m) of v, and will be orthogonal to û. Similarly, the unit-vector v̂ = ṽ/ |ṽ| will also

be orthogonal to û and within O (1/
√
m) of v. Given this construction, the unit vectors û and v̂ will be orthonormal and

uniformly distributed (conditioned on the fact that û · v̂ = 0). In other words, the original vectors u and v were close to
orthonormal to begin with.

16.7 convolution of two two-dimensional gaussians:

Given random variables ~x and ~y drawn from ρa,b,θ and ρc,d,φ, the sum ~z = ~x + ~y will be drawn from ρa,b,θ ⋆ ρc,d,φ (i.e.,
the distribution obtained by convolving ρa,b,θ and ρc,d,θ) This distribution will also be a gaussian, of the form ρf,g,ω, for
some f, g, ω. This latter distribution can be understood via the fourier-transform. That is to say:

F {ρf,g,ω}
(
~k
)
= F {ρa,b,θ}

(
~k
)
· F {ρc,d,φ}

(
~k
)
, or

1

fg
ρ1/f,1/g,ω

(
~k
)
=

1

ab
ρ1/a,1/b,θ

(
~k
)
· 1

cd
ρ1/c,1/d,φ

(
~k
)
.

This distribution ρf,g,ω can be determined by observing:

1

fg
ρ1/f,1/g,ω

(
~k
)
=

1

2π
exp

(
1

2
~k⊺Rω

[
f2

g2

]
R⊺

ω
~k

)
, and

1

ab
ρ1/a,1/b,θ

(
~k
)
· 1

cd
ρ1/c,1/d,φ

(
~k
)
=

1

4π2
exp

(
1

2
~k⊺Rθ

[
a2

b2

]
R⊺

θ
~k +

1

2
~k⊺Rφ

[
c2

d2

]
R⊺

φ
~k

)
.

Thus, the distribution ρf,g,ω can be determined by finding the f, g, ω that satisfy the following equations (drawn from the
exponents in the previous equalities):

Rθ

[
a2

b2

]
R⊺

θ +Rφ

[
c2

d2

]
R⊺

φ = Rω

[
f2

g2

]
R⊺

ω.

These equalities can be rearranged into the following:
(
a2 − b2

)
cos 2θ +

(
c2 − d2

)
cos 2φ =

(
f2 − g2

)
cos 2ω (2)

(
a2 − b2

)
sin 2θ +

(
c2 − d2

)
sin 2φ =

(
f2 − g2

)
sin 2ω

[
a2 + b2

]
+
[
c2 + d2

]
=

[
f2 + g2

]
.

Thus, given 2θ,
[
a2 − b2

]
, 2φ and

[
c2 − d2

]
, we can use the first two equalities to find 2ω and

[
f2 − g2

]
(see, e.g., Fig 88).

Once this is accomplished we can use the third equality to find
[
f2 + g2

]
.

117



a  
- b

 
2

2

a  - b 2 2

c  - d 2
2

a  
- b

 
2

2

c  - d 2 2

c  
- d

 
2

2

f  - 
g 

2
2

Figure 88: In this figure we show the relationships between
(
f2 − g2

)
, ω,

(
a2 − b2

)
, θ,

(
c2 − d2

)
, φ that are expressed in

Eq. 2.

17 Asymptotic formula for g1,ε,m:

When ε
√
m is large (say, greater than 10), then Eq. 1 can be approximated via:

p

(
ω,
ε
√
m

r

)
≈ 1

2π

{
π + sin (2ω)

r2

ε2m

}
, and g1,ε,m ≈ 1

2
+

2

π2ε4m2
.

When ε
√
m is small (say, less that 0.01), then Eq. 1 can be approximated via:

p

(
ω,
ε
√
m

r

)
≈ 1

π

ε
√
m

r
· 1

− 1
2 sin 2ω + 2

π
ε
√
m

r

=
1

2

[
1− π

4

r

ε
√
m

sin 2ω

]−1

when sin 2ω < 0, and

p

(
ω,
ε
√
m

r

)
≈ 1− 1

π

ε
√
m

r
· 1

+ 1
2 sin 2ω + 2

π
ε
√
m

r

= 1− 1

2

[
1 +

π

4

r

ε
√
m

sin 2ω

]−1

when sin 2ω > 0.

The integral associated with g is then given by:

∫∫
1

2π

{
1− 2p+ 2p2

}
re−r2/2dθdr =

∫ ∞

0

{
r − 4

π
ε
√
m

{
2

π
log

(
π

2

r

ε
√
m

)
+

1

π

}}
e−r2/2dθdr,

implying that:

g1,ε.m ≈ 1− 4

π
ε
√
m

[
1√
2π

+
2√
2π

log

(
π

2ε
√
m

)
− 2

π
K

]
,

where K = −
∫ ∞

0

log (r) exp
(
−r2/2

)
dr ≈ 0.7961.

18 Low-noise limit for B⊺B:

Let’s consider a noiseless m× n rank-l bicluster B (i.e., with ε = 0). We can analytically solve for the expected value of
the magnitude of the covariances [B⊺B]kk′ in the limit m,n→ ∞.

Recall from section 5 that each column B:,k is obtained as follows: First we draw a sample vector A:,k of size m × 1
from an eccentric gaussian-distribution on R

m with l principal-values equal to 1, and the remaining principal-values equal
to 0. Then we define B:,k to be the binarization B:,k = sign(A:,k).
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Because ε = 0, we construct the matrix A as follows:

Ajk = uj1vk1 + · · ·+ ujlvkl =
l∑

q=1

UjqV
⊺
qk,

where U ∈ R
m×l and V ∈ R

n×l, and A = UV ⊺ is a singular-value-decomposition. Defining

~uj = Uj: and ~vk = Vk:

to be the jth-row of U and the kth-row of V , respectively, we can write A as:

Ajk = ~uj · ~vk.

This allows us to write B as:
Bjk = sign (~uj · ~vk) ,

and [B⊺B] as:

[B⊺B]kk′ =

m∑

j=1

sign (~uj · ~vk) sign (~uj · ~vk′) .

For any particular [B⊺B]kk′ the row-vectors ~vk and ~vk′ are fixed. Any particular summand (corresponding to a
particular j) will be +1 if that row-vector ~uj makes an acute angle with both ~vk and ~vk′ . Similarly, a summand will be
+1 if ~uj makes an obtuse angle with both ~vk and ~vk′ . On the other hand, a summand will be −1 if and only if ~uj makes
an acute angle with one of the ~vk, ~vk′ , and an obtuse angle with the other. If m is large, we can assume that each of the ~uj
are independent and randomly oriented. Thus, if we let θ ∈ [0, π] be the angle between ~vk and ~vk′ , then any particular ~uj
has probability θ/π of contributing a summand of −1 to [B⊺B]kk′ . Conversely, any particular ~uj has probability 1−θ/π of
contributing a summand of +1. Thus, given a fixed set of ~vk and ~vk′ , the expected value of [B⊺B]kk′ will be m (1− 2θ/π).

To determine the expected value of [B⊺B]kk′ for an arbitrary ~vk and ~vk′ , we simply integrate m (1− 2θ/π) over the
distribution µ (θ) of θ. This distribution θ depends on the ambient dimension l:

l = 1 : The ~vk and ~vk′ lie on a line, and are either parallel or antiparallel: µ (θ) = δ (θ − 0) + δ (θ − π).

l = 2 : The ~vk and ~vk′ lie on a circle: µ (θ) = 1/π

l = 3 : The ~vk and ~vk′ lie on a sphere: µ (θ) = sin (θ) /2

l = 4 : The ~vk and ~vk′ lie on a sphere in l = 4 dimensions: µ (θ) = sin2 (θ) / (π/2)

l > 4 : The ~vk and ~vk′ lie on a sphere in l dimensions: µ (θ) = sinl−2 (θ) /Zl.

In the cases where l ≥ 2, the normalization factor Zl is equal to:

Zl =

∫ π

0

sinl−2 (θ) dθ = 2Yl−2, where

Yq =





(q−1)(q−3)(q−5)···(1)
(q−0)(q−2)(q−4)···(2)

π
2 if l is even

(q−1)(q−3)(q−5)···(2)
(q−0)(q−2)(q−4)···(1)1 if l is odd

Note that the first few Yq are given by:

Y0 = π/2, Y1 = 1, and Yq =
q − 1

q
Yq−2 for q ≥ 2.

Using this construction we can calculate the expected value of magnitude of [B⊺B]kk′ , assuming that k 6= k′:

E (|[B⊺B]kk′ |) = m

∫ π

0

|1− 2θ/π|µ (θ) dθ = 2m

∫ π/2

0

(1− 2θ/π)µ (θ) dθ.

Noting that: ∫ π/2

0

sinq (θ) dθ = Yq, and

∫ π/2

0

θ · sinq (θ) dθ = Xq, with

X0 =
π2

8
, X1 = 1, and Xq =

1

q2
+
q − 1

q
Xq−2 for q ≥ 2,
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we see that:

E (|[B⊺B]kk′ |) = m

[
1− 2

π

Xl−2

Yl−2

]
.

Evaluating this expression for the first few l gives:

l = 1 : E (|[B⊺B]kk′ |) = m · 1

l = 2 : E (|[B⊺B]kk′ |) = m · [1− 1/2] = m/2

l = 3 : E (|[B⊺B]kk′ |) = m ·
[
1− 2

π

]
≈ m · 0.3634

l = 4 : E (|[B⊺B]kk′ |) = m ·
[
1− 2

π

(
1/4 + π2/16

)
/ (π/4)

]
≈ m · 0.2974

While the following is not an exact formula, when l ≥ 2 this expected value is quite close to:

E (|[B⊺B]kk′ |) ≈ m

2
√
l − 1

.

19 Information-theoretic phase-transitions for rank-1 planted-bicluster prob-

lem

In this section we discuss in more detail the information-theoretic size- and noise-transitions for the rank-1 planted-
bicluster problem. This problem involves sifting through an M ×M binary data-matrix D, and distinguishing between
the following two hypotheses.

H0: The null hypothesis. In this hypothesis the data-matrix D has no planted bicluster within it; each entry of D is
chosen randomly and independently from {−1,+1}.

H1: The planted-bicluster hypothesis: In this hypothesis the data-matrix D is altered by planting within it a smaller
m×m submatrix which corresponds to the binarization of a randomly-oriented rank-1 error-ε bicluster. The entries of D
outside of this m ×m submatrix will be chosen randomly and independently as before, but the entries of D within this
m×m submatrix will depend on one another.

One step towards understanding the planted-bicluster problem is to determine when H1 is distinguishable from H0; i.e.,
how large m needs to be (and how small ε must be) before the planted-bicluster impacts the distribution of the elements
of D. To address this question we assume that D is drawn from H0, and ask what kinds of structures might naturally
exist within D, even without any deliberate attempt to plant any specific biclusters. As we’ll see below, even under H0
we still expect to find within D a vast number of biclusters. These biclusters include (a) small noiseless biclusters of

size m . 2 log2M and (b) much larger and noisier biclusters of size m ∼
√
M and ε & [π logM ]−1/2, as well as many

structured elements in between these two extremes. Nevertheless, under H0 we are exponentially unlikely to find biclusters
that are both large and low-noise.

Size phase-transition: Let’s assume the noise ε = 0 for the moment, and consider the limit M ≫ m ≫ 1. Let’s
take a particular m × m submatrix B within D. The requirement that B be rank-1 places constraints on the signs of

(m− 1)
2
elements of B. That is, B will be rank-1 with probability p0 = 2ˆ

(
− (m− 1)

2
)
, or approximately -log p0 ≈

log 2 · m2. The total number of such m × m submatrices within D is Z =
(
M
m

)2
, which can be approximated as Z ≈

exp
(
2m log (M/m) + 2m+ 2m2/M

)
, or approximately logZ ≈ 2m logM . The product P0 = 1−(1− p0)

Z ≈ Zp0 provides
an upper bound on the probability that D contains at least onem×m rank-1 submatrix (this is technically an overestimate
because the ranks of each of the Z submatrices are not independent of one another). Obviously, this upper bound P0

tends to 0 when − log p0 ≫ logZ, which occurs when m is larger than [2/ log 2] logM = 2 log2M . This means that,
for M ≫ m ≫ 1, a random binary-matrix D is exponentially unlikely to contain any m ×m rank-1 matrix, as long as
m & 2 log2M . One consequence of these observations is that, if we were to embed within D a submatrix B of size m in
the range 2 log2 (M) < m <

√
M , say m ∼ 3

√
M , then B would be very significant but still undetectable to our algorithm.

Noise phase-transition: Now let’s consider the second phase-transition, this time assuming M ≫ m ≫ logM . As
before, we’ll assume that D is an M ×M binary-matrix with each entry chosen independently from {−1,+1}, and we’ll
consider m × m submatrices B within D. This time we are interested in the probability pε

√
m that a particular B is

rank-1 with noise at most ε
√
m. As we pointed out above, when ε

√
m = 0 we impose constraints on the signs of ≈ m2

elements of B; any particular B will be exactly rank-1 with probability p0 ≈ 2ˆ
(
−m2

)
. If instead we require B to

be rank-1 with noise ε
√
m, we actually only impose constraints on ≈

(
1− 2fε

√
m

)
m2 randomly chosen elements of B
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(where fε
√
m is the ‘flip-probability’ discussed in section 5.1). Assuming that ε

√
m & 10, we can approximate fε

√
m with

fε
√
m ≈ 1/2−

[√
2π · ε√m

]−1
. An asymptotic expansion in terms of ε

√
m reveals that, within the large-ε

√
m regime:

pε
√
m ≈

fm2=fε
√

m·m2

∑

fm2=0

(
m2

fm2

)
1

2m2 ≈ 1

2

ε
√
m

m
· exp

(
− m2

πε2m

)
.

Thus, we see that:

− log pε
√
m ≈ m2

π (ε
√
m)

2 + logm+ log 2− log
(
ε
√
m
)
.

Comparing this with logZ = 2m logM − 2m (logm− 1), we see that Pε
√
m = 1−

(
1− pε

√
m

)Z ≈ Zpε
√
m vanishes when

m2

π (ε
√
m)

2 + logm+ log 2− log
(
ε
√
m
)
≫ 2m logM − 2m (logm− 1) .

If we assume that m ∼
√
M , then Pε

√
m will vanish when

1 + 1/M · log 2− 1/M · log (ε√m)

logM + 2
≫ πε2.

Consequently, when ε
√
m & 10 and m ∼

√
M , we can expect that Pε

√
m will be essentially 0 whenever πε2 ≪ 1/ logM ,

or when ε
√
m≪M1/4/

√
π logM . This implies that a large randomM ×M matrix D is exponentially unlikely to contain

any
√
M ×

√
M rank-1 biclusters B which have a first-principal-component accounting for & π logM/

√
M of their total

variance. Put another way, if we were to embed within D an ε-error rank-1
√
M ×

√
M bicluster B which had, say,

ε ∼ 1/ 3
√
M , then B would be very statistically significant but still undetectable to our algorithm.

20 Does binarization destroy angular information?

This section describes the details of Fig 28. The scenario we investigate involves loops drawn from an m × m ε-error
rank-1 bicluster B. If we select 2 columns of B at random, any 1 × 2 row-vector from these two columns will be drawn
from the 2-dimensional distribution ρ̃ described in section 5. The distribution ρ̃ ∼ ρr1,0,θ1 ⋆ ρε,ε,0, where r1 is drawn from
r
√
2πmρ√

1/m
(r) and θ1 is uniformly distributed on [0, 2π]. Given r1 and θ1 = 0, a 1× 2 vector randomly drawn from ρ̃

gives rise to an angle ω drawn from:

ρoriginalB (ω) ∼ 1

2π

ab

b2 cos2(ω − θ1) + a2 sin2(ω − θ1)
, with a =

√
r21 + ε2, and b =

√
02 + ε2 = ε.

By contrast, the angle ω of a 1× 2 vector drawn from outside B is uniformly distributed (i.e., ρoriginalD (ω) = 1/2π). These

two distributions can be used to calculate the relative-entropy Doriginal
KL (ε

√
m) associated with the original bicluster. After

binarization, the distributions ρbinarizedB (ω) and ρbinarizedD (ω) are given by:

ρbinarizedB (ω) =

{
1
π arccot

((∣∣ b
a

∣∣−
∣∣a
b

∣∣) 1
2 sin 2θ1

)
for ω = π/4 or 5π/4

1
π arccot

((∣∣a
b

∣∣−
∣∣ b
a

∣∣) 1
2 sin 2θ1

)
for ω = 3π/4 or 7π/4

ρbinarizedD (ω) =

{
1/2 for ω = π/4 or 5π/4
1/2 for ω = 3π/4 or 7π/4

These two distributions can be used to calculate the relative-entropyDbinarized
KL (ε

√
m) associated with the binarized version

of the bicluster. Shown in Fig 28A are several randomly drawn distributions of this type (each drawn with a different r1
and θ1). As illustrated in Fig 28B, there is little difference between Doriginal

KL and Dbinarized
KL when ε

√
m & 0.01.

21 Analysis of loop-scores

In this section we analyze our loop-scores and show that they are, in a certain sense, close to optimal within the context of
our methodology. In this section we’ll use the notation l [J ;K] to refer to a c×c-submatrix involving rows J = {j1, . . . , jc}
and columns K = {k1, . . . , kc}. To ease the discussion, we’ll refer to these c× c submatrices as ‘nets’. Our analysis begins
by noting that our original loop-score was just one of a large class of ‘c-scores’ which are constructed using the following
general template:
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Step (i) Given a row j, consider the set Sj of all c× c-nets l [j1, . . . , jc; k1, . . . , kc] with j ∈ {j1, . . . , jc}.

Step (ii) Measure some scalar quantity µ (l) for each l ∈ Sj ;

Step (iii) Aggregate the sum [ZROW]j =
∑

l∈Sj
µ (l).

Our original loop-scores fall within the above template using c = 2 and µ (l) related to the rank of l (i.e., µ (l) =
3−2·rank(l)). It is natural to ask: Could we gain an advantage if we allowed for the more general steps (i) and (ii) above?
Specifically, instead of merely looking at loops l [j1, j2; k1, k2], we might consider larger c× c nets l [j1, . . . , jc; k1, . . . , kc].
Moreover, instead of simply measuring the rank µ (l), we could use some more informative measurement instead (e.g.,
any other scalar-valued function µ : {−1,+1}c×c → R). It turns out that neither of these modifications can substantially
improve the c-score; no matter which fixed c we choose, or how we construct µ, we won’t be able to overcome the
size-threshold of

√
M .

To see why this might be the case, let’s consider a strictly easier problem: let’s assume that the signs of u and v are
known to be all positive; i.e., B is simply a rank-1 m ×m matrix with each entry equal to +1. We’ll show below that
no algorithm built using the template above can overcome the size-threshold of

√
M for this strictly easier problem. This

then suggests that the same size-threshold applies to our original planted-bicluster problem.
In step (i) of the template, each net l [J ;K] is defined with the restriction that j ∈ J . Any net l may overlap B; there

may be x = |J ∩ JB | rows in common and y = |K ∩KB| columns in common. If x = 0 and y = 0, then l [J ;K] is drawn
from outside B. While the joint-distribution across all such nets is highly structured, each individual net drawn from
outside B looks ‘fully-random’. That is to say, if a single net is drawn from outside B, the joint-distribution from which
its own entries are drawn will be indistinguishable from that of a net whose entries are each drawn independently from
{−1,+1}. Any individual net with x = 0 or y = 0 will also look fully-random. Only when both x ≥ 1 and y ≥ 1 will the
structure of B impact the distribution from which the entries of l [J ;K] are drawn. When x = 1 and y = 1 the entries of
l [J ;K] no longer look fully random; there will be some randomly-located entry that is guaranteed to be equal to +1, and
the remaining entries of l will be drawn independently from {−1,+1}. As x and y increase, the structure of B impacts
the entries of l [J ;K] more and more severely, restricting a larger and larger fraction of l [J ;K] to be positive until, when
x = m and y = m, the entire net l [J ;K] is forced to be +1.

It turns out that, in the limit as M and m go to infinity (with m/M → 0), only the singly-overlapping nets with x = 1
and y = 1 contribute meaningfully to the sum in step (iii). That is to say, we can safely ignore all nets with multiple
overlapping entries (i.e., with x+ y > 2). There are two reasons which, together, ensure that this is the case.

1. The first reason is that, as m and M get larger, there will be ∼ mx+yM2c−x−y different nets with row- and
column-overlaps of x and y, respectively. If the given row j lies inside B, then there will be ∼ m1M2c−2 nets with
x = 1, y = 1, and only ∼ m2M2c−3 multiply-overlapping nets with x + y > 2. Similarly, if j lies outside B, then
there will be ∼ m2M2c−3 nets with x = 1, y = 1, and only ∼ m3M2c−4 multiply-overlapping nets. In both cases
the fraction of nets which are impacted by the presence of B is dominated by those nets with the smallest possible
overlap – in this case x = 1 and y = 1. The fraction of multiply-overlapping nets will always be ∼ m/M smaller
than the fraction of singly-overlapping nets.

2. The second reason is that, no matter the choice of c, the distributions of possible configurations allowed within
the multiply-overlapping nets is always comparable to the distribution of possible configurations allowed within the
singly-overlapping nets. In other words, the relative-entropy between these two configuration-distributions remains
bounded by a constant depending only on c, regardless of the choice of x or y for the multiply-overlapping nets. Put
another way, in order for us to safely ignore multiply-overlapping nets, it is imperative that these nets cannot adopt
a configuration forbidden to singly-overlapping nets. This is the case here: there are only 2c·c possible configurations
allowed for any net, and all of these configurations can be found (with probability bounded away from 0) amongst
either the singly- or multiply-overlapping nets. We remark that a similar statement would not hold if, say, the data
were not binarized and the planted bicluster were exactly rank-1 with unknown u and v. In such a scenario any
multiply overlapping nets with c = 2, x = 2 and y = 2 would all have a second singular value of exactly 0. If we were
to compare this configuration-distribution with that of the c = 2, x+ y < 4 nets, we would find the relative-entropy
unbounded: the multiply-overlapping nets contain infinitely more information than the singly-overlapping nets, and
cannot be ignored (this is the same scenario we brought up earlier when discussing the information-loss associated
with binarization).

Given the justification above, let’s restrict our attention to l [J ;K] for which x = 1 and y = 1. These were the nets which
contained a single randomly-located entry that was fixed to be +1 (with the other entries randomly chosen to be either +1
or −1). Because only a single entry within each net has a fixed sign, we don’t need to worry about the joint-distribution
of signs across entries. Therefore, the only relevant quantity for each of these nets is the number χ (l) of positive entries
within l (i.e., χ (l) ranges from 0 to c2). Thus, any µ that we construct must be be a function of χ (l) (i.e., µ = µ (χ (l))).
Consequently, given step (iii), our final c-score for row j must be of the form [ZROW]j = µ (0)Lj

0 + · · ·µ
(
c2
)
Lj
c2, where
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Lj
χ is the total number of nets intersecting row j that contain exactly χ positive entries. In other words, the final c-score

for row j takes the form [ZROW]j = ~µ · ~Lj, where ~µ ∈ R
1+c2 is the vector formed from the various µ (χ), and ~Lj ∈ N

1+c2

is the vector formed from the Lj
χ. The difference between the c-score for some row j and the c-score for another row j′

depends only on the difference between ~Lj and ~Lj′ .
To understand the structure of ~Lj more clearly, let’s restrict our attention to a fixed column-subset K = {k1, . . . , kc}.

Given that column-subset K is fixed, we can consider various row-subsets J̄ = {j1, . . . , jc−1}, each chosen such that j /∈ J̄
and J̄∩JB = ∅. For each choice of J̄ , the (c− 1)×c sub-net l

[
J̄ ;K

]
will have some number of positive entries χ

(
l
[
J̄ ;K

])
.

This collection of values for χ (taken across the various J̄) can be encoded as a vector ~PK ∈ N
1+(c−1)c (i.e., ~PK

χ is the

number of row-subsets J̄ such that χ
(
l
[
J̄ ;K

])
= χ). Now the (c− 1) × c sub-net l

[
J̄ ;K

]
can be can be expanded by

adding the row l [j;K] to form l
[
j ∪ J̄ ;K

]
. Obviously, χ

(
l
[
j ∪ J̄ ;K

])
is equal to χ (l [j;K])+χ

(
l
[
J̄ ;K

])
, implying that

the collection of values for χ
(
l
[
j ∪ J̄ ;K

])
(taken across the various J̄) can be determined simply by embedding the vector

~PK in N
1+c2 and shifting it forward by χ (l [j;K]) indices. That is to say, the collection of values for χ

(
l
[
j ∪ J̄ ;K

])
is

simply ~PK ⋆ ~eχ(l[j;K]), where ‘⋆’ denotes a vector-convolution and ~eχ is a vector with entry χ equal to 1 and the other
entries equal to 0.

With this notation the vector ~Lj can be written as:

~Lj =
∑

K

~PK ⋆ ~eχ(l[j;K]),

where the vector ~PK is calculated by summing over all row-subsets J̄ that exclude j. At this point we are ready to
compare the row j, which we’ll assume lies in JB, with another row j′ taken from outside B. We can immediately see
that:

~Lj − ~Lj′ =
∑

K

~PK ⋆
[
~eχ(l[j;K]) − ~eχ(l[j′;K])

]
,

where the vector ~PK is calculated by summing over all row-subsets J̄ that exclude both j and j′ (i.e., nets which include

both j and j′ will contribute to the same χ-index within ~Lj and ~Lj′). Recalling our discussion above, we need only consider
nets l [J ;K] that have an overlap x = |J ∩ JB|, and y = |K ∩KB| of at most 1. This implies that we can calculate the

vector ~PK by summing over only those row sub-sets J̄ that exclude JB as well as j′. With this assumption each l
[
J̄ ;K

]

is disjoint from B, and each χ
(
l
[
J̄ ;K

])
will be drawn from the same binomial distribution

P
(
χ
(
l
[
J̄ ;K

])
= χ

)
=

(
(c− 1) c

χ

)
2−(c−1)c.

Thus the expected value of
∑

K
~PK is merely the binomial distribution above multiplied by the number of possible J̄ :

E

(
∑

K

~PK
χ

)
=

(
M −m− 1

c− 2

)(
(c− 1) c

χ

)
2−(c−1)c.

Based on the linearity of expectation and the independence of ~PK and χ (l [j,K]) and χ (l [j′;K]), we have that:

E
(
~Lj − ~Lj′

)
= E

(
∑

K

~PK
χ

)
⋆
[
~EK
j − ~EK

j′

]
, where

[
~EK
j

]
χ
=

[
E

{
∑

K

~eχ(l[j;K])

}]

χ

∼
(
M

c

){
M −m

M

(
c

χ

)
2−c +

m

M

(
c− 1

χ− 1

)
2−c+1

}
, and

[
~EK
j′

]
χ
=

[
E

{
∑

K

~eχ(l[j′;K])

}]

χ

∼
(
M

c

)(
c

χ

)
2−c.

Thus, the ability for ZROW to discriminate between j and j′ is limited by the difference between the distributions ~EK
j and

~EK
j′ . A calculation of their relative-entropy shows that these two distributions ~EK

j and ~EK
j′ are maximally differentiable

when c = 1. When c = 1 the distribution E
(∑

K
~PK
χ

)
is trivial and the choice of ~µ is irrelevant (so long as µ (0) 6= µ (1)).

In this case the best c-score for each row is simply the number of positive entries in that row. This is equivalent to simply
using the ‘degree’ of each row (treating the matrix D as the adjacency matrix of a bigraph). A similar statement holds
for the columns: The best c-score for each column is simply the number of positive entries in that column. This simple
score – i.e., counting degree – is only informative when m &

√
M .
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Putting all this together, we see that – for the easier problem when B is a matrix of all ‘+1’s – there is no advantage
to be gained by considering larger c× c-submatrices, or by considering a more general measurement µ (l). The choice of
c = 1 is asymptotically optimal and, regardless of the choice of µ, the scores will only be indicative of JB and KB when
m &

√
M (and won’t be indicative of B when m = o(

√
M). In other words; algorithms built using the template above will

always be subject to the same size-threshold of m &
√
M . Therefore, we conclude that our original problem also suffers

from the same size-threshold limitation; regardless of our choice of c or µ, the template above won’t be able to construct
scores which indicate the rows and columns of B when m = o(

√
M).

To summarize: we have argued that the size-transition exhibited by our loop-scores will also be exhibited by a rather
large class of similar scores. To be more specific, we conclude that – for fixed ε

√
m – all scores constructed using the

template above will be informative only when m &
√
M , and will not be informative when m = o(

√
M). This then implies

that – when ε
√
m = 0 – our loop-scores are asymptotically optimal (within the constraints of the template above).

22 Comparison with a simple spectral-biclustering method

Our loop-counting algorithm is closely related to ‘spectral-biclustering’ [M22,M40]. Indeed, if we ignore the correction
for collapsed-loops, we see that our loop-score [ZROW]j is the diagonal entry [DD⊺DD⊺]jj , which is proportional to the

rayleigh-quotient ~x⊺ [D⊺D]~x, with ~x⊺ = Dj,: representing the jth-row of D. Similarly, [ZCOL]k is the rayleigh-quotient
~y⊺ [DD⊺] ~y, with ~y = D:,k representing the kth-column of D. Our algorithm attempts to focus on those rows and columns
which correspond to large rayleigh-quotients; i.e., to those rows and columns which are most parallel to the dominant
eigenvectors of D⊺D and DD⊺, respectively. If we decompose D = UΣV ⊺ using the singular-value-decomposition, we see
that the dominant eigenvectors of D⊺D and DD⊺ are equal to the dominant right- and left-singular-vectors ~v = V:,1 and
~u = U:,1 of the data-matrix D. Therefore, one can imagine that the rows and columns which our algorithm focuses on
will be those that are most highly correlated with ~v and ~u, respectively. These rows and columns should thus correspond
to high-magnitude components within the vectors ~u and ~v, respectively.

Given these observations, it is natural to consider the following simple spectral-biclustering method:

Step 0 Binarize D, sending each entry to either +1 or −1 (i.e., D = sign(D) or D = 2(D > 0)− 1).

Step 1 Calculate the singular-value-decomposition D = UΣV ⊺. Set ~u and ~v to be the first columns of U and V .

Step 2 Set [ZROW]j = ~u2j and [ZCOL]k = ~v2k to be the entrywise-squares of the singular-vectors ~u and ~v.

Step 3 Use ZROW and ZCOL to produce a ranked list of rows and columns of D.

Another way to think about the connection between our loop-counting algorithm and this spectral-biclustering method
is to first consider the bigraph corresponding to the binarized version of D. Within this context, we compute the row-
loop-score by considering each (1 + 1)×2 = 4-step path (j, k) → (j′, k) → (j′, k′) → (j, k′) through the bigraph associated
with D (see Fig 89). Let us denote such a path by p [J ;K], indexed by ordered row-subsets J = {j, j′} and column-subsets
K = {k, k′} (here j is fixed, but j′, k and k′ are arbitrary). Note that this path begins and ends at the fixed row j (i.e.,
this path is a loop) . For each p [J ;K] we calculate the product of the matrix entries along that path:

π (p [{j, j′} ; {k, k′}]) =
1∏

s=0

Dj[s]k[s]Dj[s+1]k[s] ,

where j[s] corresponds to the j-index with s ‘primes’ atop it, adopting the convention that j[2] = j′′ = j. As expected
from our loop-scores, these simple (1 + 1)× 2-step paths produce a product of the form:

π (p [{j, j′} ; {k, k′}]) =
1∏

s=0

Dj[s]k[s]Dj[s+1]k[s] = DjkDj′kDj′k′Djk′ .

Note that the path p [J ;K] steps on each row and each column an even number of times. Consequently, if p [J ;K] were
fully contained within a bicluster that was exactly rank-1, then π would always equal +1. More generally, within the
context of the planted-bicluster problem, the product π (p [J ;K]) is more likely to be +1 if the path p [J ;K] is fully
contained within a planted bicluster. On the other hand, we expect that π (p) will be equally likely to be +1 or −1 when
the path p is not fully contained within a planted bicluster. Once we have the product π (p) for each path p [J ;K], we
aggregate the results to form the score for row-j, which we’ll denote by

[
Z1
ROW

]
j
:= [ZROW]j :

[
Z1
ROW

]
j
=

∑

J,K, j fixed

π (p [J ;K]) , which is equal to
[
(DD⊺)

1+1
]
jj
.
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Figure 89: Illustration of paths through a bigraph. Our original row-scores
[
Z1
ROW

]
j
are computed by considering all

(1 + 1)×2 = 4-step paths through the bigraph of D which both start and end at row-j (see top-left). If such a 4-step path
lies entirely within a rank-1 bicluster it will satisfy the following property: the product of the matrix-entries along the path

will be equal to +1. The accumulation of such a product over all possible paths is given by
[
Z1
ROW

]
j
=
[
(DD⊺)1+1

]
jj
.

We may also consider other paths through the bigraph which start and end at row-j. On the top-right we show one such
family of paths: namely (2 + 1)×2 = 6-step paths. One can easily see that these 6-step paths also have the same property
as the 4-step paths above: namely, the product of the matrix-entries along the path will be equal to +1 if the path lies

entirely within a rank-1 bicluster. The accumulation of these products is given by
[
(DD⊺)

2+1
]
jj
. On the bottom we

generalize this notion to (d+ 1)× 2-step paths. Again, if such a path is contained within a rank-1 bicluster, the product

of its entries will be +1. The accumulation of these products is given by
[
(DD⊺)d+1

]
jj
. As d grows, the accumulation

[
(DD⊺)

d+1
]
jj

converges (after appropriate rescaling) to the jth-component of the dominant left-singular-vector of D. A

similar statement can be made for paths which begin and end at column-k: as d increases the accumulation
[
(D⊺D)

d+1
]
kk

converges to the kth-component of the dominant right-singular-vector of D.

We can generalize this approach by considering longer (d+ 1)×2-step paths, rather than simple (1 + 1)×2-step paths. Some
examples are illustrated in Fig 89. These paths involve larger row-subsets J =

{
j, j′, . . . , j[d]

}
and K =

{
k, k′, . . . , k[d]

}
.

The product π (p) is given by:

π (p [J ;K]) =

d∏

s=0

Dj[s]k[s]Dj[s+1]k[s] ,

with the convention that j[d+1] = j. As before, within the context of the planted-bicluster problem, π (p) is more likely
to be +1 whenever p is fully contained within a planted bicluster; if p is not contained within a planted bicluster then
π(p) is more likely to be drawn from the uniform distribution on {−1,+1} (we’ll quantify this more precisely below). The
accumulation of such products, which we’ll denote by

[
Zd
ROW

]
j
is now given by:

[
Zd
ROW

]
j
=

∑

J,K, j fixed

π (p [J ;K]) =
[
(DD⊺)

d+1
]
jj
.

As d increases, the d-score
[
Zd
ROW

]
converges in direction to the entrywise-square of the dominant left-singular-vector:

i.e., ~u.2. Similarly, the d-score
[
Zd
COL

]
converges in direction to the entrywise-square of the dominant right-singular vector:

i.e., ~v.2. These scores are identical to the scores used in Step-2 of the simple spectral algorithm.
In the next two sections we argue that the size-threshold and noise-threshold associated with this simple spectral

method can’t be much better than the detection-thresholds associated with our loop-counting algorithm. Later, in section
22.3, we refine this argument to examine the behavior of the spectral method near the detection-threshold, explaining
some of the results shown in Figs 29,30 and 31.
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22.1 Size-threshold:

At this point we can use a simple counting argument to estimate how effective these scores
[
Zd
ROW

]
might be when it

comes to detecting a planted bicluster. This counting argument is the first stage of the commonly-used ‘moment-method’
for analyzing the distribution of eigenvalues in a random matrix [15]. While we strongly encourage the interested reader
to pursue this reference, we provide the basics of this argument here.

For now let’s focus on the noiseless limit, and say that the m×m planted bicluster B is perfectly rank-1, and involves
the row-subset JB and column-subset KB. Let’s refer to the matrix-entries of D that are not in B as B∁. We’ll also
assume that d is fixed and that M and m are very large, with M ≫ m≫ d; we’ll pay attention to the change in behavior
that occurs when m ∼

√
M . When we refer to quantity such as O

(
M2d+1

)
we’ll ignore terms that do not grow like a

power of m or M (e.g., we’ll ignore terms of order d, ed, and so forth). To ease the notation, let’s define δ = (d− 1) /2;
we’ll later use δ to describe paths outside of B that contribute a π (p) of +1.

Any (d+ 1) × 2-step path p [J ;K] will step on up to 2 (d+ 1) different matrix-entries within D. For a given path p,
some of its matrix-entries may be traversed only once, but others may be stepped on multiple times (i.e., they may be
traversed with multiplicity greater than 1). Paths p fall into one of several categories, depending on the unique matrix-
entries in p and their multiplicities. The essential idea behind our argument will be that, in order for a path p to contribute
positively to the row-score, its matrix-entries from B∁ must be multiplicity-2, but its matrix-entries from B need only be
multiplicity-1.

Category-D0: This category includes paths p that start at some ̂ /∈ JB and remain outside of B, while also having
some matrix-entries with odd multiplicity. These paths will have a product π (p [J ;K]) that is drawn from the
uniform distribution on {−1,+1}. Given a fixed ̂ /∈ JB, there are O

(
Md ·Md+1

)
such paths. We arrive at this

estimate by noting that there are ∼ M choices for each of the d rows j[1], . . . , j[d], and ∼M choices for each of the
(d+ 1) columns k[0], k[1], . . . , k[d]. These Category-D0 paths each contribute a term of type π (p) = ±1 to the score[
Zd
ROW

]
̂
. When averaging over all possible configurations of D, the total contribution of these Category-D0 paths

will be 0. If these paths were all independent from one another, their total contribution would have a variance close
to Md ·Md+1. Because the category-D0 paths are correlated, the variance of their total contribution is even larger,
but is still is proportional to Md ·Md+1 multiplied by a prefactor of the form [constant]

d
. The exact value of this

prefactor is not as relevant as its magnitude, which grows with d but does not depend on M for fixed d. Thus, with
respect to m and M , the variance of the total contribution of the Category-D0 paths is O

(
Md ·Md+1

)
.

Category-D: This category includes paths p that start at some ̂ /∈ JB and remain outside of B, while only having
matrix-entries with even multiplicity. These paths will have a product π (p) = +1. For a given ̂ /∈ JB there will be
O
(
M δ ·M δ+1

)
paths available. We arrive at this estimate by noting that each matrix-entry must be traversed an

even number of times (e.g., not once, but 0, 2, 4, . . . times): there can be at most δ unique rows amongst j[1], . . . , j[d],
and at most δ + 1 unique columns amongst k[0], k[1], . . . , k[d]. A path p with the maximum number of unique rows
and columns thus has d + 1 = 2δ + 2 unique matrix-entries, starting out at

(
̂, k[0]

)
, including

(
j[s+1], k[s]

)
and(

j[s+1], k[s+1]
)
for s ∈ 0, . . . , δ, and potentially terminating at

(
̂, k[δ]

)
. Such a path has multiplicity-2 for each of

its matrix-entries. When averaging over all possible configurations of D, the total contribution of these Category-D
paths will be O

(
M δ ·M δ+1

)
; because δ ≈ d/2, this is bounded above in magnitude by the standard-deviation

associated with the Category-D0 paths. Note that in this estimate we need not worry about other Category-D paths
that involve fewer than δ unique rows and δ + 1 unique columns, because the quantity of these other paths is an
order of magnitude lower than the multiplicity-2-paths just discussed.

Category-B: This category includes paths p that start at some j ∈ JB and remain inside B. These paths will necessarily
step on each row and each column an even number of times (by construction), and will have a product π (p) = +1.
Given a fixed j ∈ JB, there will be O

(
md ·md+1

)
such paths. We arrive at this estimate by noting that there are

∼ m choices for each of the d rows j[1], . . . , j[d], and ∼ m choices for each of the (d+ 1) columns k[0], k[1], . . . , k[d].
The total contribution of these Category-B paths will be O

(
md ·md+1

)
.

Category-C0: This category includes paths p that include some matrix-entries in B, as well as some matrix entries
outside of B (i.e., in B∁). Additionally, the paths p must each have at least one of the following properties: either (i)
some of the matrix-entries outside of B have an odd multiplicity, and/or (ii) the collection of matrix-entries inside
of B does not include each row in JB an even number of times, and/or (iii) the collection of matrix-entries inside
of B does not include each column of KB an even number of times. These paths produce a product π (p) which is
drawn uniformly from {−1,+1}. There are many such paths, but their total number is bounded by O

(
m ·M2d

)

if the path p starts at some given j ∈ JB and by O
(
m2 ·M2d−1

)
if the path starts at some given ̂ /∈ JB, both

of which are bounded by the number of Category-D0 paths. The reason there are so few of these paths is that at
least one of the matrix-entries

(
j[s], k[s]

)
or
(
j[s+1], k[s]

)
must have a row drawn from JB and a column drawn from

KB. Consequently, after averaging over all possible configurations of D, the total contribution of these paths to
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the row-score will be 0, and the variance of this contribution will be bounded by the variance contributed by the
Category-D0 paths.

Category-C: This category includes paths p that include some matrix-entries in B, as well as some matrix entries outside
of B (i.e., in B∁). In addition, paths in Category-C must have all of the following properties: both (i) all of the
matrix-entries in B∁ must have an even multiplicity, and (ii) the collection of matrix-entries inside of B must include
each row of JB and each column of KB an even number of times. These paths will produce a product π (p) = +1. If
a Category-C path p has y < d unique matrix-entries from B∁, then the maximum number of unique matrix-entries
it can have in total is y + x, where x = 2d + 2 − 2y ≥ 4 denotes the number of matrix-entries coming from B.
This is because each of the y matrix-entries will have multiplicity at least 2. Assuming the path starts out inside
B, the very first step of the path corresponds to one unique row-index from JB and one unique column-index from
KB. Because the path itself can be thought of as a cycle, the final step of the path does not involve any unique
row- or column-indices. Moreover, each step along the path corresponds to at most one additional unique row-index
from JB or JB∁ , or one additional unique column-index from KB or KB∁ . Because 2y steps along the path must

be associated with the multiplicity-2 matrix-entries from B∁, the entire path can include at most x unique indices
from JB and KB, and y unique indices from JB∁ and KB∁ . Combining these observations we see that, for fixed
x, y such that y < d and x + 2y = 2d + 2 − 2y, if we require that the path p begins at a given row-index j ∈ JB ,
then there will be at most O

(
mx−1My

)
such paths available. On the other hand, if we require that the path p

begins at a given row-index ̂ /∈ JB, then there will be only O
(
mxMy−1

)
such paths available. A Category-C path p

with exactly y = d unique matrix-entries from B∁ will only have x = 1 unique matrix-entry from B (since p cannot
satisfy propery (ii) if x = 2). Such a path has at most 2 unique matrix-entries from JB and KB, and y − 1 unique
matrix-entries from JB∁ and KB∁ . Combining these observations we see that, for fixed x = 1 and y = d, if we insist
that the path p begins at a given row-index j ∈ JB, then there will be at most O

(
m1Md−1

)
such paths available. On

the other hand, if we insist that the path p begins at a given row-index ̂ /∈ JB, then there will be only O
(
m2Md−2

)

such paths available. Note that, similar to the Category-D case, we can safely ignore Category-C paths that involve
fewer than the maximum number of unique matrix-entries, as their total quantity will be an order of magnitude
lower than the paths just discussed.

Given the categories above, we can fix d and analyze the behavior of the typical row-score
[
Zd
ROW

]
j
when j ∈ JB, and

compare it against the typical row-score
[
Zd
ROW

]
̂
when ̂ /∈ JB. We have two cases:

If m = o(
√
M): The most numerous Category-C paths will correspond to y = d and x = 1, implying an average Category-

C contribution of O
(
m1Md−1

)
when j ∈ JB , and O

(
m2Md−2

)
when ̂ /∈ JB. The Category-C and Category-B

contributions combined will be negligible compared to the standard-deviation of the contribution from the Category-
D0 and Category-C0 paths. The row-score won’t be significantly different for JB than for JB∁ .

If m &
√
M : The most numerous Category-C paths will correspond to y = 1 and x = 2d, implying an average Category-

C contribution of O
(
m2d−1M

)
when j ∈ JB, and O

(
m2d

)
when ̂ /∈ JB. The sum of the average Category-C

and Category-B contributions will be an order of magnitude higher for j ∈ JB than for ̂ /∈ JB. Moreover, these
contributions dwarf the standard-deviation of the contribution from Category-D0 and Category-C0. The row-score
will be significantly greater for JB than for JB∁ .

In summary, if we fix d and take the limit as M and m go to infinity with M ≫ m ≫ d, then the typical row-score[
Zd
ROW

]
j
be greater than the typical row-score

[
Zd
ROW

]
̂
only when m is on the same order as (or larger than)

√
M . This

is the same size-threshold that pertains to our loop-score (i.e., d = 1), and suggests that this size-threshold applies for all
d, as well as for the simple spectral method above.

22.2 Noise-threshold:

If we assume that B is not perfectly rank-1, but instead only approximately rank-1 with error ε, then the rough calculation
above changes slightly. The Category-D0 and Category-C0 paths still contribute a variance on the order of O

(
M2d+1

)

to the row-score
[
Zd
ROW

]
̂
when ̂ /∈ JB. On the other hand, the Category-B and Category-C paths now contribute a

weaker signal to the row-scores
[
Zd
ROW

]
j
when j ∈ JB. Looking at the Category-B paths for now, we see that there are

still O
(
m2d+1

)
paths within B that start and end at row-j. However, the noise within B will flip the sign of some of the

entries of B, and not all these paths will contribute a product π (p) = +1. These paths now fall into two sub-categories:

Category-B+: This category includes paths p in B that step on any perturbed entries (i.e., those with sign flipped by
the noise) an even number of times in total. These paths will produce a π (p) = +1.
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Category-B-: This category includes paths p in B that step on any perturbed entries an odd number of times in total.
These paths will produce a π (p) = −1.

The fraction of Category-B paths that are in Category-B+ is some number Gd
1,ε,m in between 1/2 and 1 (note that

G1
1,ε,m is the same as the g1,ε,m we calculated in section 5). The average contribution of all the Category-B paths is now

O
((
2Gd

1,ε,m − 1
)
·m2d+1

)
, and we expect the average contribution of all the Category-C paths to suffer from a similar

reduction. Given this reduction, we now expect the score
[
Zd
ROW

]
j
to be distinguishable from

[
Zd
ROW

]
̂
only when Gd

1,ε,m

is significantly greater than 1/2.
Recall that B is generated by first drawing the columns of a matrix A from a randomly-oriented gaussian-distribution

ρ and then binarizing the result. The distribution ρ has a dominant principal-value equal to 1, and subsequent singular-
values equal to ε (i.e., A is rank-1 with error-ε). The distribution of singular-values of ρ implies that only a fraction φ
of the total variance of ρ is associated with its first principal component. This fraction φ is ∼ 1/

(
1 + ε2m

)
, and is only

significantly greater than 0 when g1,ε,m > 1/2 (i.e., when ε
√
m . 1). When ε

√
m≫ 1 and g1,ε,m ∼ 1/2, then the fraction

φ will be close to 0, and we expect Gd
1,ε,m to be close to 1/2 as well. These observations suggest that Gd

1,ε,m cannot be

much higher than g1,ε,m, which would imply that – at best – the row-scores Zd
ROW obey the same noise-transition as our

original loop-score (i.e., ε
√
m . 1). Consequently, we expect the simple spectral method to obey the same noise-transition

at ε
√
m . 1.

22.3 Behavior near the detection-threshold

Comparisions between our loop-score method and the simple spectral method can be seen in Fig 29, as well as Figs 30
and 31. Note that our loop-score algorithm outperforms the spectral method in many circumstances, especially when the
planted-bicluster has a rank l > 1. It turns out that this phenomenon is related to the behavior of these two methods near
the detection-threshold. More specifically, all our analysis so far has focused on distinguishing the m = o(

√
M) situation

from the m &
√
M situation. To understand why loop-counting outperforms the simple spectral method we need to focus

on the situation where m is on the same order as
√
M . In other words, we should assume that m/

√
M is some constant

close to 1.
For illustration, let’s consider a planted-bicluster problem where the matrix D is of size M = 768 and the embedded

bicluster B is of rank l = 2 and size m = 39 with ε = 0. These parameters are close to the M = 1024, logM (m) = 0.55
position in Fig 30 (i.e., a parameter regime where loop-counting outperforms the spectral method). For this choice of
parameters m is quite close to

√
M : i.e., m/

√
M ≈ 1.4. Hence, the phenomenon we see for these parameters will be

indicative of what happens near the detection-threshold. In this example we’ll focus on the row-scores, although our
argument applies equally well to the column-scores.

Given this planted-bicluster problem, we construct multiple trials; for each trial we calculate the d-scores
[
Zd
ROW

]
for

various d. In this situation we have no controls; there is no convenience associated with correcting for collapsed-loops,
and so we’ll use the formulae for the d-scores in section 22; these scores will always be positive. Going forward, it will be
more convenient to refer to these scores by their square-roots, which we’ll denote by

[
zdROW

]
. In general, each individual[

zdROW

]
j
will be drawn from one of two distinct distributions, depending on whether or not j is in JB or JB∁ . We’ll

denote these two distributions by ζdB and ζd
B∁ , respectively. These two distributions will depend on d, in addition to the

parameters M , m, l and ε. Ultimately, we’ll be interested how these two distributions change as a function of d, for m
close to

√
M .

For the particular parameters in this example, we illustrate the distributions of the square-roots of the d-scores in
Fig 90A. Each of these subplots shows the distributions ζdB and ζd

B∁ for a particular d (obtained by trial-averaging). The

distribution ζdB is shown in red, while the distribution ζd
B∁ is shown in blue.

Note that, when d = 1, we recover our original loop-scores. Our analysis from section 5 applies almost perfectly; the
loop-scores

[
Z1
ROW

]
are distributed roughly like gaussians with means much greater than 0 (recall that these scores include

the contribution of collapsed-loops), and hence so too are their square-roots
[
z1ROW

]
. Consequently, the distributions ζ1B

and ζ1
B∁ are also roughly gaussian. Moreover, when d = 1 we can use our expression for g2,ε,m to calculate the shift in the

means of these two gaussian distributions.
As d increases, the two square-root-score-distributions ζdB and ζd

B∁ change shape; for this choice of parameters they
become more and more lopsided. When d is very large the scores [Z∞

ROW] converge to the scores of the simple spectral
method: namely, the entrywise-squares of the dominant left-singular-vector of D (i.e., ~u.2). Consequently, the square-roots
of the scores (i.e., [z∞ROW]j) converge to the absolute-values |~uj|. For this choice of parameters, both ζ∞B and ζ∞

B∁ are rather

lopsided (with the latter equivalent to half a gaussian-distribution). It is the lopsidedness of ζ∞B that compromises the
performance of the spectral method, and we’ll discuss this more below.

One way to quantify the difference between the square-root-score-distributions is to measure the trial-averaged Auc
obtained by comparing ζdB to ζd

B∁ (shown in each panel). Note that the Auc is somewhat high for the original loop-scores
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(i.e., d = 1), increases as a function of d up until a point, and then decreases as d gets larger and larger. The behavior of
the trial-averaged Auc as a function of d is shown in Fig 90B (thick black line).

If we were to calculate our scores only once and use a linear threshold to distinguish rows inside B from rows outside
B, then the Auc we just described would dictate the success of our methodology. However, our algorithm is iterative; we
typically remove a small fraction of the rows and columns of D with each iteration. As mentioned in Fig 32, this fraction is
usually . 5%. Our hope is that – by removing the rows and columns associated with the lowest scores – we preferentially
remove rows and columns from outside B, leaving the rows and columns of B mostly untouched. This strategy will be
successful only if the lowest scores are more likely to come from outside B than from inside B. Thus, with regards to our
iterative framework, a more revealing measure of the quality of the various d-score-distributions is the Auc obtained by
comparing the bottom 5th-percentile of row-scores in B with the bottom 5th-percentile of row-scores outside B 8. This
trial-averaged metric – referred to as ‘A05’ – is shown in Fig 90C (thick black line).

Note that both the Auc and the A05 are markedly higher when d is small than when d is very large. This fact is a
direct result of the lopsided nature of ζdB for large d, and is the reason why our loop-counting algorithm outperforms the
simple spectral method in this example. We now turn to a discussion of this lopsidedness.

Recall that the square-root-scores [z∞ROW] associated with the simple spectral method are drawn from ζ∞B and ζ∞
B∁ ,

which describe the distribution of the coefficients of the vector |~u|. The distribution of these coefficients can in turn be
determined analytically by using the techniques of [M32].

Before we engage in this analysis, we make the following observations:

1. The singular-vector ~u is equal to the dominant eigenvector of the covariance-matrix DD⊺/M .

2. The covariance-matrix DD⊺/M can be approximated by the sum of (a) a random covariance matrix W and (b) a
symmetric matrix C with the following block structure: C is mostly 0, except for an m×m block corresponding to
JB with off-diagional entries roughly proportional to ±m/(2M

√
max(1/2, l− 1)). See section 18 for a derivation.

In this particular example, because l = 2, the nonzero off-diagonal entries of C are close to ±m/(2M).

3. The block matrix C is rank-1 with a dominant eigenvalue roughly equal to ∼ m2/(2M
√
max(1/2, l− 1)).

4. The dominant eigenvector ~ψ of C shares the block-structure of C: The m entries of ψ corresponding to JB are each
equal to ±1/

√
m, while the other M −m entries of ψ are 0.

At this point we can adopt the approach of [M32], which observes that the dominant eigenvector ~u of DD⊺/M obeys

an implicit equation involving the entries of ~ψ and ~u itself, as well as the empirical spectral distribution of W (which is,
in this case, given by a Marchenko-Pastur law with aspect-ratio 1.0). Following this train of logic, one can show that –

depending on m – the vector ~u may or may not point in the direction of ~ψ. More specifically, if we define ω to be the
angle between ~u and ~ψ, one can show that cos(ω)2 can be approximated by:

cos(ω)2 ≈ max

{
0 , 1− M

m2
2
√
max(1/2, l− 1)

}
, (3)

with this approximation holding with high probability in the limit as m,M → ∞ (with m/
√
M fixed). Note also that,

aside from the restriction that ~u · ~ψ = cos(ω), the vector ~u is drawn from a uniform distribution on the sphere in R
M .

We illustrate this phenomenon with a numerical experiment in Fig 90D. For this experiment we fix M = 768, l = 2
and ε = 0. We then vary m; for each m we construct multiple trials and measure ω. The trial-averaged cos(ω)2 is plotted
in black, while the analytical approximation to cos(ω)2 from Eq. 3 is shown in grey.

The value of ω can be used to determine the distribution of ~u on R
M : ~u is drawn uniformly from the set of vectors

that are of unit norm and have ~ψ-component equal to cos(ω) (i.e., ~u is drawn from a slightly smaller sphere of dimension

M − 1 centered at cos(ω) · ~ψ and normal to ~ψ). This distribution on ~u in turn determines the two distributions ζ∞B and
ζ∞
B∁ .

In general, the distribution ζ∞
B∁ will be a half-gaussian; these square-root-scores are associated with the component of

~u that is randomly oriented. On the other hand, the distribution ζ∞B may or may not look like ζ∞
B∁ . If m is too low, then

cos(ω) will be essentially 0, and the distribution ζ∞B will look essentially like ζ∞
B∁ . But, if m is large then cos(ω) will be

large, and the distribution ζ∞B will be very different from ζ∞
B∁ .

Coming back to our example, we have m = 39 and m/
√
M ≈ 1.4; the trial-averaged cos(ω) is approximately 0.19.

If we use this value of ω to determine ζ∞B and ζ∞
B∁ as described above (i.e., drawing ~u from the appropriate sphere), we

obtain the grey lines shown in the background of the spectral square-root-scores in Fig 90A. Note that this approximation
is very close to the trial-averaged distributions shown in blue and red.

Taking a step back from our example we can immediately see that, if we were to increasem, then cos(ω) would increase

as well, and ~u would align more closely with ~ψ. As ~u and ~ψ become more aligned, the distribution ζ∞B moves to the right,

8for this example, this A05 is obtained by comparing the bottom 2 scores in B with the bottom 36 scores outside B
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Figure 90: Illustration of square-roots of the d-scores for the planted-bicluster problem with M = 768, l = 2, m = 39, and
ε = 0. Panel-A shows the trial-averaged distribution of the square-roots of the d-scores both within (red) and outside (blue)
the planted bicluster B. Panel-B shows the trial-averaged Auc obtained by comparing all scores in B to all scores outside
B (thick black line). Panel-C shows the trial-averaged Auc obtained by comparing the bottom 5th percentile of scores in
B to the bottom 5th-percentile of scores outside B (thick black line). Panel-D shows the relationship between m/

√
M

and the typical angle ω made by the dominant left singular-vector of the data-matrix D and the ‘true’ singular-vector
associated with B.
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Figure 91: The spectral square-root-score-distributions associated with various ω, given M = 768, l = 2 and ε = 0. The
distribution ζ∞

B∁ is shown in black, and the distribution ζ∞B is shown in grey. See text for full description.

as shown in Fig 91. When cos(ω) is sufficiently large, then ζ∞B is very well distinguished from ζ∞
B∁ , and the simple spectral

method performs well.
At this point we can see that the value of cos(ω), and hence the performance of the spectral method, is a function of

the bicluster size m, as well as the bicluster rank l and error ε. For many choices of parameters, such as those shown in
the example above, cos(ω) will be small and the loop-scores will be more useful than the spectral-scores (at least within
the context of our methodology). This phenomenon is particularly pronounced when the rank l of the planted-bicluster
is greater than 1; in this situation cos(ω) increases only gradually as a function of m/

√
M . On the other hand, when

l = 1 then cos(ω) increases rather quickly as a function of m/
√
M , and this phenomenon is not as pronounced. Indeed,

for some choices of parameters (e.g., if l = 1 and m and ε are sufficiently large) then it is possible for the spectral-scores
to be more useful than our loop-scores (see, e.g., label ‘E’ near the detection boundary in Fig 29C).

Overall, we believe that the loop-scores are a better choice than the spectral-scores. Not only are the loop-scores
typically more useful with regards to the planted-bicluster problem (as discussed above), but the loop-scores are also less
sensitive to certain kinds of spectral noise.

We close by highlighting two more planted-bicluster problems identical to the example discussed above, but with
different values for m and l. The first involves m = 28, l = 1, and the second involves m = 64, l = 4. The behavior of the
distributions ζ∞B and ζ∞

B∁ for these problems is qualitatively similar to the behavior shown in Fig 90A, but the separation
between the two distributions depends on the details. The trial-averaged Auc and A05 for these two problems is shown in
Figs 90B,C using magenta and green lines in the background. Note that the general trend observed in the m = 39, l = 2
case still holds: the spectral scores are less useful than the loop-scores. Also note that the peak values for the Auc and
the A05 occur at different values of d, depending on the problem parameters.

22.4 A remark regarding message-passing algorithms

As readily observed in the examples above, the difference between the two distributions ζdB and ζd
B∁ depends on d. We’ve

quantified this difference using the metrics Auc and A05 (which are easy to measure in a numerical experiment), but
one could imagine a more comprehensive measurement of the information DKL (i.e., relative-entropy) between these two
distributions. Given what we’ve seen so far, it seems likely that the ‘best’ d-score for any particular planted-bicluster
problem is neither the loop-score (i.e., d = 1) nor the spectral-score (i.e., d = ∞), but rather somewhere in the middle.

Taking this reasoning a step further, it is tempting to try and construct some nonlinear function of the ‘best’ d-score
which allows for the ‘optimal’ classification of JB versus JB∁ . Going even further, one might imagine a score that is itself
constructed nonlinearly; instead of building the d-score

[
Zd
ROW

]
by applying power-iteration to the covariance-matrixDD⊺,

one might try and build an even better score by applying a nonlinearity in between each stage of the power-iteration.
The message-passing algorithms of [M33], [M19], and [M41] proceed along these lines. Generally speaking, these

algorithms choose an appropriate nonlinearity to apply between stages of a ‘message-passing procedure’ similar to power-
iteration. By choosing this nonlinearity carefully, these methods can significantly reduce their detection-thresholds for a
variety of problems very similar to our planted-bicluster problem (such as, e.g., the planted-clique problem). Given the
success of the message-passing algorithms of [M33], [M19], and [M41], it seems certain that there exists a message-passing
algorithm that outperforms our loop-counting algorithm when applied to the planted-bicluster problem; we fully intend
to pursue this line of research in the future.

We remark that, when developing a message-passing algorithm, it is critical to ensure that the algorithm performs
robustly even outside the framework of the planted-bicluster problem. That is to say, it is important to ensure that the
message-passing procedure (and the choice of nonlinearities) is not too specific to the assumptions of the planted-bicluster
problem, and that the algorithm generalizes to the kinds of scenarios seen in real data sets.

For example, we’ve already seen that the ‘best’ d-score for the planted-bicluster problem depends strongly on the
problem parameters. More specifically, the ‘best’ d depends not only on the size and spectrum of the planted bicluster
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B, but also on the structure of the rest of D. For example, if the spectrum of D were to decay, or if D were to contain
a heterogeneous collection of other biclusters, then the distributions ζdB and ζd

B∁ will reflect this structure. Simply put:
the optimal choice of d for one instance of the planted-bicluster problem may no longer be optimal once the parameters
change, or when things get a little messier. When analyzing real data-sets we often have no knowledge of the size or
spectrum of any hidden structures, and it is usually difficult to characterize the noise accurately. A good message-passing
algorithm should perform well even in the absence of this information (perhaps adaptively tailoring its message-passing
procedure as it analyzes the data).

22.5 Accounting for controls:

Much like our loop-counting methods, the simple spectral method described above can also be modified to account for
several aspects of experimental design. In this subsection we’ll elaborate on these techniques, discussing the control-
correction in detail. In fact, as we’ll see below, there are several ways of correcting the spectral-method which are quite
similar to the corrections we’ve used for our biclustering methods (e.g., in sections 8 and 15.2).

Recall that, within Step-1 of the simple spectral method defined in section 22, we used ~u and ~v to refer to the first
columns of U and V (respectively), where D = UΣV ⊺ is a singular-value-decomposition. Note that ~u is the dominant
eigenvector of DD⊺, and ~v is the dominant eigenvector of D⊺D. We can view ~u ∈ R

MD as the direction of greatest variance
for the columns of D, and ~v ∈ R

N as the direction of greatest variance for the rows of D. We’ll use this perspective below
to generalize the simple spectral method.

To begin with, let’s assume that – in addition to the MD×N case-matrix D – we also have an MX ×N control-matrix
X (as in section 8). Our goal will now be to find a direction ~v in R

N that best serves to separate these two categories.
Given this goal, it is reasonable to consider different measures of separation ‘S’.

One of the simplest such measures tries to find a ~v such that the projections ‘D~v’ of the case-patients onto ~v are,
collectively, as large (in magnitude) as possible, whereas the projections ‘X~v’ of the control-patients onto ~v are as small
as possible. This measure is given by:

Scol
1 (~v;D,X) :=

1

2

1

NMD

∑

j∈D

(Dj: · ~v)2 −
1

2

1

NMX

∑

j′∈X

(Xj′: · ~v)2 ,

which aggregates the squares of each projected variable, adding |D~v|2 and subtracting |X~v|2. In this expression the vectors
Dj: and Xj: are the jth rows of the D and X matrices, respectively. If we constrain the norm of ~v and maximize Scol

1 (~v)
we find that the optimal ~v is given by the dominant eigenvector of:

M col
1 :=

1

NMD
D⊺D − 1

NMX
X⊺X . (4)

Using this vector as ~v in Step-1 of the simple spectral method (instead of merely using the dominant eigenvector of D⊺D)
allows us to correct for certain features of the control submatrix. Specifically, such a ~v would highlight columns k that
participated in biclusters within D, but do not participate in any biclusters within X .

While such a control-correction is similar in many ways to our control-correction in section 8, it is not equivalent!
To explain the difference, consider two cases of the planted-bicluster problem involving D and X of equal size (i.e.,
MD = MX). In case-1, we’ll implant a 2m × n bicluster B[D;X], with m rows in D and m rows in X . In case-2 we’ll
implant one m × n bicluster BD in D, and another m × n bicluster BX in X , with BD and BX occupying the same
columns. Note that both case-1 and case-2 involve two m×n biclusters; one in D and one in X , both occupying the same
columns. In case-1, both biclusters have the same low-rank structure (i.e., both are part of B[D;X]), On the other hand,
in case-2, the two biclusters have different (arbitrary) low-rank structure.

The control-corrected loop-counting algorithm described in section 8 will (correctly) ignore the case-specific component
of B[D;X] in case-1, because B[D;X] straddles both D and X ; it will also (correctly) find the bicluster BD in case-2, because
this bicluster is case-specific and possesses a low-rank structure which is distinct from the corresponding columns of X .
On the other hand, the control-corrected spectral method derived from Scol

1 and Eq. 4 will ignore both the case-specific
component of B[D;X] in case-1, as well as the case-specific bicluster BD in case-2. This is because the term −X⊺X in M col

1

will penalize any column k in ~v whenever there is any low-rank structure within X involving k, regardless of whether or
not that low-rank structure is the same in D as it is in X .

To rectify this deficiency, we could instead try to find a ~v such that the projection D~v correlates with each column
of D only when the projection X~v is uncorrelated with the corresponding column of X (or vice-versa). This measure is
given by:

Scol
2 (~v;D,X) :=

1

2

1

N

∑

k

(
1

MD
D⊺

k:D · ~v − 1

MX
X⊺

k:X · ~v
)2

.
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If, as before, we constrain the norm of ~v and maximize Scol
2 (~v), we find that the optimal ~v is given by the dominant

eigenvector of:

M col
2 :=

1

N

[
1

MDMD
D⊺DD⊺D − 1

MDMX
D⊺DX⊺X − 1

MXMD
X⊺XD⊺D +

1

MXMX
X⊺XX⊺X

]
. (5)

Each term of M col
2 can be interpreted as affecting ~v in a different way. The first term D⊺DD⊺D rewards columns that

participate in biclusters within D. The two middle-terms D⊺DX⊺X and X⊺XD⊺D penalize columns that participate in
nonspecific biclusters that exhibit the same low-rank structure across both D and X . The fourth term X⊺XX⊺X rewards
columns that participate in biclusters within X .

In the above discussion we focused on finding ~v; Now we turn to finding ~u. Taking inspiration from Scol
1 and Scol

2 ,
we can devise a strategy for finding ~u ∈ R

MD : we can try and ensure that the projection D⊺~u correlates strongly (either
positively or negatively) with each row of D, while not correlating as strongly with the rows of X . This measure is given
by:

Srow
2 (~u;D,X) :=

1

2

1

N2MD

∑

j∈D

(Dj:D
⊺ · ~u)2 − 1

2

1

N2MX

∑

j′∈X

(Xj′:D
⊺ · ~u)2 .

As before, we constrain the norm of ~u and maximize Srow
2 (~u); the optimal ~u is given by the dominant eigenvector of:

M row
2 :=

1

N2MD
DD⊺DD⊺ − 1

N2MX
DX⊺XD⊺. (6)

Each term ofM row
2 affects ~u in a different way; the first term DD⊺DD⊺ rewards rows that participate in biclusters within

D, whereas the second term DX⊺XD⊺ penalizes rows that participate in nonspecific biclusters that exhibit the same
low-rank structure across both D and X .

Note that the control-correction we use in our loop-counting algorithm (see section 8) is quite closely related to
maximizing Srow

2 and Scol
2 . Indeed, our control-corrected row-score essentially involves calculating M row

2 , and our control-
corrected column-score essentially involves calculating the first term of M col

2 , as well as one of the two middle terms. We
don’t use the fourth term of M col

2 , as our goal in section 8 is to find case-specific biclusters, not to avoid control-specific
biclusters (unless, of course, they are part of non-specific biclusters, which will be penalized by either of the middle-terms).

Other measures of case-control separation: Note that Scol
1 , Scol

2 and Srow
2 are only a few of the many possible

measures of ‘separation’. For example, we could try and ensure that the average value of D~v was different than the
average value of X~v, defining a separation:

Scol
3 :=

1

2


 1

MD

∑

j∈D

Dj,:~v −
1

MX

∑

j′∈X

Xj′:, ~v




2

,

which has an optimal ~v given by the dominant eigenvector of:

M col
3 :=

(
1

MD
D⊺1D − 1

MX
X⊺1X

)(
1

MD
1⊺DD − 1

MX
1⊺XX

)
,

where 1D is the MD × 1 vector of all ones, and 1X is the MX × 1 vector of all ones.
We could also try and ensure a large magnitude difference between the projected case-rows Dj,:~v and control-rows

Xj′:~v, defining:

Scol
4 :=

1

2

1

MDMX

∑

j∈D, j′∈X

(Dj,:~v −Xj′,:~v)
2
,

which has an optimal ~v given by the dominant eigenvector of:

M col
4 :=

1

MD
D⊺

(
D − 1

MX
1D1⊺XX

)
+

1

MX
X⊺

(
X − 1

MD
1X1⊺DD

)
.

Each of these different strategies has its advantages and disadvantages; focusing on certain kinds of structures and ignoring
others. While no particular strategy is ‘best’ overall, there will be certain applications where some strategies outperform
others. Note that, within the context of biclustering, the control-correction we use in our ‘half-loop’ algorithm (see section
15.2) is somewhat related to maximizing Scol

4 for ~v and its analog Srow
4 for ~u.

Continuous case-control status: Finally, we discuss how to extend the methodology above to deal with continuous
case-control status. Such a situation may arise when the categorization of patients into ‘cases’ and ‘controls’ isn’t all that
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clear-cut. For example, we might imagine that our data includes N measurements taken across M total patients, each of
which has a different blood-pressure κj ∈ R (i.e., an associated continous clinical variable).

If we are interested in finding a direction ~v ∈ R
N which separates high-blood-pressure patients from low-blood-pressure

patients, we could pick some threshold κ̄ and divide the patients into case- and control-groups based on whether their
blood-pressure κj was greater or less than κ̄. This simple thresholding might be sufficient in some cases, but relies on an
(arbitrary) threshold κ̄.

Alternatively, we can treat κj as a fully continuous variable, and try to find a ~v ∈ R
N that maximizes the following

separation:

Scol
5 :=

1

2

∑

j,j′

(Dj,:~v −Dj′,:~v)
2
(κj − κj′)

2
. (7)

Note that if ~κ is indeed binary (e.g., each κj takes on values of 0 or 1), then this Scol
5 is essentially the same thing as the

Scol
4 above. If we go about our usual business (constraining the norm of ~v and optimizing Scol

5 ), then we find that ~v is an
eigenvector of:

M col
5 :=MD⊺K2D − (1⊺~κ) 2D⊺KD +

(
1⊺~κ2

)
D⊺D −D⊺K211⊺D + 2D⊺K11⊺KD −D⊺11⊺K2D, (8)

where K is the diagonal matrix with Kjj = κj , and 1 is the M × 1 vector of all ones.
It is also possible that each patient has a multi-dimensional continuous-category ~κj ∈ R

t (e.g., a vector of t-values
including blood-pressure, weight, etc). We can immediately extend the methodology above using a slightly modified
separation:

Scol
6 :=

1

2

∑

j,j′,t

(Dj,:~v −Dj′,:~v)
2
(κj,t − κj′,t)

2
, (9)

where κjt is the t-component of ~κj for the jth-data-point. Optimizing this objective involves finding the dominant
eigenvector of :

M col
6 =

∑

t

MD⊺K2
tD − 2 (1⊺~κt)D

⊺KtD +
(
1⊺~κ2t

)
D⊺D −D⊺K2

t 11
⊺D + 2D⊺Kt11

⊺KtD −D⊺11⊺K2
tD, (10)

where κt ∈ R
M is the vector formed from the κjt for various j, and Kt is the diagonal matrix such that [Kt]jj = κjt.

As we’ve seen earlier, there are control-corrected spectral methods that are quite similar to our control-corrected
biclustering algorithm (compare, e.g., Eqs. 5,6 with the loop-score of section 8). By analogy, it seems likely that Eqs. 8,10
can be used to extend our biclustering methodology to account for continuous case-control status. We intend to pursue
this line of research in the future.
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