
S2 Text

Supplementary Theory and Methods: Sparse Residue Inter-
action Graphs

In the section entitled “Definitions related to Sparse Residue Interaction Graphs”, we
provide a high-level intuition for the mathematical basis of sparse residue interaction
graphs, and their corresponding energy functions. For the proofs of Lemma 1 and
Lemma 2 in S6 Text, however, precise definitions are useful. In this document, we
provide formal definition of a residue interaction graph, the sparse residue interaction
graph, and the corresponding GMECs computed using such interaction graphs. We
also provide mathematical details for the cutoff criteria used to prune pairwise
interactions from a residue interaction graph.

Each protein design problem is defined by its input model, namely, the input
protein structure, the mutable residues, the allowed amino acids at each mutable
residue, and allowed side-chain conformations1. Such a protein design problem can
be represented as an undirected complete graph G = (V, E), where V represents all
mutable residue positions (|V | = n), and E represents all possible pairwise residue
interactions (|E| =

(
n
2

)
).

For a protein design with n mutable residues, let i and j denote two residues,
and for a given conformation c, let E(ci, cj) be the pairwise energy between them.
When the self-energy of the residues can be included in the pairwise energy terms,
the energy of a given conformation c is represented in Eq. (1):

E(c) =
∑
j≥i

(ci, cj). (1)

We will refer to the graph G as a full residue interaction graph, the energy of any
conformation calculated using Eq. (1) as its full energy, and the protein conformation
that minimizes the full energy over all possible rotamer assignments as the full GMEC.

Let E ’ be the set of edges deleted from G to generate a sparse residue interaction
graph. If ri and sj represent rotamers r and s at residues i and j respectively, an
edge between i and j is deleted from the graph G if it meets any the following two
conditions:

1Protein design formulations that consider additional side-chain flexibility [1, 2], backbone
flexibility [3–5], free energy calculations [6, 7], or more accurate energy functions [8] have been
developed. Nevertheless most of them call as a subroutine the simplified model discussed in this
paper, which can be viewed as a core calculation common to most protein design software. Hence,
the accuracy of this computation bounds the accuracy of the overall design.
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� dmin(i, j) > δ, where dmin(i, j) = min
r,s

d(ri, sj) is the closest Euclidean distance

between any two atoms in residues i and j when all rotamer combinations for
these two residues are considered; δ is the distance cutoff parameter;

� Emax(i, j) < α, where Emax(i, j) = max
r,s
|E(ri, sj)| is the maximum energy (in

absolute value) between residues i and j when all rotamer combinations for
these two residues are considered; α is the interaction energy cutoff parameter.

With appropriate distance and energy cutoffs, a set of edges E ′ are deleted from
the residue interaction graph G, producing the sparse residue interaction graph
G′ = (V, E − E ′). The energy of a conformation c with respect to G′ can now be
written as:

E ′(c) =
∑
j≥i

E(ci, cj)−
∑
j>i

(i,j)∈E ′

E(ci, cj). (2)

We will refer to the energy of any conformation as calculated using Eq. 2 as its
sparse energy, and the protein conformation that minimizes the sparse energy over
all possible rotamer assignments as the sparse GMEC. Note that because certain
interaction energies are omitted from the sparse residue interaction graph, the full
GMEC (conformation with minimum full energy in Eq. 1) and the sparse GMEC
(conformation with minimum sparse energy in Eq. 2) may be different.
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