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Università di Padova, 35131 Padova, Italy
3Estación Experimental de Zonas Áridas, EEZA-CSIC,
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S1 Local and global trait complementarities

We distinguish three different measures regarding averaged complementarities (see the sketches
in Fig. S1): i) Local complementarity (LC), defined as the mean phenotypic distance
between an individual and its spatial neighbors; ii) Intraspecific global complementarity
(GCintra), defined as the mean phenotypic distance between all pairs of individuals within the
same species (and then averaged over species); and, additionally, iii) Interspecific global
complementarity (GCinter), corresponding to the the mean phenotypic distance between all
pairs of individuals consisting of individuals of two different species (averaged over all species).
While local measurements capture the effect of spatial correlations, global ones are useful to
characterize the evolution of the whole community in trade-off space. In analogy with the
experimental setup of Zuppinger-Dingley et al. [1], we performed computer simulations using
both monocultures and mixtures. For the case of monocultures, GCinter was estimated taking
individuals coming from two independent realizations of the simulations. Zuppinger et al.
gathered seeds from surrounding populations and grew them together in their experimental
set-up. This removed any cumulative, trans-generational effect of spatial correlations. In this
way, GC measurements (Fig. S1 B) constitute better proxies (as compared to LC) to contrast
our results with global community (biodiversity) effects in [1].

Supplementary Figure S1. (Color online) complementarity measurements:
A) Local complementarity (i.e. mean phenotypic distance between spatially close neighbors) re-
veals the effect of spatial correlations; B) Intraspecific and interspecific global complementarities
(i.e. mean phenotypic distance between individuals of the same and of different species, respec-
tively, regardless of their spatial location). In all cases, we performed computer simulations
using monocultures and mixtures.
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Complementing the results presented in Fig. 3 of the main text, Fig. S2 shows measurements
for LC and GCintra/inter for different initial number of species S after 10 and 1000 generations.
We observe that, even though complementarities become almost independent of S at t = 1000
(due to the extinction of some species), transient measurements at t = 10 clearly show that com-
munities with fewer species exhibit higher values of GC and, consequently, reach the stationary
state faster. Biodiversity delays the process because several species simultaneously compete for
empty niches. On the other hand, LC is inversely correlated with S, i.e., individuals tend to be
more phenotypically similar to ás in less biodiverse communities.

Supplementary Figure S2. (Color online) Local and global complementarities
after A) 10 and B) 1000 reproductive cycles, plotted as a function of the initial number
of species S in the community. Parameter values (see main text): system size L = 64,
competition β = 10 and variability µ = 0.025.

S2 Moran index

The Moran’s index [2] quantifies the likelihood of an individual to be surrounded by individuals
of the same species. When Moran’s index is negative, individuals are less likely to be close to
their co-specifics than what would be expected by pure chance, while positive values indicate
spatial clustering of species. Mathematically, given a species s we compute its Moran’s index
Is as

Is =

∑
i∈s

∑
j∈n.n.(i)(X

i
s − X̄s)(X

j
s − X̄s)

K
∑

i∈s(X
i
s − X̄s)2

, (1)

where K is the number of local neighbors (kernel size), and Xi
s is a variable such that Xi

s = 1
when the specie of i is equal to s and Xi

s = 0 if it is different, with X̄s the density of individuals
of species s. Finally, we obtain the total index averaging over species, I =

∑S
i=1 Is/S. As a

result, positive, zero, and negative values of I correspond to positive spatial correlation, random,
and anti-correlation of species, respectively.
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S3 Long-distance dispersal and competition

We have also studied well mixed (or “fully connected” ) communities, in which i) there is
frequent long-distance dispersal (so that both progenitors of the new offspring can be located at
any site in space) and, additionally, ii) each individual competes with the rest of the community,
i.e. all individuals behave as nearest neighbors.

As illustrated in Fig. S3, all the previously reported phenomenology is still present in this
ideal mean-field scenario. As a matter of fact, phenotypic differentiation seems to occur faster
than when spatial distribution is conditioned by local dispersal (see Fig. 3). In other words,
long-distance dispersal and global competition drive evolution faster than local dynamics. This
is a consequence of enhanced competition, which increases the relative fitness of better perform-
ing individuals. Another important difference is that, under mean field conditions, equivalent
taxa cannot occupy different spatial locations and are forced to compete with each other. Con-
sequently, coexistence of species with similar traits is much less likely than in spatially-explicit
communities.

Supplementary Figure S3. (Color online) Evolution of the community with
long-distance dispersal and global competition (i.e. well-mixed or mean-field
dynamics). A) Tradeoff space and complementarity measured at different generations. B)
Inter and intra-specific distances, and local complementarity and relative complementarity
(RC= GCinter-GCintra) in time. Parameters: L = 64, S = 16, β = 10, µ = 0.025.
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S4 Comparison with neutral theory (β = 0)

In the limit of no competition, β = 0, our model equates to neutral-theory [3] in which reproduc-
tion probabilities become independent of individual phenotypes. Fig. S4 reports computational
results for this case, illustrating the emergence of a very different scenario with respect to
the non-neutral case. Sexual reproduction still pulls species together so they aggregate in the
trade-off space, but their centroids describe slow and independent random walks instead of be-
ing controlled by a relatively fast separating drift (see Fig. S5). This phenomenology is caused
by the lack of an effective force pushing species away; indeed segregated species can become
closer after some generations, but on average there is only random drift allowing them to slowly
diversify, so they cannot account for the empirical observations in [1]. Similarly, relative com-
plementarities (which in the absence of competition can be regarded as the averaged difference
in the level of phenotypic similarity between randomly sampled non-conspecific and conspecific
individuals) start to grow later and reach low values,

Supplementary Figure S4. (Color online) Neutral dynamics (β = 0), implying that
all individuals have the same probability of reproduction independently of their species
assignment and phenotype. A) Plots in the trade-off space illustrate that species hardly
segregate in short time scales. In the physical space, local dispersal leads the the system to be
clustered, i.e. positively auto-correlated rather than anti-correlated. B) Different measures
illustrate that rapid evolutionary changes are much harder to observe in the neutral scenario.
In particular, local complementarity (LC) and relative complementarity increase at a much
slower pace. The increase in the Moran’s index confirms that the system remains positively
correlated (as usually is the case in neutral models) Parameters have been set to L = 64,
S = 16 and µ = 0.025.
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Supplementary Figure S5. (Color online) Species diffuse in the trade-off space
under neutral dynamics (β = 0): The plot shows average distance between species
centroids and the central point of the phenotypic space (i.e. the position of all species
centroids at t = 0) as a function of time. Mutations cause a random movement of species
centroids in the phenotypic space, as shown by the 0.5 slope in double logarithmic scale,
characteristic of diffusive processes. Parameter values are set as in Fig. S5.

S5 Initial phenotypic traits

In the main text, initial conditions are given by randomly sampling the value of each individual
phenotypic trait from a single distribution (Gaussian around the center of the phenotypic space),
independently of species labels. After some generations, we observe that competition causes
species to segregate in phenotypic space.

Although the most widely accepted definitions of species are based exclusively on the role of
mating barriers, individuals belonging to the same species tend to share common trait values.
In this appendix, we approximate this kind of scenario and test the robustness of our results
running simulations with partial clustering of species in phenotypic space. For this, we sampled
individual traits from equal amplitude Gaussian distributions centered around different (ran-
domly chosen) species-dependent points of the phenotypic space (see initial top panel in Fig.
S6).

As illustrated in Fig. S6, species diversify sooner in phenotypic space (initial values for
inter- and intra-specific distances are higher than in the case described in the main text) but
after this transient difference asymptotic results remain essentially unchanged.
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Supplementary Figure S6. (Color online) Simulations under initial phenotypic
segregation of species. Individual traits are initially sampled from different
species-dependent Gaussian distributions. Each of these Gaussians have a standard deviation
equal to 0.05 and a mean value randomly selected from another Gaussian (with the same
amplitude 0.05) centered at the triangle barycenter. A) From top to bottom: Tradeoff values,
trait complementarities, and spatial distributions at different generations. B) Evolution of the
inter and intra-specific distances, local and relative complementarity and Moran’s Index.
Parameters: L = 64, S = 16, β = 10, µ = 0.025.

S6 Effect of the competition kernel

In the implementation of our model presented in the main text, the reproduction probability
of an individual i is proportional to eβCi , where Ci is the average trait complementarity among
neighbors, Ci = 1

K

∑
j
1
n

∑k |T k(i)− T k(j)|. However, the use of a non-differentiable argument
(absolute value) appearing linearly in the exponential kernel may lead to spurious robust coex-
istence of arbitrarily similar species (at zero phenotypic distance) [4, 5, 6, 7, 8]. Kernels of the

form eβC
2+α
i with α > 0 have been shown to avoid such artifacts [9, 10]. For these reasons, we

also considered an alternative competition kernel of the form eβC
4
i to check for the validity and

robustness of our conclusions.
Results are shown in Fig S7. We observe that, as the quartic kernel reduces the overall

competition of phenotypically similar individuals, it leads to a slower species-diversification
process (as compared with the linear one for the same value of the parameters). However,
results are qualitatively similar to the linear kernel case. In particular, similar (equivalent)
species continue to emerge and coexiste for very long times, as in the linear case. In Appendix
SS7 we discuss the coexistence of emergent equivalent species in more detail.
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Supplementary Figure S7. (Color online) Quartic competition kernel. A) From top
to bottom: Tradeoff values, trait complementarities, and spatial distributions at different
generations. Simulations were run setting the performance of individuals proportional to eβC

4

(rather than eβC used in the main text), where C is the average trait complementarity among
neighbors. B) Inter and intra-specific distances, local and relative complementarity and
Moran’s Index evolution. Parameters: L = 64, S = 16, β = 10, µ = 0.025.

S7 Emergent Neutrality

In the main text, we discuss the possibility of emerging phenotypically-equivalent species co-
existing for long periods of time. It is important to underline that not all realizations lead
to equivalent species coexisting in the community. However, this appears to be a significant
pattern and we explored it further. In particular, we decided to check the stability of the coex-
istence. In this Section, we study the mean coexistence time of equivalent species as a measure
of coexistence stability.

Two equivalent species coexist until one of them invades the phenotypic space of the other as
a result of demographic fluctuations. As a first step to quantify the dynamics of this process, we
define a computational criterion to determine equivalence: two species s1 and s2 are considered
equivalent if their inter-specific distance (i.e. distance between their centroids) differs less than
a fraction of their mean intraspecific distance (mean trait amplitude), for instance 1/4, which
produces a significant overlap of the clusters of both species in phenotypic space.

We then measured the mean number of generations ∆T between the time at which 4 species
remain in the system (with two of them being equivalent, based on the previous definition) and
the time at which one of such equivalent species invades the other one. In voter models (i.e.
the neutral case), the mean time to reach mono-dominance, ∆T , increases with the number of
individuals in the community, N ; in particular, ∆T ∼ N logN in a 2D lattice and ∆T ∼ N in
a well-mixed situation (for instance, the case of long-distance dispersal and global competition)
[11].

Fig. S8 shows ∆T for simulations with limited dispersal (i.e. the 2D case), as well as the
theoretical expectation for the neutral case. To check the robustness of coexistence to the shape
of the competition kernel [4, 5, 9, 6, 10, 7, 8] (see Appendix SS6), we run simulations using
a linear-exponential (eβC) and a quartic-exponential (eβC

4
) kernel, where C is the mean trait

complementarity among neighbors. In both cases, our results are compatible with the neutral
scenario.
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Supplementary Figure S8. (Color online) Mean number of “ coexistence”, for
different system sizes of the community. We show results using a linear-exponential (eβC) and
a quartic-exponential (eβC

4
) kernel comparing them with the theoretical expectation for a 2D

voter model, ∆T ∝ N logN [11]. Parameters: L = 64, S = 8, β = 10, µ = 0.025. Deviations
from the straight line probably stem from lack of statistics (which is costly at such large
sizes/times).

S8 Asymmetrical resource trade-offs

In this section we consider a model variant in which positions in the trade-off space are not
equally rewarding a priori. In particular, we chose one of the corners to be favored respect to
the others: individuals whose phenotypes are closer to that vertex have a higher probability of
reproduction. This could be interpreted as one particular limiting resource being more crucial,
or mean that the availability of some resource scales nonlinearly with corresponding trait (e.g.,
a plant with a short root might not be able to reach a deep water layer. Individuals with longer
root systems will have a disproportionate advantage).

In particular, we now modulate the performance of each individual i by multiplying it by a
factor Ri = r1T

1 + r2T
2 + r3T

3; where r1, r2 and r3 are weights (real numbers in the interval
[0, 1]) such that r1 + r2 + r3 = 1. For simplicity we fix r1 = (1 + 2ε)/3, r2 = r3 = (1 − ε)/3 in
order to control the asymmetry with a single parameter (ε; the symmetric case is ε = 0), while
ε values close to 1 lead to large asymmetries. In what follows we fix ε = 0.99.

As illustrated in Fig. S9, although most of individuals initially occupy the most favored (left)
corner, after a few generations, some individuals also settle at other available (and less favorable)
regions; this is a consequence of the system’s tendency to reduce the level of competition. In
conclusion, the main phenomenology reported in the main text appears robust to asymmetrical
trade-offs.
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Supplementary Figure S9. (Color online) Asymmetry among trade-offs: A)
Trade-off space and complementarity as a function of the number of generations. B) Different
measurements characterizing the community in time. Local and relative complementarities
confirm that rapid evolutionary changes may within a few generations. Parameters: L = 64,
S = 16, β = 10, µ = 0.025.

S9 Asexual reproduction

Our model adopts the (sexual) reproduction mechanism of the communities considered in the
experiments by Zuppinger-Dingley et al. [1]. Here we analyze a case of asexual reproduction
in which the traits are directly transmitted from an individual to its offspring (with some
variability), i.e. taking η = 1 in our model (see main text).

Fig S10A shows the evolution of individual phenotypes (each trait value T1, T2, T3 is rep-
resented by the amount of red, yellow and blue respectively), complementarity and spatial
distribution. Observe that, once again, the chief phenomenology of the model, i.e. segregation
toward high levels of specialization, is observed. However, in this case, the mechanism of diversi-
fication is quite different: individuals from any given species can specialize independently. Thus,
in the absence of sexual reproduction, diversification occurs at an individual rather than at a
species level. This type of individual differentiation fosters the presence of equivalent species
(as the species label becomes completely irrelevant in this setting).
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Supplementary Figure S10. (Color online) Asexual reproduction: A) Tradeoff space
and complementarity as a function of the number of generations. Each individual traits values
T1, T2, T3 are represented by the amount of red, yellow and blue respectively. Parameter
values: L = 64, S = 16, β = 10, µ = 0.025. Competition avoidance leads individuals to
segregate in the trade-off space. B) Local complementarity increases similarly to the main
model.

S10 Surviving species

As we do not include mechanisms such as migration or speciation, the number of species actually
present in the community can be reduced after several generations. The resulting change in
diversity can be regarded as an important attribute, because it illustrates the limit of maximum
diversity that a finite system can harbor is the absence of inmigration or speciation processes.

Fig. S11 shows the number of surviving species in different scenarios, including different
levels of competition and variability parameters, and other model variants. As expected, ex-
tinctions occur more rapidly for higher levels of competition (larger values of β). The effective
level of competition is enhanced in the mean-field case in which all individuals interact with
each other (see Appendix SS3), leading to faster extinction.

In the neutral case (β = 0), species disappear at a very slow rate as there is no competition,
but due to stochasticity, most of them are likely to disappear, leading to mono-dominance for
sufficiently large timescales [12]. Interestingly, the stable solution in our model with competition
(β 6= 0) consists of multiple species –as many as the niche dimensionality, in this case 3–
coexisting for an arbitrarily large number generations. This result is congruent with the “niche
dimension hypothesis”, which states that a greater diversity of niches leads to a greater diversity
of species [13].
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Supplementary Figure S11. (Color online) Number of surviving species in time
for different A) initial number of species, B) competition and variability
parameters and C) variants of the model. Species disappear faster in environments with
high competition (higher values of β, or the mean-field). In contrast, the neutral case (β = 0)
corresponds to the case in which more species survive after generations, although, due to
demographic fluctuations, they still disappear on the long term. For sufficiently large numbers
of generations, the system converges to a state with the same number of species than the niche
dimensionality (3 in our case); these species coexist for arbitrarily long periods (provided the
lattice is sufficiently large). Parameter values: L = 64, and β = 10, and µ = 0.025 in A) and
C).
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