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Supporting Information

A primer on model building for movement data
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Figure S1. Twelve acceleration functions corresponding to repetitions of a signature
being written.

The two major types of variation in movement data are path variation (amplitude)
and movement timing variation (time warping). From a statistical modeling
perspective, it is natural to model these effects as realizations of random processes
across repetitions of the task at hand, since this allows a data driven regularization of
the predictions of these effects. We consider the class of models on the form

yi(tk) = θ(v(tk,wi)) + xi(tk) + εik (1)

where θ is the mean profile, v is a warping function that depends on the random
warping parameters wi ∈ Rnw that are assumed to be independent across i and
multivariate zero-mean Gaussian with covariance matrix σ2C, the xi terms are
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independent zero-mean Gaussian process with covariance function σ2S, and the
εik-terms are independent zero-mean Gaussian noise with variance σ2.

To use model (1) we need to choose the type of mean function θ, the type of
warping function v as well as the covariance structures for wi and xi. Below is a list of
considerations of how to do these model choices based on the experiment at hand.

θ: A good allround choice is to model θ as a B-spline using a functional basis. For
periodic movement sequences, a Fourier basis may sometimes be preferred. To
choose the number of basis functions to use we need to consider the data at
hand. For experiments with dense sampling and a clear systematic pattern in
the trajectories the number of basis functions should be just be sufficiently high
to model the mean pattern. If on the other hand the trajectories are sparsely
observed in time or the common pattern is very unclear, one should choose a
small number of basis functions to avoid local overfitting.

v: The behavior of the warping function should be driven by the random variables wi.
We will consider warping functions where wi models disparities from the identity
mapping (corresponding to no warp), and v is an interpolating function of these
random disparities at a set of specified anchor points tw ∈ Rnw . If one needs to
predict derivatives such as velocity or acceleration of the observed profiles the
interpolation should be smooth (e.g. a cubic spline). If no derivatives are needed,
one should prefer simpler models such as linear interpolation as this reduces the
nonlinear contribution of the derivative term in the linearization term Z and
thus reduces the complexity the estimation problem, see model (??).

C: The covariance matrix of the random disparities wi should be chosen to respect
the experimental setup. If movements are modeled in percentual time, and the
beginning and end of the observed trajectories correspond to the same states
across movement (e.g. beginning and end of movement), the model for wi should
respect that. The simplest such model is to assume that wi is a Brownian bridge
observed at the discrete anchor points tw. For other types of data one may wish
to include a random Gaussian time shift (add constant matrix to the covariance
of the non-shift part of the model) or have an open end point which could be
modeled using a Brownian motion model. If nw is low relative to the number of
repetitions one may model C as a completely free covariance matrix.

S: A good allround choice for the covariance function of the amplitude variance is the
Matérn covariance function. The Matérn covariance has three parameters, scale,
range and smoothness. The scale parameter determines the variance of the
process, the range parameter determines the strength of the correlation over
time and the smoothness parameter determines the smoothness of the
corresponding process. If one wants to simplify the optimization problem, one
may fix the smoothness parameter at some value that represents sufficient
smoothness, for example 2 corresponding to twice differentiable sample paths of
the amplitude effect. For experiments with fixed start and end values one may
use a bridge process such as the Brownian bridge, however, it is often preferable
to use a less specific model than an overly specific model. For additive effects
such as xi, even slight misspecification of a bridge covariance structure at the
beginning and end of movement (where variance and covariance go from zero to
non-zero) may result in considerable bias of the corresponding parameters.

Consider the handwriting signature data in percentual time in Figure S1.The data
consist of 12 acceleration magnitude profiles, each with 98 observations, corresponding
to repetitions of a signature being written by a participant. This data has previously
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been used as an example in [1]. A reproducible pattern across repetitions is in the
nature of the task, and we also see a strong consistent pattern across the samples, but
the curves are both misaligned and vary systematically in amplitude. Using the
considerations above, we choose a B-spline basis with 40 interior knots to have
sufficient flexibility to model the mean, we choose v to be a piecewise linear
interpolation of the disparities wi that we model as discretely observed Brownian
bridges over nw = 20 equidistant anchor points. For the amplitude covariance S we
choose a Matérn covariance with unknown scale, range and smoothness.

The alignment of the proposed model is displayed in Figure S2.We see a neat
alignment of the samples and a mean function that represents the mean pattern well,
with no indications of local overfitting. Similarly for the warping functions, we only
see small systematic deviations from the identity warp, despite of the high number of
anchor points. The maximum likelihood estimates for the variance parameters were as
follows: the warp scale estimate was 14.1, the variance scale estimate for the amplitude
effect was 54.4, the range parameter estimate was 8.2 · 10−3, the smoothness
parameter was 6.2, and the noise variance σ2 was estimated to be 1.4 · 10−4. This
suggests that the systematic part of the amplitude variation explains more than 99.9%
of the amplitude variation, which fits well with the smooth functional samples.

To find the best among multiple models, one can compare different models using
cross-vaildation, as was done in this paper, if such a setup is meaningful for the
application at hand. In general one can do model selection based on the corrected
conditional AIC of the linearized likelihoods [2].

0.00 0.25 0.50 0.75 1.00
warped percentual time

ac
ce

le
ra

tio
n

(a) Aligned samples and mean (dashed)
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(b) Warping functions compared to the identity
(dashed)

Figure S2. The aligned acceleration functions from Figure 1 (a), along with the
predicted warping functions (b).

R code for fitting the model to the signature data

Suppose that y is a list containing the 12 acceleration trajectories and t is a list of the
corresponding observation times. The model described above can be specified and
fitted using the code given below. The methods in the pavpop R package are
thoroughly documented with a wide array of examples in the package help pages and
vignettes.

# Install and load pavpop R package
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if (packageVersion("devtools") < 1.6) {

install.packages("devtools")

}

devtools::install_github(’larslau/pavpop’)

library(pavpop)

# Set up basis function

kts <- seq(0, 1, length = 42)[2:41]

basis_fct <- make_basis_fct(kts = kts, intercept = TRUE,

control = list(boundary = c(0, 1)))

# Set up warp function

tw <- seq(0, 1, length = 20)

warp_fct <- make_warp_fct(’piecewise-linear’, tw)

# Set up covariance functions and roughly initialize parameters

warp_cov_par <- c(tau = 10)

warp_cov <- make_cov_fct(Brownian, noise = FALSE, param = warp_cov_par,

type = ’bridge’)

amp_cov_par <- c(scale = 4, range = 1, smoothness = 2)

amp_cov <- make_cov_fct(Matern, noise = TRUE, param = amp_cov_par)

#

# Estimate in the model

#

# Rough bounds on parameters

lower <- c(1e-3, 1e-3, 1e-3, 1e-3)

upper <- c(1000, 10, 10, 10)

res <- pavpop(y, t, basis_fct, warp_fct, amp_cov, warp_cov,

iter = c(5, 20), homeomorphism = ’soft’,

like_optim_control = list(lower = lower, upper = upper))

Simulation study

To evaluate the proposed algorithm for maximum likelihood estimation, we simulated
data from the proposed model under the maximum likelihood estimates on the full
data using a sampling setup identical to the central experiment (d = 30.0 cm, medium
obstacle). We simulated 1000 outcomes and ran the estimation procedure as described
in the section on modeling of effects and the algorithmic approach. The total runtime
of the 1000 estimation procedures was approximately 6 hours on a 64-core machine.

The densities of the integrated square estimation errors (L2 error) for the
estimated mean profiles (experiment and participant) are shown in the right panel of
Figure S3.For comparison, the experiment-specific and participant mean profiles have
been estimated using ordinary least squares (OLS) estimation with the correctly
specified spline model for the mean. The corresponding densities are shown in the left
panel. We note that the densities are shown on squareroot scale to enable visual
inspection of the differences. We see that the estimate for the experiment-specific
mean profile is marginally more stable for the OLS estimation, but results are close-to
perfect for both methods. For the participant-specific effects, however, we see that the
proposed model that aligns samples within participant using a random warping
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function gives L2 errors that are approximately an order of magnitude lower than
simple OLS estimation.

OLS spline estimation proprosed
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Figure S3. Densities of the integrated square estimation errors (L2 errors) for the
common and participant-specific mean functions in the simulation study. The left
panel shows results for ordinary least square (OLS) estimation and the right panel
shows the results for the proposed model and estimation algorithm. Both models were
fitted using the correctly specified spline model for the mean. Note that the density is
displayed on squareroot scale.

Figure S4 displays densities of the differences between the maximum likelihood
estimates for the true participant-specific warping parameters across participants. The
estimates generally seem unbiased with small variance around the true warping
parameters.
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Figure S4. Densities of the difference between the estimated and the true
participant-specific warping parameters across participants.

Figure S5 displays densities for the parameter estimates in the simulated
experimental setups. We see that the estimators for the noise scale σ and the scales
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for the warp parameters σγ both seem to have a small upward bias. The scale στ of
the serially correlated effects and the range parameter 1/α both seem to be estimated
with very little or no bias. Slightly biased variance-parameter estimates are to be
expected in likelihood-based inference [3], in particular in nonlinear models where
bias-reducing estimation methods such as restricted maximum likelihood (REML),
that are inherently linear, are not available.
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Figure S5. Densities of the estimated variance parameters in the simulated
experimental setups. Dashed red lines indicate the true values of the parameters.

Cross-validation grids for motion classification

Cross-validation was done over:

MBM number of bands J in {1, 2, 3, 4, 5, 6}.

DTW degrees of freedom for B-spline basis {8, 13, 18, 23, 28, 33, 38}. For DTWp

{8, 9, . . . , 18}.

FR number of principal components in {1, 2, 3, 4, 5}.

FRE number of principal components in {1, 2, 3, 4, 5} and weighting between phase
and amplitude distance in {0.0, 0.5, . . . , 5.0}.
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