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1 Stochastic models of central dogma

1.1 Simplest mechanism: a single DNA state

A single DNA waits for an exponential distributed time window with parameter k1 until

it gives rise to a piece of mRNA, and then the life time of each mRNA also obeys an

exponential distribution with parameter d1. Within the life time of each mRNA, protein

P is being synthesized by a Poisson process with intensity k2, and at the same time, each

molecule of P degrades with parameter d2.

During each single burst, the distribution of synthesized protein is geometric with

parameter q = k2
k2+d1

. More precise,

Gn =

∫ ∞
0

d1e
−d1te−k2t

(k2t)
n

n!
dt = qn(1− q).

Its average is q/(1− q), which is regarded as the burst size. This fact was first proved by

[12] and recently confirmed by experiments [14].

And the master equation for the population distribution of protein is

dP (n, t)

dt
= k1(

n∑
j=1

GjP (n− j, t)− qP (n, t)) + d2((n+ 1)P (n+ 1, t)− nP (n, t)),

whose stationary distribution is just the negative binomial [16]

P ss(n) =
bn

(1 + b)a+n
Γ(a+ n)

Γ(a)n!
,

where a = k1
d2

is the burst frequency per cell cycle and b = k2
d1

= q/(1− q) is just the burst

size. a and b are typically determined through the fitting of the stationary distribution

that measured.

Interestingly, it is not the real burst size observed if you track the protein in a single

cell, because one could not observe G0 (although P ss(n) could be observed), hence this

kind of real burst size b̃ = b/(1−G0) = b+ 1.

1.2 Two-state model

See Fig S1. Assume the parameters for the exponential distributed “on” time of the DNA

and mRNA are β, d1 respectively, and within that “on” time, the mRNA and protein are

being synthesized, by another two Poisson process with intensities k1 and k2 repectively.
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It is easy to prove that the number of mRNA synthesized per single “on” period of

DNA and the number of newly synthesized protein per single “on” period of mRNA both

obey geometric distribution with parameter θ1 = k1
β+k1

and θ2 = k2
d1+k2

respectively.

Therefore, the distribution of newly synthesized protein number during a single “on”

period of DNA is

Gn =
∞∑
k=1

θk1(1− θ1)
∑

n1+n2+···+nk=n

Πk
i=1(θ2)

ni(1− θ2), n ≥ 1,

and G0 = 1− θ1 +
∑∞

k=1 θ
k
1(1− θ1)(1− θ2)k.

Since the function f(n, x) =
∑∞

k=1 x
k (n+k−1)!
n!(k−1)! satisfies f(n, x) = f(n−1,x)

1−p , then f(n, x) =
x

(1−x)n+1 .

Therefore,

Gn =
∞∑
k=1

θk1(1−θ1)
(n+ k − 1)!

n!(k − 1)!
(θ2)

n(1−θ2)k = θ1
(1− θ1)(1− θ2)

1− θ1 + θ1θ2
(

θ2
1− θ1 + θ1θ2

)n, n ≥ 1,

and G0 = 1− θ1θ2
1−θ1+θ1θ2 .

This is a modified geometric distribution with parameter θ1 and θ2. In this case, we

don’t think experimentally one can tell the difference between this and a real geometric

distribution since all the difference is in the distributions at n = 0 and n = 1, overwhelmed

in the experimental noise.

Consequently, the averaged value of this modified geometric distribution is

〈n〉 =
∞∑
n=1

nGn =
θ1θ2

(1− θ1)(1− θ2)
=
k1k2
d1β

.

The master equation for the population distribution of protein under the bursty con-

dition is

dP (n, t)

dt
= α

β

α+ β
(

n∑
j=1

GjP (n− j, t)−
∞∑
j=1

GjP (n, t)) + d2((n+ 1)P (n+ 1, t)− nP (n, t)),

where Gj = θ1
(1−θ1)(1−θ2)
1−θ1+θ1θ2 ( θ2

1−θ1+θ1θ2 )j .

Its stationary distribution is just the negative binomial

P ss(n) =
bn

(1 + b)a+n
Γ(a+ n)

Γ(a)n!
,
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where a = k1
d2

β
α+β

α
β+k1

is the burst frequency and b = θ2
(1−θ1)(1−θ2) = k2

d1
(k1β +1) is the burst

size. Notice that b could not be less than k2
d1

which is the mean translated protein number

per mRNA molecule.

The real burst size if you track the protein in a single cell b̃ = 〈n〉/(1 − P (0)) =
k1k2
βd1

+ k2
d1

+ 1 = b+ 1.

If β � α, k1, then the two-state model can be approximated by the simplest model

with only one gene state, since the rate limiting step to synthesize a new mRNA is the

switching from the inactive state to the active state. In this case, the equally k̃1 = k1α
α+β .

Then the burst frequency and size in the two-state model reduce to those in the simplest

model.

1.3 Applied to modified repressor-dependent model with DNA loop

Small burst

During each single small burst, the model could be reduced to

O∗R
r2


r−2

OR,

in which OR and O∗R are the gene states with the repressor bound to both operators or

only the weaker one. Here k1 = fkM , k2 = kY , d1 = γM and d2 = γY .

Therefore, the population distribution of protein is the negative binomial with param-

eters asmall = fkM
γY

r2
r2+r−2

r−2

r2+fkM
and bsmall = fkMkY

r2γM
+ kY

γM
.

Large burst in the absence of positive feedback

When the inducer concentration is low, then Fig 1C in the maintext could be approx-

imated by

O +R
r1


r−1

O∗R
r2


r−2

OR,

where O∗R denotes the partial dissociation state of DNA.

Here k1 = kM , k2 = kY , d1 = γM and d2 = γY .

The burst size is easy to compute as blarge = kMkY
γMr1[R] + kY

γM
, and the frequency could

be computed by the first passage time starting from the state OR to O, i.e. 〈T 〉 =

r−1+r2+r−2

r−1r−2
≈ K2+1

r−1
since r2, r−2 � r−1, hence alarge = kM

γY

r1[R]

r1[R]+ 1
〈T 〉

1
〈T 〉

r1[R]+kM
≈ kM

γY

r−1
K2+1

r1[R]+kM
.

Hence both the large burst frequency and size increase with intracellular inducer con-

centration, but the frequency will not change that much while the size would increase

significantly.
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When the inducer concentration is high, then Fig 1C in the main text could be ap-

proximated by an alternative pathway

O +RIm
r−4



r4
O∗RIm

r−3



r3In

O ∗R
r2


r−2

OR.

The burst size blarge = kMkY
γMr−4[RIm] + kY

γM
≈ kMkY

γMr−4RT
+ kY

γM
. The burst frequency is

approximately alarge = kM
γY

r−4[RIm]
r−4[RIm]+r3In/(K2+1)

r3In/(K2+1)
r−4[RIm]+kM

.

Hence the large burst size is nearly constant, and the frequency will slightly increase

with intracellular inducer concentration with the limit kM
γY

r−4RT

r−4RT+kM
.

However, as we have mentioned in the main text, the bursts would be much more

indistinct when the intracellular inducer concentration is quite high.

For intermediate intracellular inducer concentration, the general expression of large

burst size can be well approximated by

blarge =
kMkY

(r1[R] + r−4[RIm])γM
+
kY
γM

.

2 Calculation of parameters

First of all, based on Fig 1 of the main text, we assume that the system satisfies the

thermodynamic constrain:

r1[R]r3I
nr4 = r−1r−4[RIn]r−3,

and K = [R]In

[RIn]
, hence

K =
r−1r−3r−4
r1r3r4

=
1

K1K3K4
.

Then we could get that

pO : pO∗R : pO∗RIn : pOR = 1 : K1[R] : K1K3[R]In : K1K2[R],

where K3 = r3
r−3

. Therefore,

pO =
1 + f(K1[R] +K1K3[R]In)

1 +K1[R] +K1K3[R]In +K1K2[R]
=

K + In + f(KK1RT + RT
K4
In)

K + In +K(K1 +K1K2)RT + RT
K4
In
.

Lac operon copy number and production/degradation rates

Kennell measured the translation rate of LacZ as 18.8min−1 [30] and (Kennell and

Riezman, 1977), which is also consistent with [14]. And since LacZ is nearly expressed 10
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times higher than LacY, hence we set transcription rate of LacY as kY = 1.8min−1. The

mRNA half-life time for LacA is 55 seconds according to (Kennell and Riezman, 1977),

hence γM = ln 2/(55/60) = 0.756min−1. Also Tsr and permease should have similar

rates. In fact, Choi, et al. [3] did a direct comparison of them (LacY-Venus replaced by

Tsr-Venus) and find similar expression levels.

The cell-doubling time is about 60 minutes, hence the dilution rate for the stable pro-

tein TMG γI = 0.012min−1. And the Lac permease degradation rate is about 0.01min−1,

then γY = 0.01 + 0.012 = 0.022min−1.

The in-vivo transcription rate of LacY kM is more complicated. Kennell’s estimate

of kM in vitro is closer to 18min−1. However, for the fully induced cells, the probability

of open operon is nearly 1 and the mRNA should approximately kM/γM ≈ 23.8, which

is 2 − 3 folds of that observed recently (almost every gene has an mRNA copy number

of less than 10 per cell in [20]). This value also varies: for instance, kM ≈ 9min−1 in

(Chung and Stephanopoulos, 1996) determined from theoretical fitting, and even simple

physical or chemical data published by different groups will differ by factors of 2− 10. So

in order to become more quantitatively consistent with recent experiments, we here set

kM = 8min−1.

Parameters for operon stochastic dynamics

According to Elf, et al.’s kinetic measurement in vivo (Elf et al., 2007), there are about

1−3 repressers per cell, and each repressor will spend about 5−6 minutes to rebind, hence

RT = 2molec. and the association rate r1 ≈ 0.2molec.−1min−1. Referred to the in-vitro

measurements of Table I and III of [31], the binding constants for repressor and inducer√
K is about 10µM , and that for repressor/operon and inducer 1√

K3
is several mM (Matzke

et al., 1992). However, in the in-vivo experiments, it seems that K = 100molec.−1µM2

is too low since the uninduced cells still should exist when the intracellular inducer con-

centration increases to nearly 50− 100µM . The inconsistence of the in vitro and in vivo

measurement might result from the much more complicated environment inside a living

cell. For example, the DNA-protein interactions are highly salt-dependent, and the flex-

ibility and persistence length of DNA in vivo does not seem to match in vitro values,

probably because there are other proteins binding to the DNA that can cause bends, etc.

Therefore, we modify K to be 2500molec.−1µM2 and set K3 = 8 × 10−6µM−2. Then

according to the thermodynamic constrain, we can have K1K4 = 1
KK3

= 50molec..

Furthermore, the mRNA level/ protein level is nearly kY /γY ≈ 100, which is consistent

with experimental observations for 1000 induction ratio (for uninduced cells, mRNA=0.01

and protein=1; for induced cells, mRNA=10 and protein=1000). It also implies the proba-
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bility for unrepressed operon pO as the intracellular inducer concentration is low (≤ 50µM)

is nearly 0.001, and the main pathway is

O +R
r1


r−1

O∗R
r2


r−2

OR,

hence pO ≈ 1+fK1[R]
1+K1[R]+K1K2[R] ≈

f
K2+1 = 0.001.

According to the classic measurements in (Oehler et al., 1990) and recent observations

in (Garcia et al., 2012), the repression by only the distal operator is neglectable, hence

we set f = 1 and K2 = 1000. These approximation is reasonable since the small burst

frequency without feedback asmall = fkM
γY

r2
r2+r−2

r−2

r2+fkM
in the case r2 � fkM can be

approximated by a ≈ fkM
γY

/(K2+1) = 0.363, which is quite consistent with the observation

in [3]. Further, the small burst size bsmall = fkMkY
r2γM

+ kY
γM
≈ kY

γM
= 2.38 as long as r2 � fkM ,

which is also consistent with the observation in [3].

We also require the large burst size at 100µM intracellular inducer concentration is

about 100 molecules (Choi et al., 2010), i.e.

blarge =
kMkY

(r1[R] + r−1[RIm])γM
+
kY
γM
≈ 100.

And the large burst frequency alarge ≈ 0.01 when intracellular inducer concentration is

50µM(Choi et al., 2010), i.e.

kM
γY

r1[R]

r1[R] + r−1

K2+1

r−1

K2+1

r1[R] + kM

≈ kM
γY

r−1

K2+1

r1[R] + kM
≈ 0.01.

Taking into account all these requirements, we could set K1 = 5/8molec.−1 and K2 =

1000. Further r−1 = 0.32 min−1, K4 = 80molec.. K4 is much higher than 1/K1, which

is consistent with the fact that the repressor’s affinity for the operator is substantially

reduced to a level comparable to that of nonspecific DNA interaction. According to the

observation that the inducer could begin to directly interact with repressed operon at about

200µM , that is to say at this case, r−1 = r3(200)n. Hence r3 = 8× 10−6µM−2min−1, and

r−3 = 1 min−1.

Finally, we require r2 = 1000r−2 � fkM = 8, and r4 = 80r−4 � 1 in order to pull

off repressor from the operator very rapidly when I is sufficiently high. Hence we set

r2 = 1000 min−1, r−2 = 1 min−1 and r4 = 6 min−1, r−4 = 0.075molec.−1 min−1. We know

the induction time is 100min (about 0.6 cell cycle), and here when I = 1000 − 1500µM ,
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the burst frequency alarge = kM
γY

r−4[RIm]
r−4[RIm]+r3In/(K2+1)

r3In/(K2+1)
r−4[RIm]+kM

≈ 0.35 ∼ 0.7, which is

quite consistent.

Inducer uptake rate

Without feedback, the intracellular level will likely be equal to the extracellular, within

10 minutes at most , hence we could set c ≈ ln 10/10 = 0.23min−1.

And finally kl = 0.25min−1 is determined to make the bistability range of our simula-

tion roughly consistent with the experimental observation.

All parameters are summarized in S1 Table.
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[7] Oehler S, Eismann ER, Krämer H, Müller-Hill B. The three operators of the lac

operon cooperate in repression. EMBO J 1990; 9(4): 973-979.

3 Supporting figures and table

Fig S1 A two-state model of the central dogma without feedback.
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Fig S2 Copy-number distributions for the permease protein in wild-type cells. We com-

pare the copy-number distribution of permease with different extracellular concentration

of inducers Ie and show that the Ie range of the bimodal distribution is much more broader

than that predicted in the deterministic bifurcation diagram(Fig. 2A in the main text).

Fig S3 Broad copy-number distributions for permease protein without positive feedback.

Fig S4 Copy-number distributions for permease protein under different values of Ie when

kM is small.

Fig S5 Copy-number distributions for permease protein under different values of Ie when

kM is large.

Fig S6 Size and frequency of small and large bursts without positive feedback, dependent

on the intracellular inducer concentration.

Fig S7 Copy-number distribution for the newly synthesized permease protein during a

single large burst with positive feedback, which is quite similar to exponential distribution.

Fig S8 Will a single repressor rebinding event trigger the phenotype transition from the

induced state to the uninduced state? The uninduction probability nearly vanishes when

the extracellular inducer concentration is only slightly larger than about 40µM .

Fig S9 Copy-number distributions for the permease protein observed in the region of

deterministic bistability, varying with ω.

Fig S10 Copy-number distributions for the permease protein observed in the region of

stochastic bistability, varying with ω.

Fig S11 Nearly exponentially distributed transition time from the uninduced state to

the induced state in wild-type cells.

Fig S12 Stochastic hysteresis response of the probability of induction when tuning the

strengths of stochasticity. Initial conditions: uninduced (blue line) or fully induced (red

line) cells with a period of T = 2000 min.
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Fig S13 Bistability with and without stochastic operon-state switching when the number

of operons are more than one. (A)(B) Deterministic bifurcation diagram for wild-type cells

in which the number of operons is 2 or 6. (C)(D) Deterministic bifurcation diagrams for the

repressor bound to the operon in the absence of a DNA loop with association constant that

equals 5 molec.−1. (E) (F) Stochastic hysteresis response of the probability of induction.

Fig S14 Bistability with and without stochastic operon-state switching tuning the strength

of positive feedback. (A)(B) Deterministic bifurcation diagram tuning the strength of

positive feedback. (C-F) Stationary distributions when tuning the strength of positive

feedback.

Fig S15 Bistability with and without stochastic operon-state switching when the dy-

namics of inducer is replaced by that of lactose. (A-D) Deterministic bifurcation diagram

in which the dynamics of inducer is replaced by that of lactose. (E) (F) Stochastic hys-

teresis response of the probability of induction.

Table S1 Values of kinetic parameters in the fluctuating-rate model.
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