N	u	V	γ	$\alpha^N(\gamma)$	$\alpha(\gamma)$	simulated fraction of absorption
10	10^{-4}	2500^{-1}	0.04	0.9649	0.96117	0.9632
100	10^{-4}	2500^{-1}	4	0.09	0.0885	0.0921
10	10^{-4}	10000^{-1}	0.01	0.9911	0.9901	0.9912
100	10^{-4}	10000^{-1}	1	0.4417	0.4387	0.4419
10	10^{-4}	1.52×10^{-3}	0.152	0.8759	0.8636	0.882
100	10^{-4}	1.52×10^{-5}	0.152	0.8649	0.8636	0.8665

Table S2. Comparison of theoretical absorption probabilities and simulation results. This table shows the exact absorption probabilities $\alpha^N(\gamma)$ in state N in comparison with the results from 10000 simulations of trajectories of the process $(X_t)_{t\geq 0}$ and the asymptotic absorption probabilities $\alpha(\gamma)$. One can see that the asymptotic values are in good accordance with both, the exact theoretical values and the simulation results. Furthermore, the asymptotic result $\alpha(\gamma)$ is a good approximation even for small N.