Table A. Statistics of the sizes of the ERVs studied, including those in the sex chromosomes - X and Y

	Standard								
ERV	Number	Mean (bp)	Steviation (bp)	$\mathbf{0 \%}$	$\mathbf{2 5 \%}$	$\mathbf{5 0 \%}$	$\mathbf{7 5 \%}$	$\mathbf{1 0 0 \%}$	
ETn	1866	1519	2429	60	316	331	340	9776	
IAP	5950	3009	2725	60	402	2722	5281	9877	
HERV-K	872	1430	1704	751	965	974	1011	10368	

Table B. Univariate permutation tests for low-resolution features. P-values obtained from univariate permutation tests with three different test statistics (sample mean difference, sample median difference, and sample variance ratio) and for three comparisons (fixed elements vs. controls, polymorphic (or in vitro) elements vs. controls, and fixed vs polymorphic (or in vitro) elements) in the study of ETns, IAPs, and HERV-Ks. Significant results (p-value<0.05) are in bold, and color coded as red when the statistics is higher in, e.g., fixed elements vs. controls, and in blue when it is lower.

	Fixed vs. control			Polymorphic vs. control		Fixed vs. polymorphic			
	ETn	Mean	Median Variance	Mean	Median Variance	Mean	Median Variance		
Recombination rates	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	0.96	0.32	0.22	0.13	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	0.11
Replication timing	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	0.12	0.06	0.39				
Distance to telomere	0.06	0.06	0.09	0.96	0.88	0.13	0.28	0.50	0.63
Distance to centromere	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	0.77	0.67	0.36	0.19	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	0.15

	IAP			Fixed vs. control		Polymorphic vs. control		Fixed vs. polymorphic	
	Mean	Median Variance	Mean	Median Variance	Mean	Median Variance			
Recombination rates	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	0.58	0.11	0.35	0.96	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	0.58
Replication timing	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$				
Distance to telomere	0.71	0.98	$\mathbf{0 . 0 0}$	0.57	0.27	$\mathbf{0 . 0 3}$	0.78	0.16	0.23
Distance to centromere	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	0.53	0.57	0.42	0.51	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	0.12

	HERV-K		Fixed vs. control		In vitro vs. control		Fixed vs. in vitro		
	Mean	Median Variance	Mean	Median Variance	Mean	Median Variance			
Recombination rates	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 0}$	0.26	0.22	0.98	0.32	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	0.06
Replication timing	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	0.00	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	0.00	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	0.08
Distance to telomere	0.53	$\mathbf{0 . 0 0}$	0.00	0.84	0.17	0.01	0.48	$\mathbf{0 . 0 3}$	0.08
Distance to centromere	0.89	0.60	0.00	0.01	0.03	0.12	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 2}$	0.02

Table C. Predictors that explained a deviance $\mathbf{> 2 0 \%}$ in single logistic regression fits for the three comparisons implemented for each of type of elements - ETns, IAPs and HERVKs (these predictors were excluded from multiple FLR models).
The "Predictor" column reports predictors included in each single logistic regression fit. The "Coefficient" column reports coefficient estimates (a positive coefficient means that an increase in the feature increases the likelihood of, e.g., fixed vs. control; a negative coefficient means an increase in the feature decreases such likelihood). The "p-value" column reports p-values for the coefficients. They both are in bold if p-value<0.05. For functional predictors, several rows are listed corresponding to the intervals where the feature was considered - as indicated in the "Range of windows" column. The "DE" column reports the total deviance explained by each single logistic regression fit.
A. Fixed ETn vs control

Predictor Range of windows Coefficient p-value DE (\%)				
Mononucleotide content	Scalar	$4.5 \mathrm{E}+00$	2.0E-16	26.9
Dinucleotide content	Scalar	$1.0 \mathrm{E}+01$	2.0E-16	88.6
Trinucleotide content	Scalar	$4.8 \mathrm{E}+00$	2.0E-16	32.0
Tetranucleotide content	Scalar	$8.8 \mathrm{E}+00$	2.0E-16	75.1
LINE content	(-32,-24)	1.6E-02	1.7E-03	33.0
	$(-24,-16)$	1.1E-02	3.9E-02	
	$(-16,-8)$	2.2E-02	4.5E-05	
	$(-8,0)$	$2.9 \mathrm{E}-02$	$6.3 \mathrm{E}-08$	
	$(0,8)$	2.6E-02	6.5E-07	
	$(8,16)$	1.7E-02	1.3E-03	
	$(16,24)$	1.1E-02	3.6E-02	
	$(24,32)$	2.2E-02	1.3E-05	
Intron content	$(-32,-16)$	-1.3E-02	$2.4 \mathrm{E}-01$	26.4
	$(-16,0)$	-8.2E-02	2.7E-09	
	$(0,16)$	-6.9E-02	1.2E-06	
	$(16,32)$	-4.5E-02	2.7E-05	
Most conserved elements content	$(-30,-20)$	-2.3E-02	1.3E-04	46.6
	(-20,-10)	-2.0E-02	1.2E-03	
	$(-10,0)$	-6.2E-02	2.0E-16	
	$(0,10)$	-5.6E-02	2.0E-16	
	$(10,20)$	-3.5E-02	3.0E-08	
	$(20,30)$	-2.9E-02	1.4E-06	
mESC expression WA	$(-30,-10)$	-1.0E-03	$1.9 \mathrm{E}-01$	26.8
	$(-10,10)$	-9.5E-03	2.0E-16	
	$(10,30)$	-2.7E-03	2.1E-04	

B. Polymorphic ETn vs control

Predictor Range of windows Coefficient p-value DE (\%)				
Mononucleotide content	Scalar	$4.5 \mathrm{E}+00$	2.0E-16	24.2
Dinucleotide content	Scalar	$9.3 \mathrm{E}+00$	2.0E-16	85.9
Trinucleotide content	Scalar	5.3E+00	2.0E-16	33.9
Tetranucleotide content	Scalar	$9.3 \mathrm{E}+00$	2.0E-16	77.2
LINE content	Scalar	8.3E-01	2.0E-16	26.7
Intron content	$(-28,-20)$	-4.6E-02	$2.6 \mathrm{E}-01$	
	$(-20,-12)$	-3.0E-02	5.8E-01	
	$(-12,-4)$	-5.5E-02	$3.1 \mathrm{E}-01$	
	$(-4,4)$	-1.9E-01	2.7E-04	21.1
	$(4,12)$	-1.1E-02	8.4E-01	
	$(12,20)$	-7.0E-02	$2.0 \mathrm{E}-01$	
	$(20,28)$	7.1E-03	8.7E-01	
Most conserved elements content	Scalar	$-5.8 \mathrm{E}+00$	2.0E-16	28.5

C. Fixed ETn vs polymorphic
Predictor Range of windows Coefficient p-value DE (\%)

D. Fixed IAP vs control

Predictor Range of windows Coefficient p-value DE (\%)

Mononucleotide content	Scalar	$4.9 \mathrm{E}+00$	2.0E-16	27.7
Dinucleotide content	Scalar	$3.5 \mathrm{E}+01$	2.0E-16	86.1
Trinucleotide content	Scalar	$4.7 \mathrm{E}+00$	2.0E-16	30.7
Tetranucleotide content	Scalar	$7.9 \mathrm{E}+00$	2.0E-16	70.5
LINE content	Scalar	$1.6 \mathrm{E}+00$	2.0E-16	42.3
Intron content	(-30,-20)	4.6E-03	7.8E-01	
	$(-20,-10)$	-5.3E-02	1.5E-02	
	$(-10,0)$	-9.5E-02	4.3E-05	22.8
	$(0,10)$	-9.5E-02	5.4E-05	
	$(10,20)$	-1.2E-02	5.9E-01	
	$(20,30)$	-4.7E-02	5.0E-03	
Most conserved elements content	$(-28,-20)$	-3.0E-02	$1.0 \mathrm{E}-08$	
	$(-20,-12)$	-2.9E-02	3.4E-07	
	$(-12,-4)$	-3.8E-02	2.5E-11	
	$(-4,4)$	-8.3E-02	2.0E-16	43.8
	$(4,12)$	-3.3E-02	6.0E-09	
	$(12,20)$	-3.2E-02	$2.8 \mathrm{E}-08$	
	$(20,28)$	-2.5E-02	3.7E-06	
mESC expression WA	$(-30,-10)$	-1.3E-03	4.6E-02	
	$(-10,10)$	-9.4E-03	2.0E-16	26.1
	$(10,30)$	-2.4E-03	1.2E-04	
H3K9me3 content	$(-28,-20)$	4.4E-02	5.9E-03	
	$(-20,-12)$	1.3E-01	9.6E-07	
	$(-12,-4)$	4.3E-02	$9.8 \mathrm{E}-03$	
	$(-4,4)$	3.1E-01	2.0E-16	31.9
	$(4,12)$	6.5E-02	2.0E-04	
	$(12,20)$	2.2E-02	1.6E-01	
	$(20,28)$	8.4E-02	4.2E-05	

E. Polymorphic IAP vs control

Predictor Range of windows Coefficient p-value DE (\%)				
Mononucleotide content	Scalar	$4.6 \mathrm{E}+00$	2.0E-16	27.4
Dinucleotide content	Scalar	$3.8 \mathrm{E}+01$	2.0E-16	89.1
Trinucleotide content	Scalar	$5.1 \mathrm{E}+00$	2.0E-16	36.0
Tetranucleotide content	Scalar	$8.5 \mathrm{E}+00$	2.0E-16	74.5
LINE content	Scalar	1.1E+00	2.0E-16	40.2
Intron content	$(-28,-20)$	-2.3E-03	9.2E-01	
	$(-20,-12)$	-6.8E-02	2.0E-02	
	$(-12,-4)$	-5.5E-02	6.1E-02	
	$(-4,4)$	-1.2E-01	7.3E-05	21.8
	$(4,12)$	-3.9E-02	2.1E-01	
	$(12,20)$	-1.2E-02	7.0E-01	
	$(20,28)$	-7.0E-02	2.5E-03	
Most conserved elements content	Scalar	-2.5E+00	2.0E-16	35.1
mESC expression WA	(-30,-10)	-2.4E-03	4.6E-03	
	$(-10,10)$	-9.4E-03	2.0E-16	22.3
	$(10,30)$	-2.7E-03	8.7E-04	

F. Fixed IAP vs polymorphic

Predictor Range of windows Coefficient				
	$(-28,-20)$	$-8.7 \mathrm{E}-03$	$2.8 \mathrm{E}-01$	
	$(-20,-12)$	$\mathbf{- 2 . 1 E}-02$	$2.4 \mathrm{E}-02$	
	$(-12,-4)$	$\mathbf{- 2 . 8 E}-02$	$3.0 \mathrm{E}-03$	
H3K9me3 content	$(-4,4)$	$\mathbf{1 . 7 E - 0 1}$	$\mathbf{2 . 0 \mathrm { E } - 1 6}$	21.5
	$(4,12)$	$-1.5 \mathrm{E}-02$	$7.8 \mathrm{E}-02$	
	$(12,20)$	$\mathbf{- 1 . 9 E}-02$	$2.5 \mathrm{E}-02$	
	$(20,28)$	$6.0 \mathrm{E}-04$	$9.5 \mathrm{E}-01$	

G. Fixed HERV-K vs control

Predictor Range of windows Coefficient p-value DE (\%)				
Mononucleotide content	Scalar	$9.4 \mathrm{E}+00$	2.0E-16	76.4
Dinucleotide content	Scalar	$6.8 \mathrm{E}+00$	2.0E-16	54.9
Trinucleotide content	Scalar	$5.5 \mathrm{E}+00$	2.0E-16	29.1
Tetranucleotide content	Scalar	$2.5 \mathrm{E}+00$	2.0E-16	60.4
Intron content	(-28,-20)	-7.7E-02	1.6E-03	25.7
	$(-20,-12)$	-5.9E-02	$5.4 \mathrm{E}-02$	
	$(-12,-4)$	-2.8E-04	9.9E-01	
	$(-4,4)$	-1.8E-01	9.3E-10	
	$(4,12)$	-2.4E-02	4.2E-01	
	$(12,20)$	-5.4E-02	$6.3 \mathrm{E}-02$	
	$(20,28)$	-6.8E-02	3.0E-03	
H1-hESC transcript expression WA	(-32,-16)	-5.2E-03	1.5E-04	26.6
	$(-16,0)$	-7.5E-03	4.0E-06	
	$(0,16)$	-9.5E-03	4.4E-09	
	$(16,32)$	-4.5E-03	5.4E-04	

H. In vitro HERV-K vs control

Predictor Range of windows Coefficient p-value DE (\%)

I. Fixed vs in vitro HERV-K

Predictor Range of windows Coefficient p-value DE (\%)

Mononucleotide content	Scalar	$\mathbf{1 . 1 E}+\mathbf{0 1}$	$\mathbf{2 . 0 E - 1 6}$	85.5
Dinucleotide content	Scalar	$\mathbf{7 . 3 E}+\mathbf{0 0}$	$\mathbf{2 . 0 E - 1 6}$	59.3
Trinucleotide content	Scalar	$\mathbf{6 . 3 E}+\mathbf{0 0}$	$\mathbf{2 . 0 E}-\mathbf{1 6}$	36.9
Tetranucleotide content	Scalar	$\mathbf{1 . 0 E}+\mathbf{0 1}$	$\mathbf{2 . 0 E - 1 6}$	64.6
L1 target sites count	Scalar	$\mathbf{4 . 2 E + 0 0}$	$\mathbf{2 . 0 E - 1 6}$	23.6
Recombination hotspots				
motif count	Scalar	$\mathbf{1 . 6 E + 0 0}$	$\mathbf{2 . 0 E - 1 6}$	$\mathbf{2 6 . 2}$

Figure A. Scatterplot of chromosome size versus number of ERVs integrated. Correlation is quite high for all the elements, both in human and mouse. Notably, human chromosome 19 stands out as an outlier, showing a higher concentration of fixed HERV-K.

Figure B. Hierarchical clustering of features close to fixed ETn and control regions (polymorphic ETn, fixed and polymorphic IAP clustering is similar to fixed ETn). WA= weighted averages, $b p=$ base pairs, TSS= transcription start sites. Underlined is the feature from each cluster that was used in the analyses.

Figure C. Hierarchical clustering of features close to fixed HERV-K and controls regions (the clustering for in vitro HERV-Ks is similar to fixed HERV-K). WA= weighted averages, bp= base pairs, TSS= transcription start sites. Underlined is the feature from each cluster that was used in the analyses.

Figure D. Plot of features in one fixed HERV-K, one in vitro HERV-K and one human control randomly chosen regions. Colors indicate the different groups the regions belong to.

CHG methylation WA

H3K36me3 content

K27ac content

H1-hESC transcript expression WA

H3K4me1 content

Figure E. Plot of features in one fixed ETn, one polymorphic ETn, one fixed IAP, one polymorphic IAP and one mouse control randomly chosen regions. Colors indicate the different groups the regions belong to.

Figure F. Significant genomic features for ITP of comparisons fixed ETn vs. control with test statistics: A) sample mean difference, B) sample median difference, C) sample variance ratio.
A)

B)

C)

Figure G. Significant genomic features for ITP of comparisons polymorphic ETn vs. control with test statistics: A) sample mean difference, B) sample median difference, C) sample variance ratio.
A)

C)

Figure H. Significant genomic features for ITP of comparisons fixed vs. polymorphic ETn with test statistics: A) sample mean difference, B) sample median difference, C) sample variance ratio.
A)

Figure I. Significant genomic features for ITP of comparisons fixed IAP vs. control with test statistics: A) sample mean difference, B) sample median difference, C) sample variance ratio.
A)

B)

C)

Figure J. Significant genomic features for ITP of comparisons polymorphic IAP vs. control with test statistics: A) sample mean difference, B) sample median difference, C) sample variance ratio.
A)

C)

Figure K. Significant genomic features for ITP of comparisons fixed vs. polymorphic IAP with test statistics: A) sample mean difference, B) sample median difference, C) sample variance ratio.
A)

B)

Figure L. Significant genomic features for ITP of comparisons fixed HERV-K vs. control with test statistics: A) sample mean difference, B) sample median difference, C) sample variance ratio.
A)

C)

Figure M. Significant genomic features for ITP of comparisons in vitro HERV-K vs. control with test statistics: A) sample mean difference, B) sample median difference, C) sample variance ratio.
A)

B)

C)

vitro HERV-K vs Control

Figure N. Significant genomic features for ITP of comparisons fixed vs. in vitro HERV-K with test statistics: A) sample mean difference, B) sample median difference, C) sample variance ratio.
A)

B)

C)

Figure O. Significance (i.e. -log10(corrected p-value)) of genomic features in windows along the flanking regions, obtained from the ITP using the median difference as test statistics: (A) fixed ETns vs. controls, (B) polymorphic ETns vs. controls, and (C) fixed vs. polymorphic ETns. In each panel, the horizontal axis represents the 641 -kb windows. The vertical black line between window -1 kb and 1 kb marks the integration site. The thresholds reported on the left represent the maximum scale at which each feature is significant, ranging from 64 kb (coarsest) to 1 kb (finest). Each row corresponds to one feature and each cell represents one or two contiguous windows, depending on the number of nodes employed in the B-splines (we consider one value for every $1-\mathrm{kb}$ window when using the raw data, and one value every two $1-\mathrm{kb}$ windows when using the piecewise constant smoothed version of the data).
White cells: not significant (p-value >0.05), red cells: significant with higher median in the flanking regions of ETns vs. controls (or in the flanking regions of fixed vs. polymorphic ETns), blue cells: significant with lower median in the flanking regions of ETns vs. controls (or in the flanking regions of fixed vs. polymorphic ETns). Color intensity is proportional to significance (more intense colors correspond to lower corrected p-values).
A)

B)

C)

Figure P. Significance (i.e. - log10(corrected p-value)) of genomic features in windows along the flanking regions, obtained from the ITP using the median difference as test statistics: (A) fixed IAPs vs. controls, (B) polymorphic IAPs vs. controls, and (C) fixed vs. polymorphic IAPs. In each panel, the horizontal axis represents the $641-\mathrm{kb}$ windows. The vertical black line between window -1 kb and 1 kb marks the integration site. The thresholds reported on the left represent the maximum scale at which each feature is significant, ranging from 64 kb (coarsest) to 1 kb (finest). Each row corresponds to one feature and each cell represents one or two contiguous windows, depending on the number of nodes employed in the B-splines (we consider one value for every $1-\mathrm{kb}$ window when using the raw data, and one value every two $1-\mathrm{kb}$ windows when using the piecewise constant smoothed version of the data).
White cells: not significant (p-value >0.05), red cells: significant with higher median in the flanking regions of IAPs vs. controls (or in the flanking regions of fixed vs. polymorphic IAPs), blue cells: significant with lower median in the flanking regions of IAPs vs. controls (or in the flanking regions of fixed vs. polymorphic IAPs). Color intensity is proportional to significance (more intense colors correspond to lower corrected p-values).
A)

B)

C)

Figure Q. Significance (i.e. -log10(corrected p-value)) of genomic features in windows along the flanking regions, obtained from the ITP using the median difference as test statistics: (A) fixed HERV-Ks vs. controls, (B) in vitro HERV-Ks vs. controls, and (C) fixed vs. in vitro HERV-Ks. In each panel, the horizontal axis represents the $641-\mathrm{kb}$ windows. The vertical black line between window -1 kb and 1 kb marks the integration site. The thresholds reported on the left represent the maximum scale at which each feature is significant, ranging from 64 kb (coarsest) to 1 kb (finest). Each row corresponds to one feature and each cell represents one or two contiguous windows, depending on the number of nodes employed in the B-splines (we consider one value for every $1-\mathrm{kb}$ window when using the raw data, and one value every two $1-\mathrm{kb}$ windows when using the piecewise constant smoothed version of the data).
White cells: not significant (p-value >0.05), red cells: significant with higher median in the flanking regions of HERV-Ks vs. controls (or in the flanking regions of fixed vs. in vitro HERVKs), blue cells: significant with lower median in the flanking regions of HERV-Ks vs. controls (or in the flanking regions of fixed vs. in vitro HERV-Ks). Color intensity is proportional to significance (more intense colors correspond to lower corrected p-values).
A)

B)

C)

Figure R. Significance (i.e. - $\log 10$ (corrected p-value)) of genomic features in windows along the flanking regions, obtained from the ITP using the variance difference as test statistics: (A) fixed ETns vs. controls, (B) polymorphic ETns vs. controls, and (C) fixed vs. polymorphic ETns. In each panel, the horizontal axis represents the 641 -kb windows. The vertical black line between window -1 kb and 1 kb marks the integration site. The thresholds reported on the left represent the maximum scale at which each feature is significant, ranging from 64 kb (coarsest) to 1 kb (finest). Each row corresponds to one feature and each cell represents one or two contiguous windows, depending on the number of nodes employed in the B-splines (we consider one value for every $1-\mathrm{kb}$ window when using the raw data, and one value every two $1-\mathrm{kb}$ windows when using the piecewise constant smoothed version of the data).
White cells: not significant (p-value >0.05), red cells: significant with higher variance in the flanking regions of ETns vs. controls (or in the flanking regions of fixed vs. polymorphic ETns), blue cells: significant with lower variance in the flanking regions of ETns vs. controls (or in the flanking regions of fixed vs. polymorphic ETns). Color intensity is proportional to significance (more intense colors correspond to lower corrected p-values).
A)

C)

Figure S. Significance (i.e. -log10(corrected p-value)) of genomic features in windows along the flanking regions, obtained from the ITP using the variance difference as test statistics: (A) fixed IAPs vs. controls, (B) polymorphic IAPs vs. controls, and (C) fixed vs. polymorphic IAPs. In each panel, the horizontal axis represents the $641-\mathrm{kb}$ windows. The vertical black line between window -1 kb and 1 kb marks the integration site. The thresholds reported on the left represent the maximum scale at which each feature is significant, ranging from 64 kb (coarsest) to 1 kb (finest). Each row corresponds to one feature and each cell represents one or two contiguous windows, depending on the number of nodes employed in the B-splines (we consider one value for every $1-\mathrm{kb}$ window when using the raw data, and one value every two $1-\mathrm{kb}$ windows when using the piecewise constant smoothed version of the data).
White cells: not significant (p-value >0.05), red cells: significant with higher variance in the flanking regions of IAPs vs. controls (or in the flanking regions of fixed vs. polymorphic IAPs), blue cells: significant with lower variance in the flanking regions of IAPs vs. controls (or in the flanking regions of fixed vs. polymorphic IAPs). Color intensity is proportional to significance (more intense colors correspond to lower corrected p-values).
A)

B)

C)

Figure T. Significance (i.e. - $\log 10$ (corrected p-value)) of genomic features in windows along the flanking regions, obtained from the ITP using the variance difference as test statistics: (A) fixed HERV-Ks vs. controls, (B) in vitro HERV-Ks vs. controls, and (C) fixed vs. in vitro HERV-Ks. In each panel, the horizontal axis represents the $641-\mathrm{kb}$ windows. The vertical black line between window -1 kb and 1 kb marks the integration site. The thresholds reported on the left represent the maximum scale at which each feature is significant, ranging from 64 kb (coarsest) to 1 kb (finest). Each row corresponds to one feature and each cell represents one or two contiguous windows, depending on the number of nodes employed in the B-splines (we consider one value for every $1-\mathrm{kb}$ window when using the raw data, and one value every two $1-\mathrm{kb}$ windows when using the piecewise constant smoothed version of the data).
White cells: not significant (p-value >0.05), red cells: significant with higher variance in the flanking regions of HERV-Ks vs. controls (or in the flanking regions of fixed vs. in vitro HERVKs), blue cells: significant with lower variance in the flanking regions of HERV-Ks vs. controls (or in the flanking regions of fixed vs. in vitro HERV-Ks). Color intensity is proportional to significance (more intense colors correspond to lower corrected p-values).
A)

B)

C)

