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Variational Laplace

The Variational Laplace (VL) algorithm [1] can be used for Bayesian estimation of any
nonlinear model of the form

y = f(θ,m) + e (1)

where f(θ) is a nonlinear function specified by model m, and e is zero mean additive
Gaussian noise with covariance Cy. This covariance depends on hyperparameters λ as
shown below. The likelihood of the data is therefore

p(y|θ, λ,m) = N(y; f(θ,m), Cy) (2)

The framework allows for Gaussian priors over model parameters

p(θ|m) = N(θ;µθ, Cθ) (3)

where the prior mean and covariance are assumed known. The error covariances are
assumed to decompose into terms of the form

C−1
y =

∑
i

exp(λi)Qi (4)

where Qi are known precision basis functions. The ’noise parameters’ or
hyperparameters that govern these error precisions are collectively written as the vector
λ. These will be estimated. Additionally, the hyperparameters are constrained by the
prior

p(λ|m) = N(λ;µλ, Cλ) (5)

The above distributions allow one to write down an expression for the joint
probability of the data, parameters and noise parameters

p(y, θ, λ|m) = p(y|θ, λ,m)p(θ|m)p(λ|m) (6)

The starting point for variational inference is then to assume, where necessary, a
factorisation of the posterior density [2]. The VL algorithm is based on the assumption
that the approximate posterior density has the following factorised form

q(θ, λ|y,m) = q(θ|y,m)q(λ|y,m) (7)

q(θ|y,m) = N (θ;mθ, S
−1
θ )

q(λ|y,m) = N (λ;mλ, S
−1
λ )

where N (x;mx,Λx) denotes a multivariate Gaussian variable x with mean mx and
precision Λx. Importantly, the factorisation is between parameters and noise parameters
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only. Dependencies among model parameters are explicitly accounted for in the
posterior covariance matrix Sθ. For a model with p parameters Sθ is a [p× p] matrix.

The parameters of the above approximate posteriors are iteratively updated so as to
minimise the Kullback-Liebler divergence between the true and approximate posteriors.
This algorithm is described fully in [1]. Updates for the noise parameters in the context
of MEG source reconstruction are provided in [3]. In the current paper, however, the
prior over the noise parameters is exceptionally tight over known true values, such that
optimisation of the noise parameters, λ, is redundant.

Model Evidence

The Negative Variational Free Energy is defined as

F (m) =

∫ ∫
q(θ|y,m)q(λ|y,m) log

[
p(y, θ, λ|m)

q(θ|y,m)q(λ|y,m)

]
dθdλ (8)

where
p(y, θ, λ|m) = p(y|θ, λ,m)p(θ|m)p(λ|m) (9)

This quantity provides a lower bound on the log model evidence [2]. As shown in [4, 5]
(and equation 21 in [1]) the VL approximation to F (m) is given by

FL(m) = −1

2
eTy C

−1
y ey −

1

2
log |Cy| −

N

2
log 2π (10)

− 1

2
eTθ C

−1
θ eθ −

1

2
log |Cθ|+

1

2
log |Sθ|

− 1

2
eTλC

−1
λ eλ −

1

2
log |Cλ|+

1

2
log |Sλ|

where N is the number of data points and the error terms are

ey = y − f(mθ,m) (11)

eθ = mθ − µθ
eλ = mλ − µλ

Generically, factorised variational approximations provide a lower bound on the log
model evidence [2]. The difference between the true log model evidence and F (m) is
given by the Kullback-Liebler divergence between the true and variational posterior.
Thus, as this KL divergence increases the bound becomes less tight and F (m) will not
provide an accurate approximation. It turns out, however, that FL provides an
approximation to the model evidence rather than a lower bound [4,5] (it can be lower or
higher than F (m)). Empirically, however, it has been shown to provide a better model
selection measure than does AIC or BIC [5]. The quantity FL(m) is the VL model
evidence approximation referred to in the paper.
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