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Chapter 1

Some de�nitions and results

from bifurcation analysis

1.1 Saddle-node and saddle-node bifurcation

We follow [1] to de�ne the concepts of limit point (or saddle-node) and
limit point bifurcation (also known as saddle-node bifurcation , tan-
gent bifurcation , fold bifurcation or turning point) in the context of
bifurcation analysis, and explain their implications for the existence of mul-
tiple steady states in nonlinear ODE systems.

Consider the system of ODEs:

u̇ = f(u, β) u ∈ Rn, β ∈ R (1.1)

where u is the state vector, β is a real parameter, and the function f :
Rn × R → Rn is smooth.

Let us de�ne

x =

(
u
β

)
∈ Rn+1,

we say that the system (1.1) is at equilibrium if:

F (x) ≡ f(u, β) = 0. (1.2)

The set of points x = (uT , β)T satisfying Eq. (1.2) constitutes the equilib-
rium manifold in the (u, β)-space. An equilibrium continuation consists
of computing a solution set M ⊂ Rn+1 of the smooth system (1.2) starting
from a given point x0 ∈M .
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Let Q be the n× (n+ 1) matrix:

Q(u, β) = [Duf Dβf ] =


∂f1
∂u1

∂f1
∂u2

. . . ∂f1
∂un

∂f1
∂β

∂f2
∂u1

∂f2
∂u2

. . . ∂f2
∂un

∂f2
∂β

. . .
∂fn
∂u1

∂fn
∂u2

. . . ∂fn
∂un

∂fn
∂β

 . (1.3)

Next we introduce the concept of regular point .

De�nition 1 [1] A point (u∗T , β∗)T satisfying (1.2), i.e, f(u∗, β∗) = 0, is
called regular if rank(Q(u∗, β∗)) = n.

As a consequence of the Implicit Function Theorem the following result holds:

Lemma 1 [1] Near any regular point (u∗T , β∗)T , Eq. (1.2) de�nes a solution
curve M that passes through (u∗T , β∗)T and is locally unique and smooth.

The proof of Lemma 1 can be found in [1].

The following result introduces some important properties of the tangent
vector to the solution curve at a regular point:

Lemma 2 [1] A tangent vector v to the solution curve M at a regular point
(u∗T , β∗)T ∈ M satis�es Qv = 0. If (u∗T , β∗)T is a regular point for (1.2)
then the linear equation Qv = 0 with Q = [Duf Dβf ] has a unique (modulo
scaling) solution v ∈ Rn+1, i.e. the kernel of Q is one-dimensional.

The proof of Lemma 2 can be found in [1].

Next, we introduce the concept of limit point (or saddle-node).

De�nition 2 [1] A regular point (u∗T , β∗)T is a limit point for (1.2) with
respect to β if vn+1 = 0, where v is a normalized tangent vector to M at
(u∗T , β∗)T .

De�nition 3 [3] A point (u∗T , β∗)T is a limit point bifurcation (also
known as saddle-node bifurcation , fold bifurcation , or turning point)
of (1.2) with respect to β if the following conditions hold:

1. (u∗T , β∗)T is a limit point of (1.2) with respect to β,

2. there exists a parametrization u(s), β(s) with u(s0) = u∗, β(s0) = β∗,
and d2β(s0)/ds

2 ̸= 0.

Condition (2) prevents (u∗T , β∗)T from being a hysteresis point [3] and can be
replaced by other equivalent non degeneracy conditions, including conditions
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Figure 1.1: Bifurcation diagrams corresponding to A) a limit point bifurca-
tion and B) a hysteresis point (or degenerate limit point).

2b and 2c introduced next. Let us assume that (u∗T , β∗)T is a limit point of
(1.2) with respect to β (i.e. condition 1 is ful�lled):

Condition 2b (From [4], Saddle-Node Bifurcation Theorem). Suppose that
the kernel of the linear transformation Duf(u

∗, β∗) : Rn → Rn is spanned by
the nonzero vector w ∈ Rn. Let D2

uuf(u
∗, β∗)(w,w) be the second Fréchet

derivative1 of f evaluated at (u∗T , β∗)T in the directions given by w and w.
If D2

uuf(u
∗, β∗)(w,w) ∈ Rn is non zero and not in the range of Duf(u

∗, β∗),
the limit point (u∗T , β∗)T is a limit point bifurcation.

Condition 2c Let v be the tangent vector to the equilibrium curve at
(uT , β)T , if during an equilibrium continuation, the sign of vn+1 (there exists
a parametrization of M that makes vn+1 zero) changes as we pass through
(u∗T , β∗)T , the limit point (u∗T , β∗)T is also a limit point bifurcation [5].

Fig. 1.1 illustrates the concepts of limit point bifurcation and hysteresis
point.

1.2 Saddle-node bifurcation, multistationarity and

multistability

If the point (u∗T , β∗)T is a limit point bifurcation for (1.2) with respect to
the parameter β the dynamic system (1.1) has multiple steady states , see
Fig. 1.1.

1Fréchet derivative generalizes the notion of gradient to multivariate matrix functions.
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If the point (u∗T , β∗)T with u∗ being strictly positive is a limit point bifur-
cation for (1.2) with respect to the parameter β, the dynamic system (1.1)
has multiple positive steady states , i.e. the system is multistationary .

Here it is important to note that situations in which a limit point is not a
limit point bifurcation (turning point) are quite exceptional in practice.

Multiple steady states (although not frequently) might not imply multista-

bility (multiple stable steady states).

Starting a continuation of equilibrium from a limit point (or saddle-node) in
forward and backward directions [5] we elucidate whether the limit point is a
saddle-node bifurcation or a hysteresis point. If the point is a saddle-node bi-
furcation, two branches of equilibria emerge, one stable and one unstable. In
order to check whether a multistationary system is multistable, we continue
the equilibrium curve until we �nd a second saddle-node bifurcation.

Multistability range

stable 

LP

LP

u

β

i

stable 

 unstable

Figure 1.2: Bifurcation diagram of a multistable system.
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Chapter 2

Su�cient condition for a

saddle-node in reaction

networks with mass

conservation

For a reaction network with N species in M complexes, participating in R
reactions endowed with mass action kinetics, the dynamics are given by a
system of N ODEs of the form:

ċ = Y Aψ(c) = Sv(c, k) (2.1)

where c ∈ RN is the vector of concentrations of the species involved, A is a
M ×M matrix containing kinetic constants constructed as indicated in the
main text and ψ(c) ∈ RM is the vector of mass action monomials. Matrices
Y and S are the molecularity and stoichiometric matrices respectively, also
introduced in the main text.

Let us denote by ℓ the number of linkage classes of the graph of complexes,
and by D the de�ciency subspace (of dimension δ) of the network.

In this section we consider reaction networks in presence of mass conservation
ful�lling assumptions in the main text, i.e.:

A.1 Mass action kinetics.

A.2 Capacity for a positive equilibria.

A.3 Uniterminal graph of complexes.
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The locus of equilibria of (2.1) can be expressed by a set of M − ℓ algebraic
equations of the form:

H(c, α, k) = 0, (2.2)

where α ∈ Rδ and k ∈ RR are the de�ciency and kinetic parameter vectors,
respectively. See the main text for more details on how H(c, α, k) is com-
puted. Detailed computations are included for all the examples in following
chapters of this S1 Appendix (4.1, 4.2, 5.1 and 7).

Let s be the rank of the stoichiometric matrix. For networks with conserva-
tion relationships (N − s > 0) in which each conservation relation represents
conservation of a chemical unit or moiety the (mass) conservation relation-
ships are given by a set of λ = N − s algebraic equations of the form:

W (c, σ) = 0, (2.3)

where W (c, σ) = BT c − σ, σ = BT c0 and c0 is a reference concentration
vector. For a given σ the reaction polyhedron is de�ned as the set of c ≥ 0
ful�lling Eq. (2.3).

Each mass conservation relationship in (2.3) describes the conservation of a
particular moiety. The set of conserved moieties of the reaction network is
denoted by M :

M = {M1, . . . ,Mλ} .

The set of equations

H(c, α, k) = 0

W (c, σ) = 0 (2.4)

de�nes the locus of equilibria of the system (2.1) compatible with the reaction
polyhedron �xed by σ ∈ Rλ

>0. Note that (2.4) contains N + δ equations [6].

Let us compute the matrix:

G(c, α, k) =

(
DcH DαH
DcW DαW

)
. (2.5)

MatrixG is square of dimensionsN+δ. Taking into account thatDcW = BT

and DαW = 0, G reads:

G(c, α, k) =

(
DcH DαH
BT c 0

)
. (2.6)

When we �x the parameters α and k, we can write (2.4) in the form:

f(u, σi) = 0 (2.7)
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where σi is the mass conservation constant corresponding to the conserved
moiety Mi (the conservation constants corresponding to the remaining moi-
eties in M are also �xed), u is given by:

u =

(
c
α

)
∈ RN+δ, (2.8)

and the function f : RN+δ × R → RN+δ is smooth.

Proposition 1 Let us consider a reaction network ful�lling assumptions A.1,
A.2 and A.3, with dynamics described by (2.1) where moieties M1, . . . ,Mλ

are being conserved.

If there are c∗ ∈ RN
>0, α

∗ ∈ Rδ and k∗ ∈ RR
>0 such that

H(c∗, α∗, k∗) = 0, (2.9)

DcH(c∗, α∗, k∗) is of full rank, (2.10)

rank(G(c∗, α∗, k∗)) = N + δ − 1 with G de�ned by (2.5), (2.11)

then, for k = k∗ and any i = 1, . . . , λ, Eq. (2.7) has a limit point at
(u∗T , σ∗i )

T with respect to the parameter σi (where σi is the mass conserva-
tion constant of the moiety Mi ∈ M ).

Proof: Let us take a moiety Mi ∈ M , and express Eq. (2.4) in an equivalent
form according to Eq. (2.7).

Note that (2.7) is of the form of Eq. (1.2) with u de�ned in Eq. (2.8), β = σi
and n = N + δ.

Starting from (2.7) we can compute the matrix Q (1.3) as:

Q = [Duf Dσif ] = [G Dσif ], (2.12)

where Q is of dimensions (N + δ)× (N + δ + 1). By (2.11) the rank of G is
equal to N + δ − 1. We can partition Dσif as follows:

Dσif =

[
DσiH
DσiW

]
(2.13)

where, as it can be deduced from (2.4), DσiH = 0 and

DσiW =


∂W1
∂σi
...

∂Wλ
∂σi


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with ∂Wj/∂σi being -1 for j = i and zero otherwise. Vector DσiW has thus
one and only one entry di�erent from zero.

Note that G can be partitioned as:

G =

[
DcH DαH
BT 0

]
=

[
Dcf Dαf

]
and so the matrix Q reads:

Q =

[
DcH DαH 0

BT 0 DσiW

]
=

[
Dcf Dαf Dσif

]
.

For any i = 1, . . . , λ, the vector Dσif is linearly independent of the columns
of Dαf .

Taking into account that by (2.10) DcH is full rank, the vector Dσif (for
any i = 1, . . . , λ) is also linearly independent of the columns of Dcf , and
thus, since rank(G) = N + δ − 1, we have that rank(Q) = N + δ.

Therefore, according to Lemma 1, for any Mi ∈ M , f(u, σi) = 0 de�nes a
locally unique and smooth curve passing through (u∗T , σ∗i )

T .

Let v ∈ RN+δ+1 be the tangent vector to the curve at (u∗T , σ∗i )
T and de-

compose the product Qv into:

Qv = Gw + gvN+δ+1, (2.14)

where

v =

(
w

vN+δ+1

)
and g = Dσif . Computed in (2.13), Dσif has a strictly negative entry (corre-
sponding to moiety Mi). Therefore, gvN+δ+1 = 0 if and only if vN+δ+1 = 0.

On the other hand, according to Lemma 2, Qv = 0, with v ∈ RN+δ+1 being
unique (modulo scaling).

The rank of G is N + δ − 1 by (2.11), and therefore a vector in its kernel
is also unique (modulo scaling). Then, Qv = 0 implies Gw = 0 where
v = (wT vN+δ+1)

T . Consequently, since we also have that gvN+δ+1 = 0
if and only if vN+δ+1 = 0, we can deduce that vN+δ+1 = 0. Therefore,
according to De�nition 2, (u∗T , σ∗i )

T is a limit point for (2.7) with respect
to the parameter σi (for any i = 1, . . . , λ).

Remark 1 For convenience, we have proven (c∗T , σ∗i )
T to be a limit point

for (2.7) with respect the mass conservation constant σi, which does not
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preclude (c∗T , β∗)T from being a limit point for (2.7) with respect to other
parameter β chosen from the set of kinetic constants.

Remark 2 With a slight abuse of notation, if (c∗T , σ∗i )
T is a limit point

for (2.7) (with k = k∗) with respect the mass conservation constant σi (or
with respect to any other parameter), we say that the system (2.4) (and the
associated reaction network) has a saddle-node at c∗, k∗.
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Chapter 3

Su�cient condition for a

saddle-node in semi-di�usive

reaction networks

Let us consider a reaction network ful�lling the following assumptions:

A.1 Mass action kinetics.

A.2 Capacity for a positive equilibria.

A.4 Semi-di�usive network.

The dynamics of such reaction system are given by a set of ODEs of the
form:

ċ = K + Stovto(c, k) (3.1)

as described in the main text, where c ∈ RN is the vector of states, K ∈ RN
≥0

is the constant in�ow term, Sto is the N ×Rto stoichiometric matrix of true
and out�ow reactions and vto : RN

≥0×RRto
>0 → RRto

≥0 de�nes the reaction rates
of true and out�ow reactions.

Let us denote the set of involved species by

S = {S1, . . . ,SN} .

Let us remind here that we refer by key species to the species that are present
in the inlet. The system (3.1) is at equilibrium if:

0 = K + Stovto(c, k). (3.2)
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The Jacobian of the system is given by:

J(c, k) = Stodiag(vto)Y
T
r diag(c

−1).

where Yr is the matrix of the source complexes of true and out�ow reactions.
Let µ ∈ RRto be the vector containing the �uxes of the true and out�ow
reactions. We de�ne:

J(µ) = Stodiag(µ)Y
T
r (3.3)

as in the main text.

Let us de�ne the polynomial function

p(c, k) = −Stovto(c, k) (3.4)

and its counterpart in terms of the �uxes as:

p(µ) = −Stoµ. (3.5)

The relationship between �uxes and concentrations is given by:

µ = vto(c, k) (3.6)

where k denotes here the vector of kinetic constants of true and out�ow
reactions.

In semi-di�usive networks there is an out�ow reaction with rate koici for
each species Si ∈ S , corresponding to the degradation of species Si.

We can write (3.2) in an equivalent way as:

f(c, koi) = 0, (3.7)

where koi is the degradation constant of species Si ∈ S , the remaining
parameters are �xed, and f : RN × R → RN is smooth.

Proposition 2 Let us consider a reaction network ful�lling assumptions A.1,
A.2 and A.4 with dynamics described by Eq. (3.1) and involving the set of
species S . Let µ ∈ RRto

>0 represent the �uxes of true and out�ow reactions
and J(µ) and p(µ) be as de�ned by (3.3) and (3.5), respectively.

If there is a vector µ∗ ∈ RRto
>0 such that:

rank(J(µ∗)) = N − 1, (3.8)

pi(µ
∗) > 0 for i being a key species, (3.9)

pi(µ
∗) = 0 for i not being a key species, (3.10)
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then, there are strictly positive c∗ and k∗ satisfying µ∗ = vto(c
∗, k∗), and a

species Si ∈ S such that (c∗T , k∗oi)
T is a limit point for (3.7) (with k = k∗)

with respect to the parameter koi (degradation constant of species Si ∈ S ).

Proof: Taking into account (3.6), for a given µ∗ ∈ RRto
>0 there are c∗ ∈ RN

>0,

k∗ ∈ RRto
>0 such that µ∗ = vto(c

∗, k∗).

Provided that µ∗ ∈ RRto
>0 ful�lls (3.8-3.10), we have that:

rank(J(c∗, k∗)) = N − 1, (3.11)

pi(c
∗, k∗) ≥ 0 for i being a key species, (3.12)

pi(c
∗, k∗) = 0 for i not being a key species. (3.13)

Taking K∗ ∈ RN
≥0 such that K∗ = p(c∗, k∗) we have:

K∗ + Stovto(c
∗, k∗) = 0

and therefore c∗ and k∗ together withK∗ de�ne an equilibrium point of (3.1).

Let us take a species Si ∈ S , and express Eq. (3.2) in an equivalent form
according to Eq. (3.7).

Note that (3.7) is of the form of Eq. (1.2) with u = c, β = koi and n = N .

Matrix Q in (1.3) is then computed as:

Q = [Dcf Dkoi
f ] = [J Dkoi

f ], (3.14)

where the rank of J evaluated at the steady state given by c∗ and k∗ is N−1,
according to (3.11).

We have:

Dkoi
f =


∂f1
∂koi
...

∂fN
∂koi

 , (3.15)

where ∂fj/∂koi is strictly negative (equal to −xi) for j = i and zero other-
wise, i.e., the vector Dkoi

f evaluated at a strictly positive equilibrium has
one and only one entry di�erent from zero (corresponding to species Si).

Let us choose a species Si ∈ S such that rank(Q) = N at (c∗T , koi
∗)T . Note

that the N vectors Dkoi
f for i = 1, . . . , N evaluated at the strictly positive
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equilibrium given by c∗ and k∗ span RN and therefore, for semi-di�usive
networks we can always choose a species Si ∈ S such that for β∗ = ko

∗
i , the

rank of Q = [Dcf Dkoi
f ] evaluated at c = c∗ and k = k∗ is equal to N .

According to Lemma 1, for Si such that rank(Q) = N , f(c, koi) = 0 de�nes
a locally unique and smooth curve passing through (c∗T , k∗oi)

T .

Let v ∈ RN+1 be the tangent vector to the curve at (c∗T , k∗oi)
T and decom-

pose the product Qv into:

Qv = Jw + gvN+1, (3.16)

where

v =

(
w

vN+1

)
and g = Dkoi

f . The vector g, computed in Eq. (3.15), has one and only one
entry which is di�erent from zero (the strictly negative entry corresponding
to species Si). Therefore, gvN+1 = 0 if and only if vN+1 = 0.

On the other hand, according to Lemma 2, Qv = 0, with v ∈ RN+1 being
unique (modulo scaling).

The rank of J is N − 1 by (3.11), and therefore a vector in its kernel
is also unique (modulo scaling). Then, Qv = 0 implies Jw = 0 where
v = (wT vN+1)

T .

Consequently, and since we also know that gvN+1 = 0 if and only if vN+1 =
0, we can deduce that vN+1 = 0. Therefore, according to De�nition 2,
(c∗T , k∗oi)

T is a limit point for (3.7) with respect to the parameter koi .

Remark 3 For convenience, we have proven (c∗T , k∗oi)
T to be a limit point

for (3.7) with respect to the degradation constant koi , which does not pre-
clude (c∗T , β∗)T from being a limit point for (3.7) with respect to any other
parameter β chosen from the set of kinetic constants (including in�ow, true
and the remaining out�ow reactions).

Remark 4 With a slight abuse of notation, if (c∗T , k∗oi)
T is a limit point for

(3.7) (with k = k∗) with respect the degradation constant koi(or with respect
to any other parameter), we say that the system (3.7) (and the associated
reaction network) has a saddle-node at c∗, k∗.
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Chapter 4

Interferon-receptor complex

formation

4.1 Closed ternary complex formation network

There are N = 6 species participating in the network with concentrations
c1 = [I], c2 = [R1], c3 = [R2], c4 = [R1I], c5 = [R2I] and c6 = [R1R2I].
The complexes are labeled such that C1 = R1I, C2 = R2I, C3 = R1R2I,
C4 = R1 + I, C5 = R2 + I, C6 = R2 +R1I and C7 = R1 +R2I (M = 7).

The molecularity matrix is:

Y =



0 0 0 1 1 0 0
0 0 0 1 0 0 1
0 0 0 0 1 1 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1
0 0 1 0 0 0 0

 , (4.1)

and taking mass action kinetics, the vector of mass action monomials reads:

ψ(c) =
(
c4, c5, c6, c1c2, c1c3, c3c4, c2c5

)T
.

The stoichiometric matrix is:

S =



1 −1 1 −1 0 0 0 0
1 −1 0 0 0 0 1 −1
0 0 1 −1 1 −1 0 0

−1 1 0 0 1 −1 0 0
0 0 −1 1 0 0 1 −1
0 0 0 0 −1 1 −1 1

 ,
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and has rank(S)=3. Therefore, the dimension of the stoichiometric subspace
is s = 3, and the formula for the de�ciency of the network gives:

δ = 7− 3− 3 = 1.

On the other hand, the dimension of the equilibrium manifold is:

λ = 6− 3 = 3.

The network is, therefore, under-dimensioned (λ > δ). There are three
mass conservation laws, de�ned by W (c, σ) = 0, where W (c, σ) = BT c− σ,
σ = BT c, and

BT =

 1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1

 .

Note that the strictly positive vector ϑ = (1, 1, 1, 2, 2, 3) ful�lls ϑS = 0, as it
corresponds to a closed network. We build the matrix Λ in which the entry
(i, j) corresponds to the node Ci in the linkage class Lj , such that:

Λi,j =

{
1 if Ci ∈ Lj

0 otherwise.

and we get:

ΛT =

 1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 1

 .

Starting from the stoichiometric matrix Y and the matrix Λ we compute a
basis for the de�ciency subspace using Eq. (8) in the main text, obtaining:

ω =
(
1 −1 0 −1 1 −1 1

)T
.

Therefore we can write Aψ as in Eq. (9) in the main text, obtaining a set
of M − ℓ linearly independent equations of the form:

−k14ψ1 + k41ψ4 = α1

−k25ψ2 + k52ψ5 = −α1

k36ψ3 − k63ψ6 = −α1

k37ψ3 − k73ψ7 = α1.

After substituting the elements of vector ψ by the corresponding monomials
we obtain the following expression for the locus of equilibria:

c1c2 − (k14/k41)c4 − α1/k41 = 0

c1c3 − (k25/k52)c5 + α1/k52 = 0

c3c4 − (k36/k63)c6 − α1/k63 = 0

c2c5 − (k37/k73)c6 + α1/k73 = 0.
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Starting from these equations we obtain:

c4 = c1c2/(k14/k41) + α1/k41

c3 = − (c2α1/k25 + α1k37/(k73k36) + α1/k73) / (c1c2k52/k25 − c4k63k37/(k73k36))

c6 = c3c4/(k36/k63)− α1/k36

c5 = c1c3/(k25/k52) + α1/k25.

From Eq. (13) in the main text we get the following matrix G:

G =



c2 c1 0 0 −k14/k41 0 −1/k41
c3 0 c1 −k25/k52 0 0 1/k52
0 0 c4 0 c3 −k36/k63 −1/k63
0 c5 0 c2 0 −k37/k73 1/k73
1 0 0 1 1 1 0
0 1 0 0 1 0 0
0 0 1 1 0 1 0


,

of dimensions 7× 7, (N + δ = 7). We formulate an optimization problem to
�nd parameter vectors causing the determinant ofG to vanish. The objective
function is Fdef = det(G)2 and we use the following decision vector:

x = (k41, k14, k25, k52, k63, k36, k37, k73, α1, c1, c2).

We solve the optimization problem (Eq. 14 in the main text) subject to posi-
tive concentration vectors (and the equilibrium manifold equations) using the
global scatter search algorithm by Egea et al. [7]. We use the implementation
of the enhanced scatter search solver (eSS) in the MEIGO toolbox [8], which
is freely available at http://www.iim.csic.es/ gingproc/meigo.html.

No parameter vector was found for which the objective function becomes
zero. The Matlab code is provided in S1 �le (Matlab_code/IFN_receptor/Variant1).

4.2 Ternary complex formation network with IFN

in excess

There are N = 5 species participating in the network with concentrations
c1 = [R1], c2 = [R2], c3 = [R1R2I], c4 = [R1I] and c5 = [R2I]. The
complexes are labeled such that C1 = R1, C2 = R2, C3 = R1R2I, C4 = R1I,
C5 = R2I, C6 = R2 + R1I and C7 = R1 + R2I, (M = 7). The molecularity
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matrix is:

Y =


1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1

 , (4.2)

and the vector of mass action monomials:

ψ(c) =
(
c1, c2, c3, c4, c5, c2c4, c1c5

)T
.

The stoichiometric matrix is:

S =


−1 1 0 0 0 0 1 −1
0 0 −1 1 1 −1 0 0
0 0 0 0 −1 1 −1 1
1 −1 0 0 1 −1 0 0
0 0 1 −1 0 0 1 −1

 .

The rank of the matrix S (and, therefore, the dimension of the stoichiometric
subspace) is s = 3. We compute the de�ciency according to the formula given
in the main text as:

δ = 7− 3− 3 = 1.

The dimension of the equilibrium manifold is:

λ = 5− 3 = 2.

The network is, as in the previous case, under-dimensioned. There are two
mass conservation laws, with matrix B given by:

BT =

(
1 0 1 1 0
0 1 1 0 1

)
.

The matrix Λ associated to the linkage classes reads:

ΛT =

 1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 1

 .

Starting from the stoichiometric matrix Y and the matrix Λ we compute a
basis for the de�ciency subspace as:

ω =
(
1 −1 0 −1 1 1 −1

)T
,

and, therefore, we can express Aψ as:

−k14ψ1 + k41ψ4 = α1

−k25ψ2 + k52ψ5 = −α1

k36ψ3 − k63ψ6 = α1

k37ψ3 − k73ψ7 = −α1.
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Substituting the elements of vector ψ by the concentration monomials we
obtain the equations de�ning the locus of equilibria:

c4 − k14/k41c1 − α1/k41 = 0

c5 − k25/k52c2 + α1/k52 = 0

−c2c4 + k36/k63c3 − α1/k63 = 0

−c1c5 + k37/k73c3 + α1/k73 = 0.

Then we can express the concentrations as:

c1 = (k41c4 − α1)/k41

c2 = −α1(1 + k37/k36 + k73/k52c1)/(k37k63/k36c4 − k73/k52k25c1)

c3 = (k63c2c4 + α1)/k36

c5 = (k25c2 − α1)/k52.

From Eq. (12) in the main text we get the matrix G:

G =



−k14/k41 0 0 1 0 −1/k41
0 −k25/k52 0 0 1 1/k52
0 −c4 k36/k63 −c2 0 −1/k63

−c5 0 k37/k73 0 −c1 1/k73
1 0 1 1 0 0
0 1 1 0 1 0

 .

We formulate an optimization problem to �nd parameter vectors for which
the determinant of G vanishes. The objective function is Fdef = det(G)2

and we use the following decision vector:

x = (k41, k14, k25, k52, k63, k36, k37, k73, α1, c4).

We solve the optimization problem (Eq. 14 in the main text) subject to pos-
itive concentration vectors (and the equilibrium manifold equations) using
the global scatter search solver by Egea et al. [7]. No parameter vector was
found for which the objective function becomes zero. The Matlab code is
provided in S1 �le (Matlab_code/IFN_receptor/Variant2).

4.3 Semi-di�usive network with constant IFN in-

�ow

The system in Fig. 3B, taking into account all the complexes and �uxes,
including the in�ow and out�ow �uxes indicated by dashed arrows, is a semi-
di�usive network. The molecularity matrix Y containing the molecularity of
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each species in each complex is given by Eq. (4.1). The matrix containing
the molecularities of the species in the source complexes for true and out�ow
reactions of the semi-di�usive network is:

Yto =



0 0 0 1 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 1 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0

 ,

and the corresponding stoichiometric matrix can be computed starting from
the stoichiometric matrix of the true reaction subnetwork (closed system in
Section 1.1) as:

Sto =
[
S
∣∣−I6×6

]
.

There are in total 14 �uxes corresponding to true and out�ow reactions (we
denote the �ux vector by µ). From Eq. (17) in the main text we have that:

p(c, k) = −Stovto(c, k),

and in terms of the �uxes:

p(µ) = −Stoµ. (4.3)

The vector containing the basal formation rates of the key species (I, R1
and R2) is:

K =
(
v15 v16 v17 0 0 0

)T
,

where v15 = k15, v16 = k16 and v17 = k17 are the (constant) reaction rates
of the reactions r15, r16 and r17.

Let us build a matrix Yr with columns corresponding to the source complexes
for the true and outlet reactions, such as:

Yr =
[
Y4 Y1 Y2 Y5 Y6 Y3 Y3 Y7

∣∣ I6×6

]
.

Now, we are ready to de�ne the objective function Finj = Stodiag(µ)Y
T
r to

minimize, searching values of the decision vector of �uxes µ that make it
vanish. The search is subject, on the one hand, to the following inequality
constraints (corresponding to the key species I, R1, R2):

µ1 − µ2 − µ3 + µ4 + µ9 > 0

µ1 − µ2 − µ7 + µ8 + µ10 > 0

−µ3 + µ4 + µ5 − µ6 + µ11 > 0,
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where the expressions at the left hand side of the inequalities are given by
p(1), p(2) and p(3) in (4.3) and, on the other hand, to the following equality
constraints (corresponding to the remaining species):

−µ1 + µ2 + µ5 − µ6 + µ12 = 0

+µ3 − µ4 − µ7 + µ8 + µ13 = 0

−µ5 + µ6 + µ7 − µ8 + µ14 = 0,

where the expressions at the left hand side are given by p(4), p(5) and p(6)
in (4.3). We solve the optimization problem1 (Eq. 18 in the main text) using
the global scatter search solver by Egea et al. [7], and no positive vector of
�uxes was found for which the objective function becomes zero. The Matlab
code is provided in S1 �le (Matlab_code/IFN_receptor/Variant3).

4.4 Semi-di�usive network with IFN in excess

The network in Fig. 3C, taking into account all the complexes and �uxes
(including the in�ow and out�ow �uxes indicated by dashed arrows) is a
semi-di�usive network. The molecularity matrix Y containing the molecu-
larity of each species in each complex is given by Eq. (4.2). The matrix
containing the molecularities of the species in the source complexes for true
and out�ow reactions of the semi-di�usive network is:

Yto =


1 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0

 ,

and the stoichiometric matrix can be computed starting from the molecular-
ity matrix of its true-reaction network counterpart (closed network in Section
1.2):

Sto =
[
S
∣∣−I5×5

]
.

There are in total 13 �uxes corresponding to true and out�ow reactions
(contained in the vector µ). From Eq. (17) in the main text we have that:

p(c, k) = −Stovto(c, k),

and in terms of the �uxes:

p(µ) = −Stoµ. (4.4)

1Note that the equality constraints can be used to express some �uxes in terms others

and reduce the number of decision variables.
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The vector of basal formation rates of the key species, R1 and R2, is:

K =
(
v14 v15 0 0 0

)T
,

where v14 = k14 and v15 = k15 are the (constant) reaction rates of the
reactions r14 and r15. We build a matrix Yr with columns corresponding to
the source complexes of the true and outlet reactions:

Yr =
[
Y4 Y1 Y2 Y5 Y6 Y3 Y3 Y7

∣∣ I5×5

]
.

We de�ne now the objective function Finj = Stodiag(µ)Y
T
r and search for

values of the decision vector of �uxes µ that make it vanish. The search
is subject, on the one hand, to the following inequality constraints (corre-
sponding to the key species R1 and R2):

−µ1 + µ2 − µ7 + µ8 + µ9 > 0

µ3 − µ4 + µ5 − µ6 + µ10 > 0

where the expressions at the left hand side are given by p(1) and p(2) in
(4.4) and, on the other hand, to the following equality constraints:

−µ5 + µ6 + µ7 − µ8 + µ11 = 0

µ1 − µ2 + µ5 − µ6 + µ12 = 0

−µ3 + µ4 − µ7 + µ8 + µ13 = 0

where the expressions at the left hand side are given by p(3), p(4) and p(5)
in (4.4). We solve the optimization problem2 (Eq. 18 in the main text) using
the global scatter search solver by Egea et al. [7]. No positive vector of �uxes
was found for which the objective function becomes zero. The Matlab code
is provided in S1 �le (Matlab_code/IFN_receptor/Variant4).

2Note that the equality constraints can be used to express some �uxes in terms others

and reduce the number of decision variables.
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Chapter 5

Early STAT signaling upon

interferon stimulation

5.1 Closed network

There are N = 9 species participating in the network with concentrations
c1 = [R∗] (activated receptor complex), c2 = [S1], c3 = [S2], c4 = [S1∗], c5 =
[S2∗], c6 = [R∗S2∗], c7 = [R∗S2∗S1∗], c8 = [S1∗S1∗] and c9 = [S1∗S2∗]. The
complexes are labeled such that C1 = R∗S2∗, C2 = R∗S2∗S1∗, C3 = S1∗S1∗,
C4 = S1∗S2∗, C5 = S1∗ + S2∗, C6 = S1 + S1, C7 = R∗ + S2, C8 = R∗ + S2∗,
C9 = R∗S2∗ + S1∗, C10 = R∗S2∗ + S1, C11 = S1∗ + S1∗ and C12 = S1 + S2,
(M = 12).

The molecularity matrix is:

Y =



0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 2 0 0 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 2 0
0 0 0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0


(5.1)

and taking mass action kinetics, the vector of mass action monomials reads:

ψ(c) =
(
c6, c7, c8, c9, c4c5, c22, c1c3, c1c5, c4c6, c2c6, c24, c2c3

)T
.
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The stoichiometric matrix is:

S =



−1 1 1 0 0 0 0 0 0
0 0 0 −1 0 0 2 0 1

−1 1 0 0 0 0 0 0 1
0 0 0 0 1 −2 0 −1 0
0 0 1 0 0 0 0 −1 0
1 −1 −1 −1 1 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 −1


.

The rank of the matrix S (and, therefore, the dimension of the stoichiometric
subspace) is s = 6. The de�ciency of the network is:

δ = 12− 4− 6 = 2,

and the dimension of the equilibrium manifold:

λ = 9− 6 = 3.

The network is under-dimensioned (λ > δ). There are three mass conser-
vation laws de�ned by W (c, σ) = 0, where W (c, σ) = BT c − σ, σ = BT c,
and

BT =

 1 0 0 0 0 1 1 0 0
0 1 0 1 0 0 1 2 1
0 0 1 0 1 1 1 0 1

 .

Note that the strictly positive vector ϑ = (1, 1, 1, 1, 1, 2, 3, 2, 2) ful�lls ϑS = 0,
as it corresponds to a closed network. The matrix Λ associated to the linkage
classes reads:

ΛT =


1 0 0 0 0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0 1 1 0 0
0 0 1 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 0 0 1

 .

Starting from the stoichiometric matrix Y and the matrix Λ we compute a
basis for the de�ciency subspace as:

ω =

(
0 0 0 0 0 −1 0 0 −2 2 1 0
0 0 0 0 −1 0 −1 1 1 −1 0 1

)T

,
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and, therefore, we can express Aψ as:

−k5 4ψ5 = −α2

k3 6ψ3 = −α1

k1 7ψ1 − k7 1ψ7 = −α2

k1 8ψ1 = α2

k2 9ψ2 = −2α1 + α2

−k10 2ψ10 = 2α1 − α2

−k11 3ψ11 = α1

k4 12ψ4 = α2.

Substituting the elements of vector ψ by the concentration monomials we
obtain the equations de�ning the locus of equilibria:

c4c5 − α2/k5 4 = 0

c8 + α1/k3 6 = 0

k1 7/k7 1c6 − c1c3 + α2/k7 1 = 0

c6 − α2/k1 8 = 0

c7 + 2α1/k2 9 − α2/k2 9 = 0

−c2c6 − 2α1/k10 2 + α2/k10 2 = 0

c24 + α1/k11 3 = 0

c9 − α2/k4 12 = 0.

We can express the concentrations as:

c6 = α2/k1 8

c7 = −2α1/k2 9 + α2/k2 9

c8 = −α1/k3 6

c9 = α2/k4 12

c2 = (−2α1/k10 2 + α2/k10 2)/c6

c4 = (−α1/k11 3)
1/2

c5 = α2c4/k5 4

c3 = (α2/k7 1 + k1 7c6/k7 1)/c1.

The matrix G, from Eq. (13) in the main text, reads:

25



5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

S1
0

R
*
S
2
*
S
1
*

Figure 5.1: Bifurcation diagram for the STAT network. A continuation
of equilibria is started from the optimal point found by our algorithm (in
forward and backward directions). Tangent bifurcation points are indicated
in red.

G =



0 0 0 c5 c4 0 0 0 0 0 −1/k5 4
0 0 0 0 0 0 0 1 0 1/k3 6 0

−c3 0 −c1 0 0 k1 7/k7 1 0 0 0 0 1/k7 1
0 0 0 0 0 1 0 0 0 0 −1/k1 8
0 0 0 0 0 0 1 0 0 2/k2 9 −1/k2 9
0 −c6 0 0 0 −c2 0 0 0 −2/k10 2 1/k10 2
0 0 0 2c4 0 0 0 0 0 1/k11 3 0
0 0 0 0 0 0 0 0 1 0 −1/k4 12
1 0 0 0 0 1 1 0 0 0 0
0 1 0 1 0 0 1 2 1 0 0
0 0 1 0 1 1 1 0 1 0 0



.

We have that N + δ = 11, which gives us the dimensions of the matrix G
(11×11). We formulate the optimization problem de�ned by Eq. (14) in the
main text, to �nd parameter vectors for which the determinant of matrix G
becomes zero. We minimize the objective function Fdef = det(G)2 using as
decision vector:

x = (k71, k17, k18, k10 2, k2 9, k11 3, k3 6, k5 4, k4 12, α1, α2, c1).

We solve the optimization problem subject to positive concentration vectors
(and the equilibrium manifold equations) using the global scatter search
solver by Egea et al. [7]. We found a decision vector for which the objec-
tive function vanishes (see Table 5.1). At this point, the system undergoes
a saddle-node bifurcation. We start a bifurcation analysis from this steady
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state, con�rming that in fact the network has capacity for bistability (see Fig
5.1). The Matlab code is provided in S1 �le (Matlab_code/STATS_early/Variant1).

Table 5.1: A set of parameters leading to bistability for the (closed) network
in Fig. 5A
k71 k17 k18 k10 2 k29 k11 3 k36 k54 k4 12 α1 α2 c1

94.510 0.100 55.1276 99.168 100 74.626 99.999 15.225 1.457 -10.077 21.984 0.103

5.2 Semi-di�usive network

We consider the network in Fig. 5A taking into account all the �uxes (in-
cluding the in�ow and out�ow �uxes represented by dashed arrows). The
molecularity matrix is given by Eq. (5.1). We build the stoichiometric ma-
trix of the true and out�ow reactions starting from matrix S for the true
reaction subnetwork (closed network in section 2.1) as:

Sto =
[
S
∣∣−I9×9

]
.

There are in total 18 �uxes corresponding to true and out�ow reactions
(contained in the vector µ).

From Eq. (17) in the main text we have that:

p(c, k) = −Stovto(c, k),

and in terms of the �uxes:

p(µ) = −Stoµ. (5.2)

The vector of basal formation rates of the key species (R∗, S1 and S2) is:

K =
(
v19 v20 v21 0 0 0 0 0 0

)T
,

where v19 = k19, v20 = k20 and v21 = k21 are the (constant) reaction rates of
the reactions r19 to r21. We build a matrix Yr with columns corresponding
to the source complexes of the true and outlet reactions:

Yr =
[
Y7 Y1 Y1 Y10 Y2 Y11 Y3 Y5 Y4

∣∣ I9×9

]
.

We can now de�ne the objective function Finj = Stodiag(µ)Y
T
r , and search

for values of the decision vector of �uxes µ that make it vanish. The search
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is subject, on the one hand, to the following inequality constraints (corre-
sponding to the key species):

µ1 − µ2 − µ3 + µ10 > 0

µ4 − 2µ7 − µ9 + µ11 > 0

µ1 − µ2 − µ9 + µ12 > 0

where the expressions at the left hand side are given by p(1), p(2) and p(3)
in Eq. (5.2) and, on the other hand, to the following equality constraints:

−µ5 + 2µ6 + µ8 + µ13 = 0

−µ3 + µ8 + µ14 = 0

−µ1 + µ2 + µ3 + µ4 − µ5 + µ15 = 0

−µ4 + µ5 + µ16 = 0

−µ6 + µ7 + µ17 = 0

−µ8 + µ9 + µ18 = 0

where the expressions at the left hand side are given by p(4) to p(6) in Eq.
(5.2). We solve the optimization problem1 (Eq. 18 in the main text) using
the global scatter search solver by Egea et al. [7]. We found a decision
vector for which the objective function vanishes2 (see Table 5.2). We now
compute a steady state concentration vector and a set of kinetic parameters
compatible with these �uxes. We �x the values of the concentrations such
that c = 1, and the kinetic rate constants remain equal to the �uxes, i.e.,
ki = µi for i = 1, . . . , 18. Starting a continuation of equilibria from this
point, we con�rm that the system undergoes a saddle-node bifurcation, and
that it has capacity for bistability (see Fig 5.2). The Matlab code is provided
in S1 �le (Matlab_code/STATS_early/Variant2).

Table 5.2: A set of �uxes leading to bistability for the (open) network in Fig.
5A

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9
99.995 0.022 39.899 99.943 39.919 0.010 0.010 39.899 0.010

µ10 µ11 µ12 µ13 µ14 µ15 µ16 µ17 µ18
99.951 0.011 0.924 0.0001 4.41 ×1−5 0.05 60.0234 6.32×1−6 39.8894

1Note that the equality constraints can be used to express some �uxes in terms of

others reducing the number of decision variables.
2For numerical reasons, a small determinant close to zero might not result in a zero

eigenvalue of the Jacobian. We check whether the Jacobian has a zero eigenvalue leading

to a saddle-node bifurcation by performing a bifurcation analysis.
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Figure 5.2: Bifurcation diagram for the early STAT open network. A contin-
uation of equilibria is started from the optimal point found by our algorithm
(in forward and backward directions). Tangent bifurcation points are indi-
cated in red.
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Chapter 6

STAT signaling and feedback

via STAT1 expression

We consider the network in Fig. 5B, taking into account all the reactions
(including the in�ow and out�ow reactions represented by dashed lines).
The network is semi-di�usive. There are twelve species participating in the
network with concentrations c1 = [R∗] (activated receptor complex), c2 =
[S1], c3 = [S2], c4 = [S1∗], c5 = [S2∗], c6 = [R∗S2∗], c7 = [R∗S2∗S1∗], c8 =
[S1∗S1∗], c9 = [S1∗S2∗], c10 = [IRF1], c11 = [CBP ], c12 = [IRF1CBP ].
The complexes are labelled such that C1 = R∗S2∗, C2 = R∗S2∗S1∗, C3 =
S1∗S1∗, C4 = S1∗S2∗, C5 = IRF1CBP , C6 = S1 + S1, C7 = R∗ + S2,
C8 = R∗ + S2∗, C9 = R∗S2∗ + S1∗, C10 = R∗S2∗ + S1, C11 = S1∗ + S1∗,
C12 = S1 + S2, C13 = S1∗S1∗ + IRF1, C14 = S1∗ + S2∗, C15 = IRF1 +
CBP , C16 = IRF1CBP + S1, C17 = ∅, C18 = R∗, C19 = S1, C20 = S2,
C21 = S1∗, C22 = S2∗, C23 = IRF1, C24 = CBP . The molecularity matrix
corresponding to the true reaction subnetwork (without in�ow and out�ow
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reactions) is:

Y =



0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 2 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1


and the stoichiometric matrix:

S = [ Y1 − Y7, Y7 − Y1, Y8 − Y1, Y2 − Y10, Y9 − Y2, Y3 − Y11, Y6 − Y3, Y4 − Y14, Y12 − Y4, Y5 − Y15, Y16 − Y5, Y13 − Y3 ] .

The stoichiometric matrix of the true and out�ow reactions is:

Sto =
[
S
∣∣−I12×12

]
There are in total 24 �uxes corresponding to true and out�ow reactions
(contained in the vector µ).

From Eq. (17) in the main text we have that:

p(c, k) = −Stovto(c, k),

and in terms of the �uxes:

p(µ) = −Stoµ. (6.1)

The vector of basal formation rates of the key species, R∗, S1, S2, IRF1
and CBP is:

K = (v25 v26 v27 v28 v29 0 0 0 0 0 0 0)T

where v25 = k25, v26 = k26, v27 = k27, v28 = k28 and v29 = k29 are the
(constant) reaction rates of the reactions r25 to r29. We build a matrix Yr
with columns corresponding to the source complexes of the true and outlet
reactions:

Yr = [Y7 Y1 Y1 Y10 Y2 Y11 Y3 Y14 Y4 Y15 Y5 Y3| I12×12] .

We can de�ne now the objective function Finj = Stodiag(µ)Y
T
r , and search

for values of the decision vector of �uxes µ that make it vanish. The search
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is subject, on the one hand, to the following inequality constraints (corre-
sponding to the key species):

µ1 − µ2 − µ3 + µ13 > 0

µ4 − 2µ7 − µ9 − µ11 + µ14 > 0

µ1 − µ2 − µ9 + µ15 > 0

µ10 − µ12 + µ22 > 0

µ10 + µ23 > 0

where the expressions at the left hand side are obtained from p(1), p(2), p(3),
p(10) and p(11) and, on the other hand, to the equality constraints:

−µ5 + 2µ6 + µ8 + µ16 = 0

−µ3 + µ8 + µ17 = 0

−µ1 + µ2 + µ3 + µ4 − µ5 + µ18 = 0

−µ4 + µ5 + µ19 = 0

−µ6 + µ7 + µ20 = 0

−µ8 + µ9 + µ21 = 0

−µ10 + µ24 = 0

where the expressions at the left hand side are obtained from p(4), p(5),
p(6), p(7), p(8), p(9) and p(12). We solve the optimization problem1 (Eq.
18 in the main text) using the global scatter search solver by Egea et al.
[7]. We found a decision vector for which the objective function vanishes
(see Table 6.1). We now compute a steady state concentration vector and
a set of kinetic parameters compatible with these �uxes. We �x the values
of the concentrations such that c = 1, and the kinetic rate constants remain
equal to the �uxes, i.e., ki = µi for i = 1, . . . , 24. Starting a continuation of
equilibria from this point, we con�rm that the system undergoes a saddle-
node bifurcation, and that it has capacity for bistability (see Fig 6.1).

The Matlab code is provided in S1 �le (Matlab_code/STATS_feedback).

1Note that the equality constraints can be used to express some �uxes in terms others

and reduce the number of decision variables.
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Table 6.1: Optimum set of �uxes for the (open) network in Fig. 5B.
µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8

4.9524 0.0283 4.8871 4.5933 4.5831 0.0259 0.0141 4.2792

µ9 µ10 µ11 µ12 µ13 µ14 µ15 µ16
2.1459 0.0101 4.9812 0.01828 9.6457 43.9942 3.7295 0.2521

µ17 µ18 µ19 µ20 µ21 µ22 µ23 µ24
0.6079 0.0268 0.0101 0.0118 2.1332 0.0100 2.7615 0.0101

4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

k
17 13

S
1
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Figure 6.1: Bifurcation diagram for the STAT signaling network with feed-
back via STAT1 expression. A continuation of equilibria is started from a
steady state compatible with the optimal point found by our algorithm (in
forward and backward directions). Tangent bifurcation points are indicated
in red.
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Chapter 7

Receptor complex formation

and STAT signaling

There are 13 species participating in the network with concentrations c1 =
[R1], c2 = [R2], c3 = [R∗] (denoting activated receptor complex), c4 = [R1I],
c5 = [R2I], c6 = [S1], c7 = [S2], c8 = [S1∗], c9 = [S2∗], c10 = [R∗S2∗],
c11 = [R∗S2∗S1∗], c12 = [S1∗S1∗], c13 = [S1∗S2∗] . The complexes are
labelled such that C1 = R1, C2 = R2, C3 = R∗, C4 = R∗S2∗, C5 = R∗S2∗S1∗,
C6 = S1∗S1∗, C7 = S1∗S2∗, C8 = R1I, C9 = R2I, C10 = R2 + R1I, C11 =
R1+R2I, C12 = R∗+S2, C13 = R∗+S2∗, C14 = R∗S2∗+S1, C15 = R∗S2∗S1∗,
C16 = S1∗ + S1∗, C17 = S1 + S1, C18 = S1∗ + S2∗ and C19 = S1 + S2.

The molecularity matrix is:

Y =



1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


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and taking mass action kinetics, the vector of mass action monomials reads:

ψ(c) =
(
c1, c2, c3, c10, c11, c12, c13, c4, c5, c2c4, c1c5, c3c7, c3c9, c6c10, c8c10, c

2
8, c

2
6, c8c9, c6c7

)T
.

The stoichiometric matrix is:

S =



1 −1 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 −1 1 −1 1 1 0 0 0 0 0 0

−1 1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 2 0 1
0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 −1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1 −1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1



.

The rank of the matrix S (and therefore the dimension of the stoichiometric
subspace) is s = 9. The de�ciency of the network is:

δ = 19− 7− 9 = 3,

and the dimension of the equilibrium manifold:

λ = 13− 9 = 4.

The network is under-dimensioned (λ > δ). There are four mass conservation
laws, de�ned by W (c, σ) = 0, where W (c, σ) = BT c− σ, σ = BT c, and

BT =


1 0 1 1 0 0 0 0 0 1 1 0 0
0 1 1 0 1 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 1 0 0 1 2 1
0 0 0 0 0 0 1 0 1 1 1 0 1

 .

The matrix Λ associated to the linkage classes reads:

ΛT =



1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1


.
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Starting from the stoichiometric matrix Y and the matrix Λ we compute a
basis for the de�ciency subspace as:

ω =

 −1 1 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −2 2 −1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 −1 1 0 0 −1 1

T

,

and therefore we can express Aψ as:

k1 8ψ1 − k8 1ψ8 = α1

k2 9ψ2 − k9 2ψ9 = −α1

k3 10ψ3 − k10 3ψ10 = −α1

k3 11ψ3 − k11 3ψ11 = α1

k4 12ψ4 − k12 4ψ12 = −α3

k4 13ψ4 = α3

−k14 5ψ14 = −2α2 − α3

k5 15ψ5 = 2α2 + α3

−k16 6ψ16 = −α2

k6 17ψ6 = α2

−k18 7ψ18 = −α3

k7 19ψ7 = α3.

Substituting the elements of the vector ψ by the concentration monomials
we obtain the equations de�ning the locus of equilibria:

k1 8c1 − k8 1c4 − α1 = 0

k2 9c2 − k9 2c5 + α1 = 0

k3 10c3 − k10 3c2c4 + α1 = 0

k3 11c3 − k11 3c1c5 − α1 = 0

k4 12c10 − k12 4c3c7 + α3 = 0

k4 13c10 − α3 = 0

−k14 5c6c10 + 2α2 + α3 = 0

k5 15c11 − 2α2 − α3 = 0

−k16 6c28 + α2 = 0

k6 17c12 − α2 = 0

−k18 7c8c9 + α3 = 0

k7 19c13 − α3 = 0.
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We can express the concentrations as:

c12 = α2/k6 17

c8 = (α2/k16 6)
1/2

c13 = α3/k7 19

c9 = α3c8/k18 7

c11 = 2α2/k5 15 + α3/k5 15

c10 = α3/k4 13

c6 = (2α2 + α3)/(c10k14 5)

c4 = (k1 8c1 − α1)/k8 1

c2 = (−k3 10k11 3c1/(k9 2k3 11)− 1− k3 10/k3 11)α1/(k3 10k11 3k2 9c1/(k9 2k3 11)− k10 3(k1 8c1 − α1)/k8 1)

c5 = (α1 + k2 9c2)/k9 2

c3 = (k11 3c1(α1 + k2 9c2)/k9 2) + α1)/k3 11

c7 = (α3 + k4 12c10)/(k12 4c3)

The matrix G in Eq. (13) in the main text reads (next page):
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G
=

                            
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0
0

−
k
8
1

0
0

0
0

0
0

0
0

0
−
1

0
0

0
k
2
9

0
0

−
k
9
2

0
0

0
0

0
0

0
0

1
0

0
0

−
k
1
0
3
c 4

k
3
1
0

−
k
1
0
3
c 2

0
0

0
0

0
0

0
0

0
1

0
0

−
k
1
1
3
c 5

0
k
3
1
1
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k
1
1
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c 1

0
0

0
0

0
0

0
0

−
1

0
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0
0

−
k
1
2
4
c 7

0
0

0
−
k
1
2
4
c 3

0
0

k
4
1
2

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
k
4
1
3

0
0

0
0

0
−
1

0
0

0
0

0
−
k
1
4
5
c 1
0

0
0

0
−
k
1
4
5
c 6

0
0

0
0

2
1

0
0

0
0

0
0

0
0

0
0

k
5
1
5

0
0

0
−
2

−
1

0
0

0
0

0
0

0
−
2k

1
6
6
c 8

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
k
6
1
7

0
0

−
1

0
0

0
0

0
0

0
0

−
k
1
8
7
c 9

−
k
1
8
7
c 8

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
k
7
1
9

0
0

−
1

0
1

1
0

1
0

0
0

0
1

1
0

0
0

0
0

1
0

1
1

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
1

0
1

0
0

1
2

1
0

0
0

0
0

0
0

0
0

1
0

1
1

1
0

1
0

0
0]
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We formulate the optimization problem de�ned by Eq. (15) in the main text,
to �nd parameter vectors for which the determinant of matrix G becomes
zero. We minimize the objective function Fdef = det(G)2 using as decision
vector:

x =(k81, k29, k10 3, k11 3, k12 4, k4 12, k4 13, k14 5, k5 15, k16 6, k6 17, ...

k18 7, k7 19, α1, α2, α3, c1).

In order to incorporate current knowledge about kinetic relations in the
pathway we considered �xed k1 8 = 1, k9 2 = 0.01, k3 10 = 0.4 and k3 11 = 0.1.
We found a decision vector for which the objective function vanishes (see
Table 7.1). At this point, we start a continuation of equilibrium and con�rm
that the system undergoes a saddle-node bifurcation. In fact, the network
has capacity for bistability (see Figs 7.1 and 7.2).
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Figure 7.1: Bifurcation diagram for the receptor complex formation and
STAT signaling network. A continuation of equilibria is started from the
optimal point found by our algorithm (here we vary the total concentra-
tion of receptor subunit R20 in forward and backward directions). Tangent
bifurcation points are indicated in red.

The Matlab code is provided in S1 �le (Matlab_code/IFN_merged).
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Figure 7.2: Bifurcation diagram for the receptor complex formation and
STAT signaling network. A continuation of equilibria is started from the
optimal point found by our algorithm (here we vary the total concentration
of STAT1 S10 in forward and backward directions). Tangent bifurcation
points are indicated in red.
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Chapter 8

STAT activation dynamics

upon IFN stimulation
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Figure 8.1: STATs dynamics after IFN stimulation in WISH cells treated
with 500 pM (saturated doses) of IFNα2. (A) Measured time series of phos-
phorylated IFNAR2, (B) �t of the model to the measured time series of
phosphorylated STAT1 and (C) �t of the model to the measured time series
of phosphorylated STAT2.

The IFN-STAT signaling network model which we use for the analysis is
compatible with the STAT activation dynamics observed upon IFN stimu-
lation, as it can be deduced from the �t of the model to experimental data
(Fig. 8.1). Experimental data were provided by Ignacio Moraga and Sandra
Pellegrini from the IFNaction Consortium.
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