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S1 Appendix: Extended Materials and Methods

Cells, Plasmids, Media, and Chemicals

The strain E. coli DH5α-PRO (identical to DH5α-Z1) [1], generously provided
by I. Golding (Baylor College of Medicine, Houston, TX), was used to ex-
press the target and reporter plasmids. The strain genotype is deoR, endA1,
gyrA96, hsdR17(rK- mK+), recA1, relA1, supE44, thi-1, Δ(lacZYA-argF)U169,
Φ80δlacZΔM15, F-, λ-, PN25/tetR, PlacIq/lacI, SpR. Importantly, this strain
contains two constitutively overexpressed genes, lacI and tetR, under the control
of PlacIq and PN25 promoters, respectively, ensuring stable tight transcription
regulation [1].

Two bacterial systems were used. The first is the mentioned strain contain-
ing: i) a medium-copy vector PROTET-K133 with the reporter gene PLtetO-1-
MS2d-GFP, which produces the dimeric fusion protein MS2d-GFP; and ii) a
single-copy F-plasmid pIG-BAC, carrying the target gene Plac/ara-1-mRFP1-
MS2-96bs with a coding region for a monomeric red fluorescent protein (mRFP)
followed by an array of 96 MS2 binding sites [2]. The second is a modified ver-
sion of the original strain with the following differences: i) the low-copy vector
pZS12 carries the reporter gene PLlacO-1-MS2-GFP; and ii) the single-copy F-
plasmid vector pIG-BAC carries the target gene PtetA-mRFP1-MS2-96bs [3].
The activity of the promoters PLtetO-1 and PtetA is regulated by the repressor
tetracycline (TetR) and the inducer anhydrotetracycline (aTc). Meanwhile, the
activity of the promoter PLlacO-1 is regulated by the LacI repressor and the
inducer IPTG, and the activity of the promoter Plac/ara-1 is regulated by both
LacI and AraC repressors and the inducers IPTG and L-arabinose.

All strains were grown in Lysogeny Broth (LB) medium, supplemented with
the appropriate antibiotics (35 µg/mL kanamycin and 34 µg/mL chlorampheni-
col for the first strain, and 100 µg/mL ampicillin and 34 µg/mL chloramphenicol
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for the second strain). Antibiotics were from Sigma-Aldrich (USA). The com-
position of LB was: 10 g/L of tryptone (Sigma Aldrich, USA), 5 g/L of yeast
extract (LabM, UK) and 10 g/L of NaCl (LabM, UK).

Finally, in order to obtain a set of medium conditions where differences
between intracellular RNAP concentrations are maximized while differences
in growth rates are minimized, we followed the procedure established in [4].
Namely, we carried out measurements in modified LB medium that have lower
tryptone and yeast extract concentrations (by 0.25 or 0.5 fold), which reduces
intracellular RNAP concentrations accordingly [4].

Induction of Target and Reporter Genes

Cell cultures were diluted in LB from overnight cultures to OD600 of 0.05, and
kept at 37 °C at 250 RPM in a shaker until reaching mid-logarithmic phase
with an OD600 of 0.3. After that, cells containing the promoters Plac/ara-1

and PLtetO-1 were induced with 0.1% L-arabinose and 1 mM IPTG for target
activation, and 100 ng/mL aTc for reporter activation. Cells containing the
target promoter PtetA and the reporter promoter PLlacO-1 were induced with
15 ng/mL aTc for target activation and 1 mM IPTG for reporter activation.
In both cases, for the cells to produce sufficient MS2-GFP for the detection of
target RNAs, the reporter and target genes were induced 50 minutes prior to
the measurements, while keeping cells shaking at 250 RPM in the incubator
at the appropriate temperature (24, 27, 30, 33, 35, 37, 39, or 41 °C). In the
case of Plac/ara-1, the induction was complemented by adding 1 mM IPTG 10
minutes prior to microscopy. In the end, cells were collected by centrifugation
at 8000×g for 1 minute, and diluted in fresh LB medium. For this, 5 µL of
cells were added to an agarose pad (Sigma Life Science, USA), and placed into
a temperature chamber (Bioptechs, FCS2) at the appropriate temperature for
image acquisition.

Microscopy

The imaging was performed using a Nikon Eclipse (Ti-E, Nikon) inverted mi-
croscope, equipped with a 100× Apo TIRF (1.49 NA, oil) objective and a C2+
(Nikon) confocal laser-scanning system. Images were captured with the aid of a
motorized stage. To visualize fluorescent-tagged RNA spots, we used a 488 nm
laser (Melles-Griot) and an emission filter (HQ514/30, Nikon). Time-lapse fluo-
rescence images were taken once per minute for 120 or 60 minutes. The software
used for image acquisition was NIS-Elements (Nikon), and the images were an-
alyzed using a custom software, described below.

Image Analysis

The fluorescence microscopy images were processed as follows. First, consec-
utive images in the time series were aligned such that the cross-correlation of
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fluorescence intensities is maximized. Next, a region occupied by each cell dur-
ing the time series is manually annotated. After this, the locations, dimensions,
and orientation of each cell in each frame are found by principal component
analysis and the assumption that the fluorescence inside the cells is uniform [5].
Cell lineages were constructed using CellAging, which associates segments in
consecutive frames based on their overlapping areas [6].

Next, the intensity of each cell is fit with a surface, which is a quadratic
polynomial of the distance from the cell border, in least-deviations sense [7].
This surface is taken to represent the cellular background intensity resulting
from the abundant, unbound MS2-GFPs, and is subtracted to obtain the fore-
ground intensity. The foreground intensity is fit with a set of Gaussian surfaces,
in least-deviations sense, with decreasing heights until the heights are in the
99% confidence interval of the background noise (estimated assuming a normal
distribution and using median absolute deviation) [7]. The Gaussians are taken
to represent fluorescent RNA spots, the volume under each representing the
total spot intensity.

Since the lifetime of a MS2-GFP-tagged RNA is much longer than the cell
division time [8, 3], the cellular foreground intensity is expected to be an increas-
ing curve, with a jump corresponding to an appearance of a new tagged RNA.
The jump positions are estimated using a specialized curve fitting algorithm [9].
Any observed interval between two consecutive RNA productions is recorded
for further analysis as-is, while the interval occurring after the last observed
production is rendered right censored [10]. These right censored data improve
the accuracy and avoid underestimating the transcription duration [10], as the
exactly observed intervals tend to lack more longer intervals than shorter ones.

Modeling Transcription Initiation and Transcription Inter-
vals

We assume the model of transcription initiation specified in Eq (1) of the main
manuscript. This model is a submodel of the more general model proposed in
[10], which in turn combines the models of [11] and [12]. The reactions are:

Poff

kon−−⇀↽−−
koff

Pon
k1−→ I1

k2−→ I2
k3−→ Pon + E (1)

where Poff, Pon, I1, and I2 represent the different states of the promoter, and
E represents a produced elongation complex (can be taken to approximate
produced RNAs). The mechanistic details are further discussed in the main
manuscript. We expect the dynamics of the above reactions to follow the
stochastic chemical kinetics [13, 14].

While the phenotypic distribution of a cell population with respect to a par-
ticular gene is characterized by the RNA and protein numbers, the contribution
of transcription is best characterized by the distribution of produced transcripts
in a given period of time, as the former is affected by the latter along with other
processes such as degradation and dilution (due to cell division) of the tran-
scripts.
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Meanwhile, the distribution of the number of produced transcripts is inti-
mately related to the distribution of consecutive transcription intervals:

FE(t)(k) = P[E(t) ≤ k ] = P

[
k+1∑
i=1

τi > t

]
= 1−

(
fτ
∗ k ∗ Fτ

)
(t) (2)

where FE(t) is the cumulative density of E(t), fτ and Fτ are the probability
density function and cumulative density of the intervals between the produc-
tion of consecutive transcripts τi (assumed to be independent and identically
distributed), f ∗g is the convolution of f and g, and f ∗ k is the k:th convolution
power of f .

For exponential τ ∼ E(λ) with rate λ, the produced RNA numbers are
Poisson distributed E(t) ∼ P(λ t), in which case it is said that the RNAs are
produced according to a Poisson process, or more concisely, that the transcrip-
tion is Poissonian. Regardless of the interval distribution, the two moments of
the two distributions are related in the long-term limit [15]:

lim
t→∞

E[E(t)]

t
= E[τ ]

−1

lim
t→∞

Var[E(t)]

t
= Var[τ ] E[τ ]

−3
(3)

that is, the mean number of RNA produced per unit time equals the inverse
of the transcription interval mean, while the Fano factor of the produced RNA
numbers equals the squared coefficient (variance over squared mean) of varia-
tion of the transcription intervals. Conveniently, the latter equals always unity
for Poissonian process. The long-term limit assumption is necessary such that
short-term memory effects (which are present for a non-Poissonian transcription
process) of the transcription process vanish.

Note that the long-term limit assumption is only necessary to link the mo-
ments of the transcription interval distribution to that of the RNA numbers as
specified above, and not in determining the appropriate transcription process
from the measurement data–the link in Eq (2) holds for any t.

The transcription intervals of the model of Eq (1) are conveniently written
using the following functional equation:

fτ =

( ∞∑
k=0

k1

koff + k1

(
koff

koff + k1

)k
fkoff+k1

∗ k+1 fkon
∗ k

)
∗ fk2 ∗ fk3 (4)

where fk(t) = k exp(−k t) is the probability density function of the waiting
time of a reaction with rate k. The parenthesized expression arises from the
random number of visits to Poff prior to transitioning to I1, and the latter two
terms from the remaining reactions. The expression for fτ can be simplified
by manipulating it in the Laplace space (X 7→ E

[
etX
]
) [10]. The result can be
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written as:

fτ (t) =

n∑
j=1

kon − pj
kon

(
n∏
i=1

pi
pi − pj

)
pj exp(−pj t)

where p1, p2 =
koff + k1 + kon

2
±

√
(koff + k1 − kon)

2
+ 4 kon koff

2
p3 = k2, p4 = k3

(5)

provided that kon, p1, · · · , pn are distinct. The singularities pi = pj can be
removed, and a more general result can be found in our previous article [10]:
essentially, in such case, the density is a mixture of Erlang densities instead of
the exponential ones as above.

From the above equation, several choices of parameters can result in an iden-
tical distribution of transcription intervals (and, consequently, RNA numbers).
For example, k2 and k3 can be interchanged. This implies that while the best
fitting distribution for a set of data can be found, the order of the steps k2 and
k3, or in fact, the exact values of any of the parameters, cannot be identified
without additional information. In the manuscript, we exploit the details of
how the parameters change to provide such additional information to identify
koff, kon, and k1.

The other properties of the transcription intervals can be derived from the
density, e.g. the mean and variance of the transcription intervals can be inte-
grated from fτ :

E[τ ] =

(
1 +

koff

kon

)
k1
−1 + k2

−1 + k3
−1

Var[τ ] =

((
1 +

koff

kon

)2

+ 2
k1

kon

koff

kon

)
k1
−2 + k2

−2 + k3
−2

(6)

which can alternatively be derived from the results of Peccoud and Ycart [12]
using Eq (3), which links the moments of the long-term RNA distribution to
those of the transcription intervals.

The duty cycle, average burst size, and average burst interval of the on/off
switching loop are kon / (kon + koff), k1 / koff, and kon

−1 + koff
−1, respectively.

Here, the duty cycle is the fraction of time the gene spends in the on versus off
state, the burst size is the number of RNAs produced prior to turning off, and
the burst interval is the duration between such bursts.

In the temperature-dependent models, each model parameter changes as a
function of temperature according to a polynomial function:

kx(T )−1 =

p∑
j=0

akx−1,j T
j (7)

where akx−1,j is the order-j coefficient for the parameter kx and T is tempera-
ture. In practice, we consider polynomials up to the second order p = 2, as an
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order-p polynomial (or higher) can always pass through to p + 1 data points.
We do not expect the polynomial models to provide particular insight, rather,
parameters with a model of orders 0, 1, and 2, indicate that the parameter
is independent of, varies linearly, or in a nonlinear fashion, respectively, with
temperature.

Model Fitting and Selection

The models are fit using censored time intervals between the production of con-
secutive transcripts extracted from live-cell measurements (intervals are avail-
able in S8 table). The censoring is necessary, as production intervals longer
than cell division cannot be observed, resulting in underestimation of the true
transcription intervals, and as it improves the accuracy of the parameter estima-
tion by properly accounting for the effects of finite sampling rate (60 s sampling
interval) [10]. With censoring, rather than observing the production intervals
τi, we observe bounds for each interval: τi ∈ [xi, yi].

The models are fit in a maximum likelihood sense. The maximum likelihood
estimate is:

θ̂
.
= arg max

θ

P[ τ1 ∈ [x1, y1], · · · , τm ∈ [xm, ym] |θ ]

= arg max
θ

m∑
i=1

log(Fτ (y1|θ)− Fτ (x1|θ) )︸ ︷︷ ︸
˜̀(θ)

(8)

where θ represents a vector of the parameters to be estimated. If multiple mod-
els are to be fit together with independent data sets, the likelihoods sum as for
the different samples above. The parameter vector θ contains the appropriate
set of the polynomial coefficients akx,j that determine the model parameters for

each temperature T . Here, the objective ˜̀ is some function that is equal up to
some additive constant to the logarithm of the likelihood function `.

In general, the maximum likelihood objective is not guaranteed to feature
attractive properties such as convexity or unimodality, but it is smooth almost
everywhere and in practice well behaved, provided that the model is somewhat
correct. The optimization was performed using a general-purpose derivative-
free nonlinear optimization algorithm [16]. To counter the convergence of the
optimization procedure to a local maximum, we used 1,000 random restarts,
with each parameter being generated from an unit-interval uniform distribution.
The parameters were scaled to have a mean equal to that of the data, assuming
that the data were exponential.

The distribution of the estimated parameters or any model feature derived
from them can be estimated using the delta method. It can be shown that a
mapping applied to the maximum likelihood estimate converges in distribution
to that applied to the true parameter such that [17]:

√
m
(
g(θ̂)− g(θ)

)
d−→ N

(
0,gθ(θ) I(θ)−1 gθ(θ)

T
)

(9)
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for any g(θ) that is continuous almost everywhere. Here, gθ is the Jacobian of g,

I(θ) is the Fisher information matrix, and · d−→ N (b, c) represents a convergence
in distribution to a normal distribution with a mean of b and covariance c. For
practical purposes, the Jacobian gθ(θ) can be approximated with that of at the

parameter estimate gθ(θ̂), and the Fisher information at the true parameter θ

can be approximated with the observed information −`θθ(θ̂) at the parameter
estimate, where `(θ) is the logarithm of the likelihood function and `θθ its

Hessian. In this work, gθ(θ̂) is computed using automatic differentiation and

`θθ(θ̂) = ˜̀
θθ(θ̂) is computed numerically.

As the models with more parameters fit never worse than those with less, a
scheme to penalize the excess degrees of freedom in the models is required. For
this, we use the Bayesian information criterion (BIC) [18]. The BIC is computed
according to [18]:

BIC
.
= −2 `(θ̂) + k log(n) (10)

where `(θ̂) is the log-likelihood at the maximum likelihood estimate, k is the

number of parameters, and n is the number of samples. In general, `(θ̂) and

n are not known when some of the data are censored. Instead, we know ˜̀(θ̂),
the log-likelihood up to some additive constant, and n is known to be in some
range, as each censored interval can contain information worth of 0 to 1 samples
(the specific value depending on both the sample and the true model, and as
such, cannot be determined). However, the additive constant vanishes when
comparing two BICs, so the difference of two BICs can be estimated as:

∆B̂IC1,2
.
= B̂IC1 − B̂IC2 = −2

(
˜̀
1(θ̂1)− ˜̀

2(θ̂2)
)

+ (k1 − k2) log(n̂) (11)

where n̂
.
= 1ni + 0.5nr is an estimate of the effective number of samples.

As indicated above, in this work, each of the ni interval censored samples is
assumed to be worth of 1 samples, as the sampling intervals are relatively short
compared to the transcription intervals, and each of the nr right censored sample
is assumed to be worth of 0.5 samples.

Finally, a conservative lower bound for ∆BIC1,2 can be derived:

∆BIC LB1,2
.
= min
n∈[ni,ni+nr]

−2
(

˜̀
1(θ̂1)− ˜̀

2(θ̂2)
)

+ (k1 − k2) log(n) (12)

which guarantees that invalid conclusions are not drawn due to the inaccuracy
of the approximation, and allows a degree of inaccuracy in the former.

qPCR of Target Gene Activity

The activity of the target genes were also analyzed using quantitative PCR
(qPCR). Cells containing the target plasmids were grown at various LB media
[4] at 37 °C, and induced with their respective inducers (0.1% L-arabinose and
1 mM IPTG for Plac/ara-1-mRFP1-96BS, and 15 ng/mL aTc for PtetA-mRFP-
96BS), as described above. Cells were collected by centrifugation at 8000×g
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for 5 minutes. Twice the cell culture volume of RNA protect reagent (Qiagen)
were added to the reaction tube, following the addition of Tris EDTA lysozyme
buffer (pH 8.0) for enzymatic lysis. The total RNA from cells was isolated
by the RNeasy kit (Qiagen), according to the manufacturer instructions. The
concentration of RNA was quantified by Nanovue plus spectrophotometer (GE
Healthcare). To remove the residual DNA, the samples containing the total iso-
lated RNA samples were treated with DNase. Following that, iSCRIPT reverse
transcription super mix was added for cDNA synthesis. Next, the cDNA samples
were mixed with the qPCR master mix, containing iQ SYBR Green supermix
(Biorad), with specific primers for the target and reference genes. The reaction
was carried out in triplicates with a total reaction volume of 20 µL. For quantify-
ing the target gene, we used mRFP1 primers (forward: 5’ TACGACGCCGAG-
GTCAAG 3’ and reverse: 5’ TTGTGGGAGGTGATGTCCA 3’) and for the
reference gene, we used the 16S RNA primers (forward: 5’ CGTCAGCTCGT-
GTTGTGAA 3’ and reverse: 5’ GGACCGCTGGCAACAAAG 3’). The qPCR
experiments were performed using a MiniOpticon Real time PCR system (Bio-
rad). The following conditions were used during the reaction: 40 cycles at 95 °C
for 10 s, 52 °C for 30 s, and 72 °C for 30 s for each cDNA replicate. We used
no-RT controls and no-template controls to crosscheck non-specific signals and
contamination. PCR efficiencies of the reactions were greater than 95%. The
data from CFX Manager TM software was used to calculate the relative gene
expression and its standard error [19].

Western Blot for RNA Polymerase Quantification

To quantify RNA polymerase abundance in DH5α-PRO strain at the different
media, we measured the amount of RpoC subunits by western blot. Cells were
grown until reaching mid-logarithmic phase, and harvested by centrifugation
at 8000×g for 1 minute. After that, cell lysate was treated with the B-PER
bacterial protein extraction reagent (Thermo scientific), containing protease in-
hibitors, and incubated at room temperature for 10 minutes. The samples were
centrifuged at 15000×g for 10 minutes, after which the supernatant was col-
lected. Next, the total protein samples were diluted to the 4× lamellae sample
loading buffer, containing β-mercaptoethanol, and boiled for 5 minutes at 95 °C.
The samples containing about 30 µg of total protein were resolved by 4 to 20%
TGX stain free precast gels (Biorad). Proteins were separated by electrophore-
sis and then electro-transferred on the PVDF membrane. Membranes were
blocked with 5% non-fat milk and incubated with primary RpoC antibodies of
1 :2000 dilutions (Biolegend) overnight at 4 °C, followed by the HRP-secondary
antibodies 1 : 5000 dilutions (Sigma Aldrich) for 60 minutes at room tempera-
ture. For detection of the RpoC protein, chemilumiscence reagent (Biorad) was
used. Images were generated by the Chemidoc XRS system (Biorad). Band
quantification was done by using the Image Lab software (version 5.2.1).
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