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1 Details to the learning rule Eq. (3)

The update terms are governed by an asymmetric temporal window KA(t):

Axj (t) =A+

∫ t

−∞
KA(t− s)xj(s)ds

=A+

∫ ∞
0

KA(∆)xj(t−∆)d∆,

Axi
(t) =A−

∫ t

−∞
KA(s− t)xi(s)ds

=A−
∫ ∞
0

KA(−∆)xj(t−∆)d∆,

(1)

where A+ > 0, A− > 0 define the magnitude of the weight update.
For simplicity, we choose an exponential temporal window

KA(∆) = exp(−|∆/τSTDP |) with decay rate τSTDP � T . This rule is consistent with
the requirement that Vij depotentiates when a transition from xi to xj occurs. As long
as potentiation and depression are matched, this does not depend critically on this
window, as we demonstrate below.

The condition that potentiation and depression are matched can be written:∫ ∞
0

KA(∆)d∆ = −
∫ ∞
0

KA(−∆)d∆ (2)

We assume that the sign of KA(∆) is fixed at each side of the ∆ = 0 axis:

KA(∆ < 0) ≤ 0, KA(∆ > 0) ≥ 0 (3)

The state typically transitions sharply, such that xi(t) and xj(t) are monotonic
around the transition times. For a transition, this can be written:

d

dt
xi(t) ≤ 0,

d

dt
xj(t) ≥ 0,∀t. (4)

Under the above assumptions, we show that during a transition from xi to xj , Vij
depotentiates and Vji potentiates. The weight change is:

τV
d

dt
Vij =xj(t)

∫ ∞
0

KA(s)xi(t− s)ds

+ xj(t)

∫ 0

−∞
KA(s)xj(t+ s)ds.
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Fig. SI 1. A asymmetric learning window (left) causes the weight to change when a
transition between two units take place (right).

With a change in sign in the second integral, the above equality can be written:

τV
d

dt
Vij =

∫ ∞
0

xi(t−∆)xj(t)KA(∆)

+ xi(t)xj(t−∆)KA(−∆)d∆.

Adding two terms that sum to zero under the integral:

τV
d

dt
Vij =

∫ ∞
0

xi(t−∆)xj(t)KA(∆)

− xi(t)xj(t)(KA(∆) +KA(−∆))

+ xi(t)xj(t−∆)KA(−∆)d∆.

The matching of the potentiation and depression in Eq. (2) guarantees that the middle
terms vanishes.

The terms under the integral can be regrouped as follows:

τV
d

dt
Vij =

∫ ∞
0

xj(t)(xi(t−∆)− xi(t))KA(∆)

+ xi(t)(xj(t−∆)− xj(t))KA(−∆)d∆.

It is clear that, under the assumptions above (Eq. (2), (Eq. (3)) and (Eq. (4))), the
integrand is positive or zero, leading to d

dtVij ≥ 0. Similarly, d
dtVji ≤ 0. Fig. 1

illustrates how the asymmetric learning windows causes the weight to change when a
transition between two units takes place.

2 Network Dynamics Influence Chunking Rate

The chunking rate is defined as the number of transitions in the chunking layer while a
pattern of the sequence is presented in the learning phase. This rate can be modulated,
for example by biasing the chunking layer or its auxiliary variables zk. To illustrate this,
we added a global, step-wise varying input to the auxiliary variables zk, and proceeded
with the learning protocol similarly to the experiments in the main text (100 epochs).
Results show that a larger number of chunks transition around the steps, and that the
input magnitude drastically alters the chunking rate.

3 Learning with Noisy Stimuli

Noisy patterns S′k were obtained by adding noise to each pattern of the sequence:

S′k[i] = Sk[i] + max(0, ηk[i]), i ∈ N, k ∈ 1, . . . ,M

where ηk[i] ∼ N(0, σS), and Sk[i] are the original patterns consisting of horizontal bars.
The noise term changes from one presentation of the sequence to the other, but it
remains constant during the presentation. In the main text, we report the amplitude of
the noise as the ratio:

Noise amplitude =

∑M
k 〈ηk[i]〉∑M
k Sk

where 〈·〉i is the expectation over realizations of max(0, ηk[i]). Fig. 3 shows examples of
the stimuli with noise amplitudes matching those used in the main text.
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Fig. SI 2. Chunking rate is modulated by a time-varying bias in the
chunking layer. (Top) We added a global, step-wise varying input bz to the auxiliary
variables zk. (Middle) Chunking rate computed as the number of transitions in the
chunking layer during the presentation of each sequence element, averaged over 60
different runs of the training, and averaged over epochs 50 to 100. The average
chunking rate was 0.071 from time 35 to 60, and 1.24 from time 95 to 120. Very few
transitions occurred during the phase where bz was strongly positive, compared to
chunking rate .314, when bz was zero. For strongly negative bz, chunking is nearly
absent, as the chunking layer transitions almost once every presentation of a sequence
element (the chunking rate is close to 1). Furthermore, the chunking rate is high at the
points where bz changes, which illustrates how the chunking has a tendency to
synchronize with changes in bz. (Bottom) Illustration of the activity in the chunking
layer at trial 50 for all 60 runs. The boundaries of the chunks are clearly located at the
time points where bz changed.

Fig. SI 3. Examples of noisy stimuli, drawn for noise parameters σS = 0, .1, .3, .5,
with noise amplitudes estimated at 0%, 38%, 115% and 191%, respectively.

4 Parameters of the learning model

In Tab. 1, we detail all the parameters and values of the learning model so that the
dynamics can be reproduced.
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Fig. SI 4. An Example of Weight Evolution during Learning, for the run
shown in Fig. 6, top right.
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Table 1. Parameters of the hierarchical network

Nx Number of Elementary Mode (EM) Fig. 2, 3, 4, 5 24
Ny Number of Chunking Mode (CM) Fig. 2, 3, 4, 5 3

All other figures 30

τx Time constant EM all figures 0.05 au
τy Time constant CM all figures 6τx
τz Synaptic time constant all figures except Fig. 7 4τx

Fig. 7 .02 – 2
bx Growth term EM all figures, training 0

all figures, recall 1
by Growth term CM all figures, training 0

all figures, recall .2
bz(t) Bias term synaptic states Fig. 2 −1, 2, 0

all other figures 0
C Total input magnitude of PMs training, all figures 15

recall, all figures 0

τP Learning time constant P all figures 10
τV Learning time constant V all figures 28.6
τW Learning time constant W all figures 125
τR Learning time constant R all figures 333
τQ Learning time constant Q all figures 125
εH Heterosynaptic competition Fig. 2, 3, 4, 5 0

Heterosynaptic competition Fig. 6,7 .001
mH Total efferent weight from each EM Fig. 6,Fig. 7 3

αV Scaling of bistable all figures .02
term V all figures .02

αW Scaling of bistable all figures .03
term W all figures .03

θVd ,θWd Depotentation threshold V ,W Fig. 3, 4, 5 0.6
θVp ,θWp Potentation threshold V ,W Fig. 3, 4, 5 0.6

V (t = 0),W (t = 0) Initial cond. V , W all figures off-diagonal 2.1, otherwise 1
V +,W+ Positive boundary Fig. 3, 4, 5 2.55
V −,W− Negative boundary Fig. 3, 4, 5 0.6
V ∗,W ∗ Boundary of the basins Fig. 3, 4, 5 1.77

γQ
d Depotentation factor Q all figures .75
γQ
p Potentation factor Q all figures except Fig. 7 35

Fig. 7 17.5–105

θQd Depotentation threshold Q all figures 0.2
θQp Potentation threshold Q all figures 0.42

Q+ Positive boundary all figures 1
Q− Negative boundary all figures 0
Q∗ Boundary of the basins all figures 0.4

αQ Scaling of bistable all figures 2.
term Q all figures .02

αR Scaling of bistable all figures .03
term R all figures 1.2

γR
d Depotentation factor R all figures 0.5
γR
p Potentation factor R all figures 30
θRd Depotentation threshold R all figures 0.2
θRp Potentation threshold R all figures 0.25

R+ Positive boundary all figures 0.4
R− Negative boundary all figures 0
R∗ Boundary of the basins all figures 0.1
σX Noise amplitude EM all figures, training .02

all figures, recall 10−6

σY Noise amplitude CM all figures, training .025
all figures, recall 10−6
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