Complementary model for InsP₃ coupling

Tanimura et al. [1] demonstrated cell type-dependent differences in InsP₃ dynamics: i.) Ca²⁺ spikes are generated in the absence of synchronous InsP₃ fluctuations and ii.) Ca²⁺ spikes are connected by InsP₃ fluctuations with a small time delay. In the second case, we have to consider additional InsP₃ production by c_{cyt} -dependent phospholipase C activation and InsP₃ might play a role in the intercellular Ca²⁺ synchronization. Instead of Eq. (20), we consider that the InsP₃ concentration, denoted here by I(v, t), satisfies the following differential equation

$$\frac{\partial I(x,v,t)}{\partial t} = I_G(v,t) + I_{Ca}(x) - I_{DEG}(v,t) + d_I \sum_{\{v,u\} \in \mathcal{E}} (I(u,t) - I(v,t))$$
(1)

where I_G denotes the G-protein dependent InsP₃ production, I_{Ca} the c_{cyt}-dependent InsP₃ production, I_{DEG} the degradation and d_I the gap junctional permeability of InsP₃.

The G-protein dependent InsP₃ production is related to stimulus intensity and is modeled as

$$I_G(v,t) = \begin{cases} 0.015 , \text{ if } t < t_1(v) \\ i_{G,max}(v) \frac{t - t_1(v)}{K_G + t - t_1(v)}, \text{ if } t \ge t_1(v) \end{cases}$$
(2)

where K_G is a positive constant and, $i_{G,max}(v)$ as well as $t_1(v)$ can take different values among the cells network, enabling the actual InsP₃ concentration to be inhomogeneous in space. The degradation rate of InsP₃ is given by the following equation:

$$I_{DEG}(v) = r_{u1} \cdot I(v), \tag{3}$$

with r_{u1} a positive constant. Because the activity of c_{cyt} -dependent phospholipases increases suddenly above resting Ca²⁺ values [2], the c_{cyt} -dependent InsP₃ production is modeled by the following function of the cytosolic Ca²⁺ concentration *x*,

$$I_{Ca}(x) = r_{u2} \cdot \frac{x^3}{K_{Ca}^3 + x^3}$$
(4)

with r_{u2} and r_{u3} positive constants. All parameter values are presented in Table A. For the simulations, the values of $i_{G,max}(v)$ are assigned in the same manner as $i_{ip3,max}(v)$, see Table 1 in Main Text.

	Parameter name	Value
Constants	K _G	6 s
	r_{u1}	1.05 /s
	r_{u2}	200 nM/s
	K _{Ca}	1000 nM

Table A. Parameters for InsP₃ kinetics.

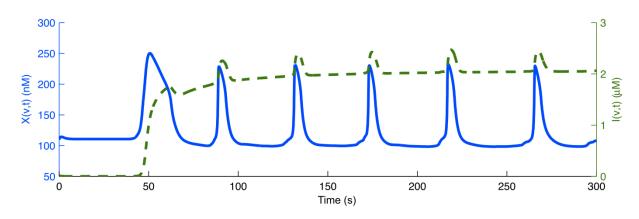


Fig A. Simultaneous changes of c_{cyt} and [InsP₃], when considering both InsP₃ and Ca²⁺ diffusion The conditions are the ones of model G_R with moderate noise and an identical gap junction coupling parameter for Ca²⁺ and InsP₃: $d = d_I = 0.003$. See S16 Movie.

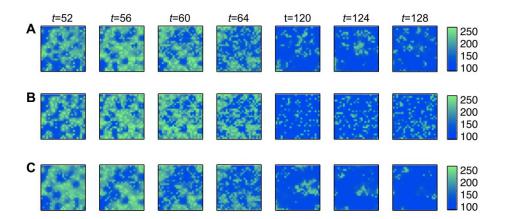


Fig B. Differences in Ca²⁺ propagation for different types of couplings in random model G_R (A) Only Ca²⁺ coupling (d = 0.003 and $d_I = 0$, see S14 Movie). (B) Only InsP₃ coupling (d = 0 and $d_I = 0.003$, see S15 Movie). (C) Ca²⁺ and InsP₃ couplings (d = 0.003 and $d_I = 0.003$, see S16 Movie). Noise is set to moderate levels (see Table 1 in Main Text). Numerical estimations of

synchronization are reported in Table B of this supplementary text and show that $InsP_3$ coupling is more efficiently involved in synchronization around the first Ca^{2+} peak (t = 52 - 64). Afterwards, Ca^{2+} coupling more efficiently synchronizes Ca^{2+} oscillations.

	35 – 160 (s)	161 - 600 (s)	35 - 600 (s)
Only Ca ²⁺ coupling	0.118 ± 0.003	0.241 ± 0.004	0.185 ± 0.003
Only InsP ₃ coupling	0.651 ± 0.015	0.069 ± 0.003	0.103 ± 0.004
Ca ²⁺ and InsP ₃ coupling	0.136 ± 0.003	0.305 ± 0.005	0.246 ± 0.003

Table B. Values of the synchronization index m_{sync} (See Main Text for details) The parameters are the ones used for producing Fig. B of this supplementary text (moderate noise). We observe how InsP₃ coupling is involved in synchronization when the signal starts (around $t_1 = 60$, i.e. for 35 < t < 160). Afterwards, Ca²⁺ coupling is more efficient in synchronizing cell behaviors. See also S14-16 Movies.

References

- 1. Tanimura A, Morita T, Nezu A, Shitara A, Hashimoto N, et al. (2009) Use of Fluorescence Resonance Energy Transfer-based Biosensors for the Quantitative Analysis of Inositol 1,4,5-Trisphosphate Dynamics in Calcium Oscillations. J Biol Chem 284: 8910-8917.
- 2. Pawelczyk T, Matecki A (1997) Structural requirements of phospholipase C delta1 for regulation by spermine, sphingosine and sphingomyelin. Eur J Biochem 248: 459-465.