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A population dynamical model of actively and latently infected cell dynamics 

during different stages of the infection 

 

In the main text, we consider a system of coupled quasispecies equations to model the changing 

strain frequencies during the course of infection in the active compartment and the reservoir. In doing 

this, we make the assumption that the relative reservoir size, 𝑟𝐿 =  𝐿

𝐴
 , where L is the number of 

latently infected cells and A the number of actively infected cells, stays constant over the entire course 

of the infection. One of the requirements for this assumption is that the reservoir fills up quickly at the 

start of an infection, as is also observed in vivo. Here we present a simplified dynamical version of our 

model, in the absence of evolution, to test the validity of this assumption.  

 

Let W be the number of susceptible cells, X the number of infected cells in the active compartment, 

and Y the number of latently infected cells in the reservoir. The equations for the population dynamical 

version of our model are then given by 

 𝑑𝑊

𝑑𝑡
= 𝜎 − 𝑑𝑊 − 𝛽𝑊𝑋 , 

(S1.1) 

 𝑑𝑋

𝑑𝑡
= (1 − 𝑘)𝛽𝑊𝑋 − 𝛿(𝑡)𝑋 + 𝑎𝑌, 

(S1.2) 

 𝑑𝑌

𝑑𝑡
= 𝑘𝛽𝑊𝑋 + 𝜌𝑌 − 𝛿𝑌𝑌 − 𝑎𝑌. 

(S1.3) 

Here,  is the rate at which susceptible cells enter the system, d is the death rate of susceptible cells, 

 is the per capita infectivity of infected cells, k is the probability that a newly infected cell becomes 

latently infected, (t) is the death rate of actively infected cells, a is the activation rate of latently 
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infected cells,  is the proliferation rate of latently infected cells, and Y is the death rate of latently 

infected cells. 

 

As in our between-host model, we model an infection with three stages: an initial acute phase, a 

chronic phase and a late phase. For consistency with our between-host model and previous 

observations [35], we assume that the acute phase of infection lasts 3 months and the late phase of 

infection lasts 9 months. We model the transition from the acute phase to the chronic phase of 

infection and the associated drop in viral load by assuming that after three months the death rate of 

actively infected cells is increased due to killing by the host’s immune system, and similarly describe 

the transition from the chronic phase to the late phase of infection and the associated rise in viral load 

by the subsequent loss of these immune responses. I.e. 

 
𝛿(𝑡) = {

𝛿𝑋                    𝑖𝑓 𝜏 ≤ 120 𝑑𝑎𝑦𝑠 𝑜𝑟 𝜏 ≥ (𝑇 − 270) 𝑑𝑎𝑦𝑠

𝛿𝑋 +  𝛿𝐶𝑇𝐿              𝑖𝑓 120 𝑑𝑎𝑦𝑠 < 𝜏 < (𝑇 − 270) 𝑑𝑎𝑦𝑠
 , 

(S1.4) 

where  is the time since infection and T is the maximal duration of the infection (ignoring natural host 

mortality). We set X = 1 per day [41] and vary CTL. We assume  = 1 x 107 cells per day [17], d = 

0.5 per day [17], and Y = 0.001 per day [9,72]. We also assume that the within-host R0 of the virus is 

5 [73], giving us 𝛽 =  𝑅0𝑑𝛿𝑥
𝜎

 = 2.5 x 10-7 per actively infected cell per day. For the parameters k, a, 

and  we assumed a low level of homeostatic proliferation of latently infected cells (k = 0.0005, a = 

0.01 per day,  = 0.009 per day; these are the parameters used in Fig 3c and Fig 5c of the main 

text). 

 

In S5 Fig we show the results of numerically solving equations (S1.1)-(S1.3), starting with a single 

actively infected cell, no latently infected cells, 𝜎

𝑑
 susceptible cells, and for varying strengths of the 

immune response, CTL. Both the number of actively and latently infected cells quickly increases at the 

start of the infection. However, since the number of actively infected cells is high the relative reservoir 

size during the acute phase of infection is low. As the number of actively infected cells drops due the 

increased effectiveness of the immune response in the chronic phase, the relative reservoir size goes 

up and can quickly reach equilibrium (e.g. red line in Fig S5c), although this takes longer the lower the 

strength of the immune response (CTL).  If the strength of the immune response is very big the 

reservoir seems to be “overfilled” and we see an overshoot in the relative reservoir size before it 

gradually falls to reach equilibrium levels (orange line in Supporting Fig S5c). During the late phase of 

infection, the number of actively infected cells very rapidly increases due to the failure of the host’s 

immune system. As expected, this again causes a drop in the relative reservoir size, to a value similar 

to the value during the acute phase of the infection. 

 

This dynamical model (S1.1-S1.4) provides a proof of concept for our assumption of early filling of the 

reservoir during the acute phase of infection (even if the probability that infected cells enter the 



reservoir is very small, as we have assumed in this example) and constant rL during chronic infection. 

However, it also shows that the assumption of constant rL during the entire course of infection is more 

problematical. We therefore repeated our analyses with the assumption that the reservoir has no 

impact on the evolutionary dynamics of the active compartment during early and late stage infection 

(S3d and S6 Figs) and found that the effect is negligible. 

 

We note that the results presented here are sensitive to the strength of the immune response and 

associated changes in viral load, and more elaborate models should be developed to more accurately 

describe the dynamics of actively and latently infected cells during the initial and late phases of an 

infection. This is however beyond the scope of this article. 


