
Supplementary Modelling
The Edge of Stability:
Response Times And Delta Oscillations in Balanced
Networks

Grant Gillary 1,2, Ernst Niebur 1,2*,

1 Zanvyl Krieger Mind/Brain Institute, Baltimore, MD, USA.
2 Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore,
MD, USA

* niebur@jhu.edu

1 Stability in the Single Population Model 1

The single population model is depicted in Fig 1A and its equations formulated in the 2

Materials and Methods section, Eqs (7)-(8). This model maintains all of the dynamics 3

of interest from the full balanced network as a function of ∆q including the delta 4

oscillatory instability, fast response to step input and the subsequent slowing of the 5

network response for large positive values of ∆q. This implies that the integration of the 6

inhibitory population and the disinhibitory feedback are not necessary to produce 7

network behavior of this type. However, the removal of the inhibitory population and 8

its disinhibitory feedback does reduce the overall dynamical range of the network. The 9

single population model no longer produces balanced amplification nor does it have a 10

gamma oscillatory instability when ∆q is very large and positive. However, both of 11

these types of dynamics have been described previously [1, 2] and are not the focus of 12

our work. 13

The single population model can be reduced to a third order system by recognizing 14

that each of the four synaptic equations has the same input, R(t). Therefore, setting 15

Sampa+ = Sampa− and Snmda+ = Snmda− reduces the system to third order. After canceling 16

out terms the new single population model is: 17

τe
dR

dt
=−R+ w∆q

(
Snmda − Sampa

)
+ I(t) (S1)

τ l
dSl

dt
=− Sl +R (S2)

where R represents the firing rate of the population, with intrinsic time constant τe, and 18

w is the synaptic weight. Sl represents the synaptic activation which decays 19

exponentially with time constant τ l. l is the synapse type, either AMPA or NMDA. ∆q 20

represents a change in the ratio of AMPA and NMDA receptors on the excitatory 21

projection relative to the inhibitory projection. All information about the excitatory 22

and inhibitory projections is now combined into the w∆q term indicating that most of 23

the recurrent excitation and inhibition has canceled with only the difference in timing 24

remaining. We can compute the transfer function of this system by taking the Laplace 25
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transform of each equation and then combining. The transfer function of the single 26

population system is: 27

R(γ) =

1

τe

(
γ + 1

τnmda

) (
γ + 1

τampa

)
γ3 +

(
1

τnmda + 1
τampa + 1

τe

)
γ2 +

(
1

τnmdaτampa + 1−w∆q
τnmdaτe

+ 1+w∆q
τampaτe

)
γ + 1

τnmdaτampaτe

(S3)

Instabilities of the network can be found by computing the roots of the denominator in 28

Eq (S3). Any root with positive real part is unstable while a root with a real part of 29

zero is marginally stable. Rather than look for all of the roots of the polynomial we 30

search for a set of parameters which make the system marginally stable by assuming 31

that γ = ω0j where j is imaginary and ω0 is the oscillatory frequency in radians per 32

second. Inserting ω0j into the polynomial gives, 33

1

τnmdaτampaτe
−
(

1

τnmda
+

1

τampa
+

1

τe

)
ω2

0+(
1

τnmdaτampa
+

1− w∆q

τnmdaτe
+

1 + w∆q

τampaτe
− ω2

0

)
ω0j = 0. (S4)

We then solve for the values of w∆q and ω0 which set the real part of the equation to 34

zero. This gives the oscillatory frequency of the single population model at instability, 35

ω0 =
1√

τnmdaτampa + τnmdaτe + τampaτe
, (S5)

as well as the value of w∆q at instability, 36

w∆q =
τnmdaτampaτe

(τnmda − τampa) (τnmdaτampa + τnmdaτe + τampaτe)
− τnmda + τampa + τe

τnmda − τampa
(S6)

The value of w∆q given by Eq (S6) is used for the simulation of undamped oscillations 37

in the main text, Fig 1C, left column, middle row. 38

2 Derivation of the Spring Approximation 39

In the main paper we compare the dynamical response of the full balanced network to a 40

damped oscillator. This approximation is derived directly from the single population 41

model which we described in the previous section. We begin by rewriting Eq (S3) . 42

Multiplying the top and bottom of Eq (S3) by τeτ
nmdaτampa then dividing the top and 43

bottom by (τnmdaγ + 1)(τampaγ + 1) yields, 44

R(γ) =
1

τeγ + 1 + w∆q(τnmda−τampa)γ
(τnmdaγ+1)(τampaγ+1)

. (S7)

We then assume that the AMPA connections act instantaneously and therefore take the 45

limit as τampa approaches zero then rearrange into the standard form, 46
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lim
τampa→0

R(γ) =
1

τeγ + 1 + w∆qτnmdaγ
τnmdaγ+1

(S8)

=
1

τe

γ + 1
τnmda

γ2 + τe+(1+w∆q)τnmda

τnmdaτe
γ + 1

τnmdaτe

. (S9)

The denominator of this transfer function describes a damped oscillator with dynamics 47

given by the differential equation 48

d2R(t)

dt2
+ 2ζω0

dR(t)

dt
+ ω2

0R(t) = I(t). (S10)

where ω0 and ζ are defined as, 49

ω0 =
1√

τnmdaτe
, (S11)

ζ =
1

2

τe + (1 + w∆q) τnmda√
τnmdaτe

, (S12)

and I(t) is some time dependent input. Note that although we have taken the limit as 50

τampa goes to zero this is not equivalent to removing the AMPA portion of the model 51

thereby only having one time constant on each projection. Instead the new network is 52

one where the impact of the AMPA receptors are instantaneous and is still effectively 53

represented by the network shown in Fig 1A in the main text. 54

As can be seen from Eq (S12), the damping coefficient ζ is a linear function of w∆q. 55

This implies that ∆q can be used as a reasonable approximation to ζ and that its 56

impact on the network should be roughly equivalent. Given this damped oscillator 57

formulation we can also compute the value of w∆q where the network is critically 58

damped by setting ζ = 1 yielding w∆q = (2
√
τnmdaτe − τnmda − τe)/τnmda. 59

Additionally, we can determine the point at which the system becomes marginally 60

stable by setting ζ = 0. We also call this the undamped network in the main text. The 61

spring network is marginally stable when w∆q = −(1 + τe/τ
nmda). These equations for 62

the critically damped and undamped networks were used to compute the values of w∆q 63

in Fig 1C, top row, used in the simulations. These equations also give an intuition for 64

why the temporal balance condition as described in the main text does not exactly 65

determine the stability of the network. For Eq (S12) to become less than zero, the 66

w∆qτnmda term in the numerator of that equation must be negative and have its 67

absolute value greater than the τe + τnmda portion of the numerator. Both τe and 68

τnmda represent damping caused by both the cell bodies of the neurons and the passing 69

of the recurrent activity through the synapses. For the network to become unstable the 70

transient imbalances caused by the w∆qτnmda term must drive the system sufficiently 71

to counteract the inherent damping in the cell body and synapses. 72

3 Steady States of the Full Linear Network 73

The full linear network is defined in Eqs (2)-(4) in the main text. The steady states of 74

the network can be found by setting the derivatives to zero and then solving for Re, Ri 75
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and Slmn. The steady state rates are, 76

Re =
I(1 + Jii)

Jei(J
ampa
ie + Jnmdaie )− (1 + Jii)(J

ampa
ee + Jnmdaee − 1)

,

Ri =
I(Jampaie + Jnmdaie )

Jei(J
ampa
ie + Jnmdaie )− (1 + Jii)(J

ampa
ee + Jnmdaee − 1)

,

Slmn = Rn.

(S13)

As long as the balance conditions are met, the steady state equations for this network 77

have only one solution and if the input I is zero the steady state is also zero. These 78

equations do not depend upon any time constants or the NMDA/AMPA ratio implying 79

that ∆q does not impact the steady state firing rates. Since the network is linear it can 80

be fully described by its coefficient matrix. The eigenvectors and eigenvalues of this 81

matrix are the solution of the homogeneous system of linear ordinary differential 82

equations. Since the eigenvalues represent the time constants of the network we will 83

next consider how the eigenvalues of the coefficient matrix impact τn, the effective 84

network time constant. 85

4 Network Time Constants 86

The roots of the characteristic polynomial of the balanced network 87

sn + an−1s
n−1 + . . .+ a1s+ a0 = 0. (S14)

yield the eigenvalues. Using the coefficients of Eq (S14) it can be shown that the first 88

eigenvalue is small and negative when the ratio a1/a0 is large and positive, yielding a 89

large network time constant τn [3]. Conversely, when a1/a0 is small and positive then 90

the first eigenvalue will be large and negative, resulting in a short τn. We do not provide 91

sufficient conditions for small τn, only a necessary condition. However, simulations show 92

that when a1/a0 is small and positive, τn is also small, Fig 2D. We assume that J is 93

large with respect to the leak current and that all synaptic strengths, Jmn, are of order 94

J . Due to the large number of terms in the characteristic equation we only consider 95

coefficients in the highest order of J . Using Mathematica (Wolfram Inc, Champaign IL) 96

we calculate the coefficients of the characteristic equation in highest order (J2), yielding, 97

a0 =Jei(J
ampa
ie + Jnmdaie )− Jii(Jampaee + Jnmdaee ), (S15)

a1 =Jei(J
ampa
ie + Jnmdaie )(τampaee + τnmdaee + τgabaii )

− Jii(Jampaee + Jnmdaee )(τampaie + τnmdaie + τgabaei )

+ Jei(J
ampa
ie τnmdaie + Jnmdaie τampaie )

− Jii(Jampaee τnmdaee + Jnmdaee τampaee ). (S16)

The ratio a1/a0 is large, thereby producing a large τn, if the following three conditions 98

are met, 99

Jei(J
ampa
ie + Jnmdaie )− Jii(Jampaee + Jnmdaee )� O(J2), (S17)

Jei(J
ampa
ie + Jnmdaie )(τampaee + τnmdaee + τgabaii )−
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Jii(J
ampa
ee + Jnmdaee )(τampaie + τnmdaie + τgabaei )� O(J2), (S18)

Jei(J
ampa
ie τnmdaie + Jnmdaie τampaie )−

Jii(J
ampa
ee τnmdaee + Jnmdaee τampaee ) ∼ O(J2). (S19)

These three conditions are taken directly from terms in Eqs (S15) and (S16) using 100

the requirement that a1/a0 is large. The first constraint, Eq (S17), states that positive 101

feedback (second term) and negative feedback (first term) should be balanced. This 102

“balance condition” is also a requirement for the system to be stable as we will see in a 103

later section. The other two constraints describe the “temporal balance condition,” first 104

introduced in this contribution. Formula (S18) describes a condition which depends on 105

the overall time constants of the EE and IE connections. It produces changes in the 106

temporal balance condition if receptors on each projection have different time constants, 107

for example, if τnmdaee 6= τnmdaie . However, if the sum of the time constants of the EE 108

projection is the same as the sum of the time constants on the IE projection, then 109

inequality (S18) reduces to the balance condition, inequality (S17), with a constant 110

coefficient. This term has been described previously for networks with only one time 111

constant on each projection [3]. We assume that synapses of the same neurotransmitter 112

type have the same time constant on all projections, so τampa is the same for all 113

projections with AMPA currents, and the same applies to τnmda and τgaba. Therefore, 114

Eq (S18) reduces to Eq (S17) and has little impact on τn, leaving only Eq (S19). 115

Eq (S19) describes the impact of changing the ratio of two time constants on the EE 116

and IE projections which is how our network produces large τn as ∆q increases. 117

Fundamentally, this constraint states that changing the strength of AMPA and NMDA 118

currents on the EE or IE projections will change the average time constant of that 119

projection and thereby alter τn. In a mathematical sense, the cross multiplication of 120

synaptic time constants for one type of synapse with the synaptic strength of the other 121

type of synapse means that the first term in Eq (S19) can be made larger than the 122

second term without breaking the balance condition. For example, if we increase Jnmdaee 123

by ∆J and decrease Jampaee by ∆J then the balance condition is maintained. 124

Additionally, ∆Jτampaee < ∆Jτnmdaee which implies that the second term in Eq (S19) is 125

decreased by the changes in synaptic strength. Another way to state this is that if 126

τnmdaee > τampaee then, 127

(Jampaee −∆J)τnmdaee + (Jnmdaee + ∆J)τampaie <

Jampaee τnmdaee + Jnmdaee τampaee . (S20)

This change increases the ratio a1/a0 yielding a longer time constant of decay. In 128

addition, as can be seen from Eq (S13), this type of balanced change in synaptic 129

strength will not change the equilibrium state of the network. 130

5 Stability 131

In addition to finding the eigenvalues of the system, the characteristic polynomial can 132

also be used to determine the stability of the system. The Routh-Hurwitz stability 133

criterion provides necessary and sufficient conditions for the stability of a time invariant 134

linear system with constant coefficients. However, due to the complexity of the 135

inequalities this yields we do not require that the polynomials be Hurwitz, but only that 136

the coefficients of the characteristic polynomial are all positive which is a necessary but 137

not sufficient condition for stability. The stability conditions below work well for the 138

delta oscillatory instability when ∆q is small but miss the gamma oscillatory instability 139

for large and positive ∆q. 140

PLOS 5/12



The stability criteria are,

Jei(J
ampa
ie + Jnmdaie ) > Jii(J

ampa
ee + Jnmdaee ) (S21)

Jii
τiτii

>
Jampaee

τeτ
ampa
ee

+
Jnmdaee

τeτnmdaee

(S22)

Jii
τiτii

∑
m 6=i,ii

1

τ lm
>

Jampaee

τeτ
ampa
ee

∑
m6=e,

(m,l) 6=
(ee,ampa)

1

τ lm
+

Jnmdaee

τeτnmdaee

∑
m 6=e,

(m,l)6=
(ee,nmda)

1

τ lm
(S23)

Jei
(
Jnmdaie τampaie + Jampaie τnmdaie

)
>

Jii
(
Jnmdaee τampaee + Jampaee τnmdaee

)
, (S24)

τii + τampaee + τnmdaee > τei + τampaie + τnmdaie (S25)

τii τ
ampa
ee τnmdaee > τei τ

ampa
ie τnmdaie (S26)

τii(τ
ampa
ee + τnmdaee ) + τampaee τnmdaee >

τei(τ
ampa
ie + τnmdaie ) + τampaie τnmdaie . (S27)

The first condition, eq. (S21), requires that negative feedback be greater than positive 141

feedback; this is the balance condition. We use it and the assumption that the time 142

constant of particular receptor subtypes does not change in the derivation of Eqs (S25), 143

(S26) and (S27). The next two conditions, Eqs (S22) and (S23), require that the time 144

constant weighted strength of disinhibition be greater than that of pure positive 145

feedback. In addition, the right side of both of these inequalities will be dominated by 146

the AMPA synapses due to their small time constant. The fourth constraint, Eq (S24), 147

is the temporal balance condition. The last three constraints show that the global 148

positive feedback must have a longer time constant than the negative feedback. 149

Additionally, the combination of Eqs (S25) and (S26) puts limits on the range of the 150

time constants in the EE connections versus the IE connections. 151

The stability equations also constrain the possible time constants on each projection. 152

One very strict example can be seen when we assume that 153

Jampaie = Jnmdaie = Jampaee = Jnmdaee and that Jei = Jii. This turns Eq (S24) into a new 154

stability condition, 155

τampaie + τnmdaie > τampaee + τnmdaee . (S28)

Given that τii = τei, this directly contradicts Eq (S25) and there is only a small subset 156

of average synaptic time constants that are allowed. These time constants must meet 157

two conditions, 158

τampaie + τnmdaie = τampaee + τnmdaee , (S29)

τampaee τnmdaee > τampaie τnmdaie . (S30)

The strict inequality in Eq (S25) implies that such a system should be unstable. 159

However, in practice equality in the stability conditions also gives a stable network 160

which is likely due to the fact that these constraints themselves are approximations. In 161

general the numerically computed roots from the coefficient matrix show a larger area 162

of stability than the heuristics we have provided. What Eqs (S25)-(S27) seem to imply 163
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is that changing the ratio of synaptic strengths of the different receptors on the 164

excitatory projections is a more stable way to alter the effective time constant of a 165

projection than changing the time constants of receptors. 166

6 Coefficients of the Characteristic Polynomial 167

In the previous section we examined the stability conditions associated with the rate 168

based balanced network. This analysis depends upon two types of approximations. The 169

first is finding the coefficients of the characteristic polynomial in their highest order of 170

J which we accomplished by implementing a set of symbolic rules in Mathematica. The 171

second approximation is a distillation of the O(Jn) coefficients, where n is the highest 172

order of J , into the minimal number of conditions such that the coefficients of the 173

characteristic polynomial are greater than zero. We accomplished this by looking for 174

terms that are consistent between the coefficients and requiring them to be greater than 175

zero. Often, two or more coefficients included the same terms. Because we matched 176

subsets of terms and then required them to be greater than zero, our necessary 177

conditions are somewhat more stringent than may be required by the coefficients. For 178

example if two conditions appear in one coefficient it is possible that one of those 179

conditions is significantly greater than zero, allowing the other condition flexibility in 180

meeting its stability criterion. Since our purpose was to facilitate an understanding of 181

the system analytically rather than calculate the exact stability requirements we felt 182

that the trade off of simplicity for more stringent criteria was warranted. Here we will 183

list the coefficients of the characteristic polynomial in the highest order of J for easier 184

verification of our stability conditions: 185

a0 = Jei(J
ampa
ie + Jnmdaie )− Jii(Jampaee + Jnmdaee ), (S31)

a1 = Jei(J
ampa
ie + Jnmdaie )(τampaee + τnmdaee + τii)

− Jii(Jampaee + Jnmdaee )(τampaie + τnmdaie + τei)

+ Jei(J
ampa
ie τnmdaie + Jnmdaie τampaie )

− Jii(Jampaee τnmdaee + Jnmdaee τampaee ), (S32)

a2 = JeiJ
ampa
ie

(
τii(τ

nmda
ee + τampaee ) + τnmdaee τampaee

+ τnmdaie (τii + τnmdaee + τampaee )
)

+ JeiJ
nmda
ie

(
τii(τ

nmda
ee + τampaee ) + τnmdaee τampaee

+ τampaie (τii + τnmdaee + τampaee )
)

− JiiJampaee

(
τei(τ

nmda
ie + τampaie ) + τnmdaie τampaie

+ τnmdaee (τei + τnmdaie + τampaie )
)

− JiiJnmdaee

(
τei(τ

nmda
ie + τampaie ) + τnmdaie τampaie

+ τampaee (τei + τnmdaie + τampaie )
)

a3 = Jei(J
nmda
ie τampaie + Jampaie τnmdaie )

∗ (τii(τ
nmda
ee + τampaee ) + τnmdaee τampaee )
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+ Jei(J
nmda
ie + Jampaie )τiiτ

nmda
ee τampaee

− Jii(Jnmdaee τampaee + Jampaee τnmdaee )

∗ (τei(τ
nmda
ie + τampaie ) + τnmdaie τampaie )

− Jii(Jnmdaee + Jampaee )τeiτ
nmda
ie τampaie (S33)

a4 = Jei(J
nmda
ie τampaie + Jampaie τnmdaie )τiiτ

nmda
ee τampaee

− Jii(Jnmdaee τampaee + Jampaee τnmdaee )τeiτ
nmda
ie τampaie (S34)

a5 = Jii(τeτeiτ
ampa
ie τnmdaie τnmdaee + τampaee (τeτeiτ

nmda
ie τnmdaee

+ τampaie (τeτ
nmda
ie τnmdaee + τei(τ

nmda
ie τnmdaee

+ τe(τ
nmda
ie + τnmdaee )))))

− Jnmdaee (τiτeiτiiτ
ampa
ie τnmdaie + τampaee (τiτeiτiiτ

nmda
ie

+ τampaie (τiτiiτ
nmda
ie + τei(τiτ

nmda
ie + τii(τi + τnmdaie )))))

− Jampaee (τiτeiτiiτ
nmda
ie τnmdaee + τampaie (τiτiiτ

nmda
ie τnmdaee

+ τei(τiτ
nmda
ie τnmdaee + τii(τ

nmda
ie τnmdaee

+ τi(τ
nmda
ie + τnmdaee ))))) (S35)

a6 = Jiiτeτ
ampa
ee τnmdaee − Jampaee τiτiiτ

nmda
ee

− Jnmdaee τiτiiτ
ampa
ee (S36)

a7 = 1 (S37)

a8 = 1 (S38)

7 Changing the Synaptic Time Constants 186

Our model as described is a special case in which there are two types of excitatory 187

synapses, of which each is composed entirely of either AMPA or NMDA receptors. 188

However, in the linear case, our balanced network can be shown to be equivalent to one 189

with different combinations of AMPA and NMDA receptors at its synapses. In addition, 190

we will show that when STD is added, the STD model we presented is a special case of 191

a more general model where each synapse has one type of STD and a ratio of AMPA to 192

NMDA receptors. 193

Without STD, we consider two synapses that are allowed to have different ratios of 194

NMDA to AMPA receptors. We use q again for the fraction of synaptic strength 195

produced by the NMDA receptors in a given synapse. Each synapse uses a different 196

combination of the exact same synaptic filters, either Sampaee and Snmdaee or Sampaie and 197

Snmdaie . All synapses see the same average firing rate of the excitatory population, Re, 198

and therefore no change in the equations for the synapses are required. The only change 199

is in how the outputs of the different synaptic filters are summed. A reformulation of 200

Eqs (2)-(3) gives, 201

τe
dRe
dt

= −Re + JAee
(
(1− qA)Sampaee + qAS

nmda
ee

)
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+ JBee
(
(1− qB)Sampaee + qBS

nmda
ee

)
− JeiSei + I(t), (S39)

τi
dRi
dt

= −Ri + JCee
(
(1− qC)Sampaee + qCS

nmda
ee

)
+ JDee

(
(1− qD)Sampaee + qDS

nmda
ee

)
− JiiSii. (S40)

All variables are the same as previously described except that there are now four types 202

of synapses labeled A−D which have associated NMDA percentages qA − qD. If we 203

reorganize these equations we find that they are exactly the same as Eqs (2)-(3) where 204

the synaptic strengths are now defined such that, 205

Jampaee = (1− qA)JAee + (1− qB)JBee, (S41)

Jnmdaee = qAJ
A
ee + qBJ

B
ee, (S42)

Jampaie = (1− qC)JCie + (1− qD)JDie , (S43)

Jnmdaie = qCJ
C
ie + qDJ

D
ie . (S44)

Therefore, the linear model without STD is equivalent to one where each synapse can 206

have a different ratio of NMDA to AMPA receptors. 207

When STD is added to Eqs (S39)-(S40) the coefficients are no longer equivalent. 208

Now the coefficients representing the synaptic strengths include STD and hence are not 209

constant, 210

Jampaee = (1− qA)x1J
A
ee + (1− qB)x2J

B
ee, (S45)

Jnmdaee = qAx1J
A
ee + qBx2J

B
ee, (S46)

Jampaie = (1− qC)x2J
C
ie + (1− qD)x1J

D
ie , (S47)

Jnmdaie = qCx2J
C
ie + qDx1J

D
ie . (S48)

where x1 and x2 represent the STD equations defined for the balanced network with 211

STD. This new model will produce similar responses to the model with pure AMPA or 212

NMDA synapses. When qA → 0, qB → 1, qC → 0 and qD → 1, Eqs (S45)-(S48) are 213

equivalent to the model with STD presented in the main paper. 214

8 Steady States of the Network with STD 215

Since STD adds nonlinearities to the network, alterations in parameters or the strength 216

of input do not necessarily yield easily predictable results. Therefore, in this section we 217

analytically calculate the steady state values of the balanced network with STD, 218

Eqs (2)-(4) and (9)-(12). Setting the derivatives equal to zero, assuming I(t) = I is 219

constant and solving for Re yields a cubic polynomial. Its coefficients are, 220

a0 =
−I

τampar uampaτnmdar unmda
(S49)

a1 =− I
(

1

τampar uampa
+

1

τnmdar unmda

)
+

1 + kw2

1+kw − w
τampar uampaτnmdar unmda

(S50)
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a2 =− I +
1 + 1

2
kw2

1+kw −
1
2w

τnmdar unmda
+

1 + 1
2
kw2

1+kw −
1
2w

τampar uampa
(S51)

a3 =1. (S52)

Each subscript corresponds to the respective power of Re in the polynomial. We will 221

refer to steady state values of Re as Rsse . Given that we only consider situations where 222

I > 0 then the coefficient a0 must always be less than zero. Since coefficient a3 is 223

positive there is at least one change of signs in the coefficients. Thus, Descartes’ rule of 224

signs implies that there will always be at least one positive root for non-oscillatory 225

solutions. Therefore, the number of positive and negative roots will be determined by 226

coefficients a1 and a2. The right hand side of each of these equations is similar to the 227

balance equation implying that both a1 and a2 will tend to switch signs together 228

maintaining the single sign change within the coefficients. Consequently, there will 229

generally be one positive root and two negative roots when I > 0 and the balance 230

condition is met. Another way of saying this is that the firing rate of the excitatory 231

population has only one steady state solution. This reduces finding the steady state of 232

the system to just finding the largest root of the polynomial. 233

When the stimulus is removed such that I = 0 then a0 = 0 giving a zero root. 234

Therefore, as long as there are no positive roots, the system will always decay to zero. If 235

I = 0, the system will have one sign change and consequently one positive root when a1 236

and a2 are negative. This occurs when positive feedback is greater than negative 237

feedback as determined by the balance equation. Therefore, when recurrent excitation is 238

large compared to the negative feedback the system will decay to a non-negative steady 239

state. This analysis shows that the steady states of this system act exactly as we would 240

expect based on the linear portion of the network. A constant input causes the system 241

to move to one positive steady state. Removing the stimulus causes the system to decay 242

to zero unless there is unbalanced positive feedback. We will not list steady state 243

solutions for the other dependent variables but their steady state values can be easily 244

calculated from Rsse . 245

9 Stability, rise time and oscillations 246

In the main text we predominantly used one set of values for the synaptic strength, 247

k = 1.2 and w = 30. Supplementary Fig S1A-E shows how the network responds to 248

changes in both variables. Panels A, B and C show how w and k impact instability, 249

delta oscillations and τn for negative ∆q. Panels D and E show how w and k impact 250

instability and τn for positive ∆q. Panel E is the rise time of each network for a 251

particular ∆q. Since the slope of the rise time as a function of ∆q is close to linear, see 252

Fig 2C, Fig S1E effectively represents the slope of that line and therefore the rate of 253

change of τn as a function of ∆q. The rate of change of τn is not equivalent to the 254

maximum possible value of τn since networks with a smaller slope are also stable for a 255

larger range of ∆q, see Fig S1D,E. From Fig S1A-E we see that increasing the 256

overall synaptic strength w makes the approach to both instability and oscillations 257

occur for much smaller values of ∆q. It also increases the rate of change of τn. On the 258

other hand, increasing the ratio of inhibitory to excitatory strength, k, results in smaller 259

τn across all values of ∆q, Fig S1C,E. It also increases the range of ∆q for which the 260

balanced network is stable. For large values of k and small values of w the network is 261

stable for all possible positive values of ∆q. In Fig S1D this occurs when ∆q = 0.7 262

since all activity on the EE projection is carried by NMDA receptors at this value of ∆q. 263

Although changing w and k does cause some some changes in the quantitative response 264

characteristics of the network the overall qualitative response remains the same. 265

PLOS 10/12



The resonant frequency at the AMPA instability is highly robust to changes in k and 266

w with a total change of approximately 1.4 Hz for a wide range of synaptic strengths, 267

Fig S1F. However, q and k are not the only parameters that can modify the resonant 268

frequency. Alterations in the effective synaptic time constants on each projection or 269

changes in the effective membrane time constants for individual neurons might produce 270

larger changes in the resonant frequency. Changes of the effective synaptic time 271

constant on the excitatory projections are equivalent to changing q, the proportion of 272

synaptic strength through NMDA receptors. Additionally, we define fτ as a fractional 273

decrease in the membrane time constant such that τnewe = fττe and τnewi = fττi. The 274

parameter fτ represents an effectively decreasing membrane time constant as would be 275

observed for high levels of afferent or recurrent activity in a conductance based 276

model [4]. Fig S1G shows the resonant frequency as a function of q and fτ with 277

k = 1.2 and w = 30. For reference, in the main text q = 0.3 and fτ = 1.0. The network 278

still oscillates in the delta range for many values of q and fτ . However, for q < 0.3 and 279

fτ < 0.3 the resonant frequency enters the theta range and then the alpha range. If 280

k > 1.2 the frequencies could even be slightly higher. Although shifts out of the delta 281

range are possible, for the largest part of the parameter space oscillations remain within 282

the delta range. 283

Fig S1H shows the evolution of the network’s poles as a function of ∆q. The 284

imaginary axis is plotted in units of Hertz. When poles separate from the real axis and 285

have a non-zero imaginary part, they cause oscillations in the network at a frequency 286

equivalent to their imaginary part. Poles to the right of the imaginary axis (vertical 287

solid black line) cause the network to become unstable. Four of the network’s eight 288

poles are visible in the plot. The other four poles are not relevant to our analysis. The 289

right plot is a close up of the poles in the black box in the left plot. The two poles close 290

to the real axis control both the AMPA dominated instability and the increase of τn. As 291

∆q becomes increasingly negative, the two poles, visible in the right plot, separate from 292

the real axis then approach and cross the imaginary axis as the system becomes 293

unstable. This is what causes the delta oscillations and the subsequent instability. In 294

the other direction, as ∆q becomes large and positive, both poles move to the real line. 295

One pole then moves off to infinity and the other pole approaches the imaginary axis 296

again. As the second pole approaches the imaginary axis it increases τn. Although this 297

pole gets very close to instability it never crosses the axis even as ∆q becomes large. 298

The instability at large ∆q is due to the two poles visible in the 60 Hz range in the left 299

plot. As ∆q becomes larger they approach and then cross the imaginary axis. This is 300

what causes the oscillatory instability in the gamma range. 301
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Fig S1. Stability, rise time and oscillatory activity of the rate based model
as a function of the network parameters. All networks use q = 0.30 unless
otherwise noted. The white crosses on A-F represent the values of k and w used for the
rate based network without STD in the main text. A: Change in q on the EE projection
required to reach the AMPA dominated instability. The colorbar refers to negative
values of ∆q. B: Change in q on the EE projection required to reach the bifurcation
yielding delta oscillations. The colorbar refers to negative values of ∆q. C: The rise
time in seconds at which the network begins to produce delta oscillations. D: Change in
q on the EE projection required to reach the NMDA dominated instability. E: Rise time
of the network for a constant value of ∆q. Shows the slope of the rise time as a function
of k and w. ∆q = 0.075 was chosen to ensure that all instantiations of the network were
stable and had minimal oscillations. F: Location of the peak in the frequency response
as the network approaches the AMPA dominated instability. G: Location of the peak in
the frequency response as the network approaches the AMPA dominated instability.
Network parameters were k = 1.2 and w = 30. q is the proportion of synaptic strength
through NMDA receptors. fτ is a reduction in the membrane time constant of the
excitatory and inhibitory neurons such that τnewe = fττe and τnewi = fττi. H: Poles of
the rate based network without STD plotted as a function of ∆q. The imaginary axis is
in units of Hz. The right panel is an expansion of the box in the left panel (black
rectangle around the origin). Poles cross the imaginary axis for large positive ∆q at
about 60 Hz, corresponding to an oscillatory instability in the gamma range (blue
circles, left panel), and for small negative ∆q at about 2 Hz, corresponding to an
oscillatory instability in the delta range (red circles, right panel).
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