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Details on the Finite Element decomposition in
FFEA

For a system of interacting viscoelastic bodies subject to thermal fluctuations, the
equation of motion within each of these bodies is given by the Cauchy momentum
equation:

ρ
Du

Dt
= ∇ · (σv + σe + π) + f (1)

where ρ is the density and Du
Dt = ∂u

∂t + u · ∇u is the Lagrangian (or material frame)
derivative of the velocity with respect to time. Here σv the viscous stress, σe the elastic
stress, π the thermal stress, and f the external force density all result from interactions
with the rest of the system, such as internal thermal fluctuations, external fields and
hydrodynamic drag against the solvent.

Oliver et al. [1] showed that Eq. 1 could be discretised using the finite element
method [2] in a manner that allows the thermal stress to be determined locally. The
weak form of Eq. 1 is obtained by integration over the volume of the body, Ω, with one
of a set of weight functions, ω. Using index notation, this gives:∫

Ω

ω

(
ρ
Dui
Dt
− ∂σij
∂xj

− fi
)
dV = 0 (2)

where the summation convention has been applied. Here the indices i and j refer to
spatial directions and σij is the total stress tensor. Applying integration by parts to the
term involving the stress, gives∫

Ω

ω
∂σij
∂xj

=

∫
Γ

ωFidA−
∫

Ω

σij
∂ω

∂xj
dV (3)

where Γ is the surface of the body and Fi = σijnj is the surface force density. We can
therefore write the completed weak form of Eq. 1 as:∫

Ω

ωρ
Dui
Dt

+

∫
Ω

σij
∂ω

∂xj
dV =

∫
Ω

ωfidV +

∫
Γ

ωFidA (4)

By transferring the derivative to ω we require only continuity of the stress itself, and
not its derivative. We now seek an approximate solution to Eq. 1 by finding a form for
the velocity u from a restricted space of functions that satisfies Eq. 4 for a finite set of
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weight functions ω. In the finite element method the space of functions is defined by
dividing the integration domain into a set of ‘finite elements’ over which functions are
restricted in form to piecewise polynomials. In our case, the finite elements are
tetrahedra fixed in the Lagrangian frame of the material over which the velocity is
restricted to being a linear interpolation of its values at the vertices (or nodes) of the
tetrahedra. Consequently the value of the velocity at any point in the solution domain
is entirely determined by its values at the nodes as ui(x) =

∑
α viαψα(x), where ψα(x)

are the linear interpolation functions, or shape functions and viα is the value of the ith
component of velocity at node α. Furthermore, gradients of velocity are obtained from
gradients of the shape functions ψα(x). The remaining task is to choose suitable weight
functions ω. Here we use the Galerkin formulation in which ω are chosen to be the
shape functions themselves.

The integrals in Eq. 4 can now be computed by adding up the contributions from
each finite element to give a matrix equation of the form:

Mpq
dvq
dt

= −Λpqvq + Ep +Np +Op (5)

where indices p = i, α and q = j, β run over both basis functions, α, and Cartesian
directions, i. Mpq is the mass matrix, Λpq is the viscosity matrix, Ep the elastic force
vector, Np the thermal force vector, and Op the force vector arising from the external
interactions.

The mass matrix, Mpq, has the form:

Mp(i,β)q(j,α) = δij

(∫
Ω

ρψαψβdV

)
, (6)

which has off-diagonal components which couple together nodes which share a finite
element. However, since the nodes are embedded in the material and no mass is
transported between the elements of a proteins, this matrix remains constant over the
course of a simulation.

The matrix Λpq arises from the internal viscous stress and the hydrodynamic drag
from the solvent background. The viscous stress is assumed to be isotropic and linear so
that it takes the form:

σvij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

∂um
∂xm

δij (7)

where µ is shear viscosity, and λ the second co-efficient of viscosity [3], giving a
contribution to the viscosity matrix, Λpq, of

Λint
p(i,β)q(j,α) =

∫
Ω

∂ψβ
∂xj

σvijdV

=

∫
Ω

µ
∂ψβ
∂xc

∂ψα
∂xc

δij + µ
∂ψβ
∂xj

∂ψα
∂xi

+ λ
∂ψβ
∂xi

∂ψα
∂xj

dV (8)

FFEA represents interactions with the external solvent through a Stokes drag, the same
as in Brownian dynamics simulations [4]. Each node experiences a local drag force that
contributes an additional contribution

Λepq = −6πRpµ
sδpq (9)

to the viscosity matrix, where Rp is the effective radius of the node p and µs is the
external solvent viscosity.
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Ep, the elastic force vector, can be calculated from an associated elastic stress, σeij :

Ep(i,β) = −
∫

Ω

∂ψβ
∂xj

σeijdV (10)

We assumed the bodies to be hyperelastic, and thus σeij can be calculated from a strain
energy density functional [5], which results in:

σeij = G
V0

V

(
FTikFkj − δij

)
+

1

2

(
K − 2G

3

)(
V

V0
− V0

V

)
δij (11)

where G and K are the shear and bulk modulus respectively, defined by the user. Here
Fij is the deformation gradient tensor (Fij = ∂xi

∂Xj
, where ~x = ~x( ~X, t) is the current

position of the material initially located at ~X), and V and V0 are the current and initial
element volumes, related by V/V0 = det(F).

The thermal force vector Np must be chosen so that Eq. 5 satisfies the
fluctuation-dissipation theorem. Np must therefore be directly related to the form of the
viscosity matrix Λpq. In general this would require computing the square-root of the
viscosity matrix, which would be computationally intensive. However, one of the
advantages of the FFEA formulation is that Np can determined from only the local
contributions from each element and each node. Since the internal viscous stresses arise
from velocity gradients that are independent of the translation and rotation of the
element they are entirely decoupled from the solvent drag terms that act on each
element and so their contributions to Np can be computed separately.

Since the velocity gradient is constant within each element, Oliver et al. [1] showed
that the thermal stress within an element of volume V for a simulation timestep ∆t is
given by

σtij =

√
2kBT

V∆t
(Xij
√
µ+ δijX0

√
λ) (12)

where X0 an independent stochastic variable and Xij a symmetric stochastic tensor,
satisfying

〈Xij〉 = 〈X0〉 = 0

〈X0X0〉 = 1

〈X0Xij〉 = 0

〈XijXkl〉 = δikδjl + δilδjk

from which the internal viscosity contribution to Np can be assembled from

N int
p(i,β) = −

∫
Ω

∂ψβ
∂xj

σtijdV. (13)

Similarly, the dissipation due to Stokes drag against a solvent background gives an
additional thermal contribution, Ne

p :

Ne
p =

(
12kBTπRpµ

s

∆t

) 1
2

Xe
p (14)

where Xe
p is an independent stochastic vector with the statistical properties 〈Xe

p〉 = 0
and 〈Xe

pX
e
q 〉 = δpq.

Finally, Op is the force vector formed from the external interactions, which are
discussed in the following sections.
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Finite Element discretisation for the Lennard-Jones
interactions

Lennard-Jones (LJ) interactions are often used for biomolecular modelling and more
generally in soft matter simulations. We have extended this popular potential to a
continuum implementation as a surface-surface interaction. In this representation, the
force exerted on a surface point s by a surface Γt can be written as:

F (s) =

∫
Γt

f(s, t)dAt (15)

where t is a point on the surface Γt. The term f(s, t) is consistent with the
Lennard-Jones form:

f(s, t) =
12ε

req

[(
req

r(s, t)

)13

−
(

req

r(s, t)

)7
]
r̂ (16)

where r = s− t is the vector displacement between the points s and t and r(s, t) = |r|
the corresponding distance between the points. The parameters controlling this
interaction are req, the equilibrium distance for the LJ interaction, and ε, the energy
minimum at r(s, t) = req. Including this interaction in FFEA means introducing Eq. 15
into the RHS of Eq. 4:∫

Γs

ω(s)F (s)dAs =

∫
Γs

ω(s)

[∫
Γt

f(s, t)dAt

]
dAs. (17)

Hence the contribution to Op from the Lennard Jones interactions is given by:

OLJp =

∫
Γs

ψα(s)

[∫
Γt

fi(s, t)dAt

]
dAs. (18)

where the weight functions ω(s) have been replaced with the surface shape functions
ψα(s) as per the Galerkin formulation of finite element analysis, and p = α, i is the
index for the co-ordinate referring to node α in direction i. This double integral can
then be partitioned into a double sum of integrals over all pairs of triangular surface
faces S and T , written as

OLJp =
∑
S

∑
T

∫
S

∫
T

ψα(s)fi(s, t)dAT dAS , (19)

Now, we use a Gaussian quadrature scheme for triangles to approximate each integral
as a weighted sum: ∫

S

g(s)dAS ∼ AS
NG∑
k

Wkg(sk) (20)

where the weighted sum is of the integrand’s values at NG of the Gauss Points, sk, and
AS is the area of the triangular element S. We use Gaussian quadrature of degree two
for which NG = 3. Using this scheme to evaluate Eq. 19, allows us to construct OLJp as

OLJp =
∑
S

∑
T

ASAT

NG∑
k=1

NG∑
l=1

WkWlψα(sk)fi(sk, tl). (21)

It should be noted that this sum only contributes to nodes α that are on the surface of
the finite element mesh, and that the sum over S only has non-zero contributions from
elements containing the node α. It is also true that the net interaction of a face with
itself is zero. Since the force decays rapidly with distance, we impose a cut-off distance
and only consider pairs of faces where the minimum distance is below the cut-off length.
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Linear Elastic Model & Timescale Calculator

The linear elastic model is determined by a manual linearisation of the elasticity vector
Ep about the equilibrium structure x0:

Ep ≈ Ep|x0 +
∂Ep
∂xq

(
xq − x0

q

)
(22)

where we define the spring constant matrix Kpq =
∂Ep

∂xq
. Due to the complex form of Ep

following the finite element method, we calculate its partial derivative numerically, i.e.
∂Ep

∂xq
≈ ∆Ep

∆xq
. Following initialisation of the system in which all material parameters are

assigned to the object, we loop over all of the nodes, β, and move each a small distance
∆x in each of the three directions, j. Following this small deformation, we calculate the
total elastic force vector Ep using algorithms from the core FFEA algorithm. This
allows us to determine how each component of ∆Ep changes with a deformation ∆xq,
where the index q = β, j. Looping over the entire structure of N nodes gives us a
3N × 3N matrix, Kpq. This matrix is symmetric and invertible if the distance ∆xq is
kept sufficiently small, which is expected for an effective elastic network matrix [6]. We
calculate an appropriate ∆xq as:

∆xq =
1

100
3
√
vs (23)

where vs is the volume of the smallest element in the system. This is approximately 1%
of the smallest length-scale associated with the entire system, and is kept the same for
all indices q.

Diagonalisation of Kpq gives us the following:

K = VkV−1 (24)

where V is the matrix of eigenvectors, arranged as columns, which represent the elastic
normal modes of motion and k is the diagonal matrix of eigenvalues, each representing
the stiffness of their respective elastic mode. The equipartition theorem allows us to
transform from stiffnesses to actual motions using the covariance matrix Cpq = 〈xpxq〉.
As FFEA follows a Boltzmann distribution for energies, it can be shown that:

Cpq = kBTK
−1
pq (25)

showing that the eigenvectors of Cpq are the same as those of Kpq, with the eigenvalues
differing only by a factor of kBT . It follows that the square root of these new
eigenvalues gives us a characteristic deformation lengthscale to associate with each
elastic mode. Using this together with the associated eigenvector, we can generate a
small pseudo-trajectory of 20 frames by moving the each node in the system according
to a normalised eigenvector multiplied by this characteristic lengthscale, allowing a
visualisation of the types of motion available to the system.

We can also follow a similar technique to find the timescales associated with each
elastic mode of the system, as well as the ballistic modes associated with the mass
matrix, Mpq. Taking only the inertial and viscosity terms of Eq. 5, we obtain:

Mpq
∂vq
∂t

= −Λpqvq (26)

which rearranges to:

τmpq
∂vq
∂t

= −vq (27)
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where τmpq = Λ−1
prMrq. Diagonalisation of this matrix gives a set of eigenmodes, with a

spectrum of relaxation times as the eigenvalues. These eigenvalues give an indication of
the time required for relaxation of inertia within the simulation.

Similarly, we can take only the viscosity and linearised elastic terms of Eq. 5, which
gives us:

Λpq
∂xq
∂t

= −Kpqxq (28)

and rearranges to:

τkpq
∂xq
∂t

= −xq (29)

where τkpq = K−1
pr Λrq. The previous decomposition approach provides a new set of

eigenvalues, this time corresponding to elastic relaxation times within the simulation.
Note that the eigenmodes corresponding to the inertial and elastic relaxation times

are different from one other and from the eigenmodes calculated using the linear elastic
model, and that the elastic modes of motion do not necessarily corresponded to the
actual dynamical modes of motion emerging from a full simulation. It should also be
noted that the motion may be underdamped or overdamped, leading to mixing of
timescales for simulations using the inertial scheme with Eq. 5 as the equation of
motion. We therefore emphasise that the linear elastic model, and these timescales, are
an approximation.

Nevertheless, the timescales emerging from these two matrices present useful
information. The largest timescale within the spectra tells us approximately how long
our simulation must be to capture every type of motion available to the biomolecule in
question. For a statistically complete ensemble of motions, the simulation time, ts, must
be hundreds of times longer than the longest of these timescales. The smallest timescale
in the system tells us how often we must output trajectory data in order to capture the
fastest motion within the molecule, and therefore how short our simulation timestep, ∆t,
must be. In fact, for an FFEA simulation to be numerically stable, ∆t must be smaller
than the smallest of these eigenvalues, as the equations of motion are solved explicitly.
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