
Fast Online Deconvolution of Calcium Imaging Data

Johannes Friedrich1,2*, Pengcheng Zhou1,3, Liam Paninski1,4

1 Department of Statistics, Grossman Center for the Statistics of Mind, and Center for
Theoretical Neuroscience, Columbia University, New York, NY, USA
2 Janelia Research Campus, Ashburn, VA, USA
3 Center for the Neural Basis of Cognition and Machine Learning Department, Carnegie
Mellon University, Pittsburgh, PA, USA
4 Kavli Institute for Brain Science, and NeuroTechnology Center, Columbia University,
New York, NY, USA

* j.friedrich@columbia.edu

S1 Appendix. Technical appendix 1

Algorithm for isotonic regression without pooling 2

For ease of exposition Alg A shows the pseudocode of the isotonic regression algorithm 3

used to convey the core idea. However, this näıve implementation lacks pooling, 4

rendering it inefficient. It repeatedly updates all values xt′ , ..., xτ during backtracking 5

and calculates the updated value using Eq (7) without exploiting that part of the sum 6

in the numerator has already been computed as an earlier result. It is thus merely 7

O(T 2), whereas introducing pools addresses both issues and yields an O(T ) algorithm. 8

Algorithm A Isotonic regression algorithm without pools (inefficient O(T 2))

Require: data y
1: initialize x← y
2: for τ in 2, ..., T do . move forward until end
3: t′ ← τ
4: while t′ > 1 and xt′ < xt′−1 do . track back
5: t′ ← t′ − 1

6: for i in t′, ..., τ do xi ←
∑τ
t=t′ yt
τ−t′+1

. Eq (7)

7: return x

Weighted regression 9

For sake of generality we consider the case of weighted regression with weights θ. 10

minimize
ĉ,ŝ

1

2

∑
t

θt(ĉt − yt)2 + λ
∑
t

ŝt subject to ŝ = Gĉ ≥ 0 (S1)

This generalization is not only of theoretical interest. These weights could be used to 11

give lower weight to time points with higher variance for heteroscedastic data, for 12

example for the Poissonian statistics of photon counts where the variance of the 13

fluorescence increases with its mean. Further, instead of the linear relationship between 14
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fluorescence and calcium concentration (Eq 2) we could have a nonlinear observation 15

model 16

yt = f(ct) + εt (S2)

where the nonlinear function f can include saturation effects. This is often taken to be 17

the Hill equation, i.e., f(c) = acn

cn+kd
+ b, with Hill coefficient n, dissociation constant kd, 18

scaling factor a and baseline b [1]. Applying Newton’s algorithm to optimize for ŝ (or 19

equivalently ĉ) results for each Newton step in a weighted constrained regression 20

problem as in Eq (S1), which can be solved efficiently with OASIS. Hence, incorporating 21

OASIS into Newton’s algorithm enables the algorithm to handle nonlinear and 22

non-Gaussian measurements. 23

For an AR(1) process introducing weights changes Eq (10) to 24

minimize
c′
t′

1

2

∆t∑
t=0

θt+t′(γ
tc′t′ − yt+t′)2 +

∆t∑
t=0

µt+t′γ
tc′t′ (S3)

and its solution is a modification of Eq (11) by adding the weights 25

c′t′ =

∑∆t
t=0(θt+t′yt+t′ − µt+t′)γt∑∆t

t=0 θt+t′γ
2t

(S4)

We merely need to initialize each pool as (vt, wt, tt, lt) = (yt − µt
θt
, θt, t, 1) for each time 26

step t and the updates according to Eqs (12-14) guarantee that Eq (S4) holds for all 27

values vi = c′ti as we prove in the next section. 28

For an AR(p) process introducing weights changes Eq (30) to 29

c′t′ =

∑∆t
t=0

(
θt+t′

(
yt+t′ −

∑p
k=2(At)1,kc

′
t′+1−k

)
− µt+t′

)
(At)1,1∑∆t

t=0 θt+t′(A
t)2

1,1

(S5)

and the same modified initialization holds. 30

Validity of updates according to equations (12-14) 31

Theorem 1. The updates according to Eqs (12-14) guarantee that Eqs (11, S4) hold for 32

all values vi = c′ti . 33

Proof. We proceed by induction. 34

Assumption: Let for the denominator and numerator of Eq (S4) hold 35

wi =

li−1∑
t=0

θt+tiγ
2t (S6)

and 36

wivi =

li−1∑
t=0

(θt+tiyt+ti − µt+ti) γt (S7)

Base case: Pools are initialized as (vt, wt, tt, lt) = (yt − µt
θt
, θt, t, 1) for each time step 37

t such that Eqs (S6, S7) hold. 38
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Induction step: Consider two pools (vi, wi, ti, li) and (vi+1, wi+1, ti+1, li+1) that
satisfy Eqs (S6, S7) and are merged to pool (v′i, w

′
i, t
′
i, l
′
i) according to Eqs (12-14).

w′i = wi + γ2liwi+1 =

li−1∑
t=0

θt+tiγ
2t +

li+1−1∑
t=0

θt+ti+1
γ2liγ2t

=

li+li+1−1∑
t=0

θt+tiγ
2t =

l′i−1∑
t=0

θt+t′iγ
2t

where we used the contingency of the pools, ti+1 = ti + li. Thus after the update
Eq (S6) holds for the merged pool too. It remains to show this also for the values:

w′iv
′
i = wivi + γliwi+1vi+1

=

li−1∑
t=0

(θt+tiyt+ti − µt+ti) γt +

li+1−1∑
t=0

(
θt+ti+1yt+ti+1 − µt+ti+1

)
γliγt

=

li+li+1−1∑
t=0

(θt+tiyt+ti − µt+ti) γt =

l′i−1∑
t=0

(
θt+t′iyt+t′i − µt+t′i

)
γt

39

Initial calcium fluorescence 40

Thus far we have not explicitly taken account of elevated initial calcium fluorescence 41

levels due to previous spiking activity. For the case p = 1 positive fluorescence values c1 42

capture initial calcium fluorescence that decays exponentially. Positive values c1 lead 43

via s = Gc to a positive spike s1. Instead of attributing the elevated fluorescence to a 44

spike at time t = 1, a positive s1 more likely accounts for previous spiking activity. 45

Therefore we remove the initial spike by setting s1 = 0 (Alg 2, line 12). 46

For p = 2 we can model the effect of prior spiking activity as an exponential decay, 47

too. Because the validity of the constraint ct ≥
∑p
i=1 γict−i can only be evaluated if 48

t > p, for p > 1 the first pool stays thus far merely at its initialization 49

(y1 − µ1, y1 − µ1, 1, 1), and the noisy raw data value is taken as true c1. Instead, we 50

suggest to use the first pool to model the exponential decay due to previous spiking 51

activity. Given c1 = v1 the fluorescence values ct for t = 1, ..., l1 are then given by 52

dt−1c1 with decay variable 53

d = 1
2 (γ1 +

√
γ2

1 + 4γ2) (S8)

as well known in the AR / linear systems literature [2]. The first pool is merged with 54

the second one whenever the constraint v2 ≥ dl1v1 is violated. 55

Explicit expressions of the hyperparameter updates for AR(2) 56

We solve the noise constrained problem by increasing λ in the dual formulation until the 57

noise constraint is tight. We start with some small λ, e.g. λ = 0, to obtain a first 58

partitioning into pools P. 59

We denote all except the differing last two components of µ by µ = λ(1− γ1 − γ2) 60

(Eq 27) and express the components of µ as µt = µκt with 61

κt =


1

1−γ1−γ2 if t = T
1−γ1

1−γ1−γ2 if t = T − 1

1 else.

(S9)
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Given some µ(λ), the value of the first pool used to model the initial calcium 62

fluorescence is (using Eq 11) 63

ĉ1 =

∑l1
t=1(yt − µκt)dt−1∑l1−1

t=0 d2t
(S10)

with decay factor d defined in Eq (S8). The other values in this first pool are implicitly 64

defined by 65

ĉt = d ĉt−1 for t = 2, ..., l1. (S11)

The values of the other pools are according to Eq (30) 66

ĉti =

∑li−1
t=0 (yti+t − µκti+t − (At)1,2ĉti−1) (At)1,1∑li−1

t=0 (At)2
1,1

(S12)

The other values in the pool are implicitly defined by 67

ĉti+t = γ1ĉti+t−1 + γ2ĉti+t−2 for t = 1, ..., li − 1. (S13)

Altogether these equations define ĉ(µ) as function of µ. The solution ĉ′ = ĉ(µ′) for an 68

updated value µ′ = µ+ ∆µ is linear in ∆µ 69

ĉ′ = ĉ−∆µf (S14)

which plugged in above Eqs (S10-S13) yields that f can be evaluated using the
following equations by plugging in the numerical values of γ1, γ2, d, κ, A and {li}

f1 =

∑l1
t=1 κtd

t−1∑l1−1
t=0 d2t

(S15)

ft = d ft−1 for t = 2, ..., l1 (S16)

fti =

∑li−1
t=0 (κti+t − (At)1,2fti−1) (At)1,1∑li−1

t=0 (At)2
1,1

for i = 2, ..., z (S17)

fti+t = γ1fti+t−1 + γ2fti+t−2 for t = 1, ..., li − 1 (S18)

where z is the index of the last pool and because pools are updated independently we 70

make the approximation that no changes in the pool structure occur. Inserting Eq (S14) 71

into the noise constraint (Eq 15) and denoting the residual as r = ĉ− y results in 72

‖ĉ′−y‖2 = ‖ĉ−∆µf−y‖2 = ‖r−∆µf‖2 = ‖f‖2∆µ2−2r>f∆µ+‖r‖2 !
= σ̂2T (S19)

and solving the quadratic equation for ∆µ yields 73

∆µ =
r>f +

√
(r>f)2 − ‖f‖2(‖r‖2 − σ̂2T )

‖f‖2
. (S20)

If we jointly want to optimize the baseline too, we denote again the total shift
applied to the data (except for the last two time steps) due to baseline and sparsity
penalty as φ = b+ µ. We increase φ until the noise constraint is tight. The optimal
baseline b̂ minimizes the objective (20) with respect to it, yielding

b̂ = 〈y − ĉ〉 = 1
T

∑T
t=1(yt − ĉt). Appropriately adding b̂ to the noise constraint yields

‖b̂′1 + ĉ′ − y‖2 = ‖〈y − ĉ+ ∆φf〉1 + ĉ−∆φf − y‖2 (S21)

= ‖ b̂1 + ĉ− y︸ ︷︷ ︸
r

−∆φ(f − 〈f〉1︸ ︷︷ ︸
f̄

)‖2 !
= σ̂2T (S22)
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where we used Eq (S14), the current value of the baseline b̂ = 〈y − ĉ〉 and the updated 74

value b̂′ = 〈y − ĉ+ ∆φf〉. Solving the quadratic equation for ∆φ yields 75

∆φ =
(r>f̄ +

√
(r>f̄)2 − ‖f̄‖2(‖r‖2 − σ̂2T )

‖f̄‖2
. (S23)

References

1. Pologruto TA, Yasuda R, Svoboda K. Monitoring neural activity and [Ca2+] with
genetically encoded Ca2+ indicators. J Neurosci. 2004;24(43):9572–9579.

2. Brockwell PJ, Davis RA. Time series: theory and methods. Springer Science &
Business Media, 2013.

PLOS 5/5


	Supplementary Material

