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There are several methods that can be used to calculate the effective reproduction

number, Re, and the basic reproduction number, R0, for a population with heterogeneity

in sexual activity and any mixing pattern [1]. We used the method known in the literature

as the next-generation matrix approach. The discussion of this standard method in the

context of compartmental epidemiological models such as the SIR model or other related

models of infectious diseases can be found in [2, 3]. Here we briefly revise the steps of the

calculation of Re for our HIV model with homogeneous treatment uptake

dSl

dt
= µN0

l − µSl − JlSl, (1)

dIl1
dt

= JlSl − (µ+ ρ1 + τ)Il1 + φAl1, (2)

dIlk
dt

= ρk−1Il,k−1 − (µ+ ρk + τ)Ilk + φAlk, (3)

dAl1

dt
= τIl1 − (µ+ γ1 + φ)Al1, (4)

dAlk

dt
= τIlk + γk−1Al,k−1 − (µ+ γk + φ)Alk, (5)

where k = 2, . . . , n and l = 1, . . . ,m. Sl, Ilk and Alk denote the number of susceptible,

infected and treated individuals in stage k and risk group l. The description of the param-

eters of the model is given in Table 1. The computation of R0 follows the same steps, with

the only difference that the starting point is the system of differential equations without

the treated population. For heterogeneous uptake by risk group τ has be substituted by

τl in Eq. (1)-(5) but the procedure for the computation of Re is still the same.

We parametrized the model for the case of m = 6 risk groups considered previously in

modeling dynamics of Hepatitis B virus in MSM populations in the UK and the Nether-

lands [4, 5, 6, 7, 8]. From these studies we adopted the initial fractions of the population

in the 6 risk groups, ql, where ql ≤ 1 for l = 1, . . . , 6 and
∑

6

l=1
ql = 1. However, the

calculation of Re does not depend on the specific number of risk groups as far as this

number is finite. We, therefore, describe the general calculation for m groups.

1corresponding author: G.Rozhnova@umcutrecht.nl

1



We start by calculating the Jacobian matrix J of Eqs. (1)-(5) where the population size

in group l is expressed as the sum of all other compartments, Nl = Sl +
∑n

k=1
(Ilk + Alk),

evaluated at the infection free equilibrium

S∗

l = qlN0 = N0

l , I∗lk = A∗

lk = 0, (6)

where l = 1, . . . ,m and k = 1, . . . , n.

As demonstrated in [3], the Jacobian J can be written as a sum of two matrices, a

matrix of transmissions T and a matrix of transitions Σ,

J = T+Σ. (7)

Re then equals the dominant eigenvalue of the next generation matrix defined as follows

[3]

K = −TΣ−1. (8)

In the following we give explicit expressions for the matrices Σ and T. The transition

matrix Σ is a block diagonal matrix whose diagonal elements are identical submatrices

Σ̄l = Σ̄, l = 1, . . . ,m,

Σ =

















Σ̄1 0 . . . 0 0

0 Σ̄2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Σ̄m−1 0

0 0 . . . 0 Σ̄m

















. (9)

The identical diagonal elements Σ̄ are themselves block matrices composed from subma-

trices Πk and Γk as follows

Σ̄ =



























−µ 0 0 0 . . . 0 0

0 Π1 0 0 . . . 0 0

0 Γ1 Π2 0 . . . 0 0

0 0 Γ2 Π3 . . . 0 0

0
...

...
...

. . .
...

...

0 0 0 0 . . . Πn−1 0

0 0 0 0 . . . Γn−1 Πn



























. (10)

The matrix Σ̄ contains n submatrices Πk along the diagonal and (n− 1) submatrices Γk

along the subdiagonal where

Πk =

(

−µ− ρk − τ φ

τ −µ− γk − φ

)

(11)

and

Γk =

(

ρk 0

0 γk

)

, k = 1, . . . , n. (12)
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Note that the transition matrix Σ given by Eq. (9) has a special form, i.e. diagonal,

because we assumed that the disease progression, treatment uptake and dropping out of

treatment are the same for all risk groups. When treatment uptake by risk groups differs,

then Σ given by Eq. (9) is still block diagonal but its diagonal elements are not identical,

Σ̄l 6= Σ̄, l = 1, . . . ,m. The matrix Σ̄l has the form of Eq. (10), where in the expression

for Πk τ has to be substituted by τl.

This is not true for the transmission matrix T that depends on the mixing and het-

erogeneity in partner change rates. T consists of m2 submatrices T̄ll′ with l, l′ = 1, . . . ,m

as follows

T =













T̄11 T̄12 · · · T̄1m

T̄21 T̄22 · · · T̄2m

...
...

. . .
...

T̄m1 T̄m2 · · · T̄mm













, (13)

where

T̄ll′ = λclMll′

















0 −h1 −ǫ −h2 −ǫ . . . −hn −ǫ

0 h1 ǫ h2 ǫ . . . hn ǫ

0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0

















. (14)

Here Mll′ is the element of the mixing matrix given by

Mll′ = ω
cl′ql′

m
∑

l′′=1

cl′′ql′′

+ (1− ω)δll′ , (15)

with

δll′ =







1, if l = l′

0, if l 6= l′.

Re is computed as the largest eigenvalue of the matrix K given by Eq. (8). This

eigenvalue can be computed explicitly as a function of the parameters for arbitrary number

of stages n and groups m because the matrix K has rank 1 and therefore the remaining

eigenvalues equal zero. However, the expressions are too long for our default parameters

and do not convey any insight, so we do not write them explicitly here.
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