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S4 Text. Mathematical details for the energetics and dynamics of the double-barrel model.

Mathematical details are provided for the simulation of the double-barrel model. The
system assumes overdamped Langevin dynamics (Brownian motion) and numerical
integration was performed using a first-order scheme in time. The construction of
the model permits consistent coarse-graining with respect to the number of particles
in a cluster, effectively allowing tuning of the number of degrees of freedom, or the
dimensionality of the configuration space.

Simulating dynamics in the double-barrel model

In the double-barrel model, we consider the dynamics of clusters of particles in an external potential
energy landscape. A cluster of size N (an N -cluster) is a collection of N identical, interconnected
particles of mass m, where each particle interacts with the other N − 1 particles through springs
with a force constant k. To produce a simple model, we assume that (1) particles in a cluster only
interact through their springs, (2) particles in a cluster are identical smooth spheres moving in the
Stokes’ flow regime of a Newtonian fluid of uniform viscosity, and (3) each particle obeys a Langevin
equation in the overdamped regime (Brownian motion).

We use assumption (1) to neglect complicated particle-particle interactions, such as hard-sphere
potentials. Using assumption (2), individual particles are subject to identical viscous Stokes’ flow
drag forces via immersion in a uniform solvent bath. Under all three assumptions, all particles in a
cluster are then subject to the same (Brownian) dynamics, where each particle interacts identically
with a solvent acting as a thermal bath, and where inter-particle interactions enter only through the
external force term in Langevin equation. All particles in an N -cluster thus have identical collision
frequencies and, therefore, friction/diffusion coefficients. Furthermore, assumption (3) implies that
the dynamics are Markovian, so that particles do not perturb the velocity of the surrounding fluid,
and are thus not subject to memory effects due to the motion of nearby particles—the model ignores
interactions between particles through the solvent bath.

Particle dynamics

Individual particles within a cluster were subject to the equation of motion for Brownian dynamics [1],

ṙi =
1

ζ
∇iU(r(t)) + Ŵi(t), (S3.1)

where r = (r1, . . . , rN ) is a 3N -dimensional vector of all particle positions, ri is the position of
particle i, −∇iU(r(t)) = −∂U(r)/∂ri is the non-thermal force on particle i as a function of all
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particle positions at time t, ζ is the viscous damping constant, and Ŵ(t) is a stochastic process.
The stochastic term, Ŵ(t), is a delta-correlated, zero-mean, stationary Gaussian process,〈

Ŵα(t) Ŵβ(τ)
〉

= 2Dδαβδ(t− τ), (S3.2)

where D = kBT/ζ is the diffusion coefficient, and α and β run over all spatial dimensions.

Numerical simulation

The trajectory of particle i in a cluster was generated using a first-order integration scheme (cf. Ch.
3 of the GROMACS Manual [1]),

rn+1
i = rni +

∆t

ζ
∇iU(rn) +

√
2D∆t Ĝn

i , (S3.3)

where a superscript n denotes a time t = n∆t, and −∇iU(rn) is the non-thermal force on particle i
at time step n; Ĝn

i is a random variable representing the nth realization of the stochastic process—for
each spatial component of particle i at each time step n, it was generated with a Gaussian random
number generator having zero mean and unit variance:〈

Ŵn
i,α Ŵ

m
i,β

〉
= 2D∆t

〈
Ĝni,α Ĝ

m
i,β

〉
= 2D∆t δαβδnm, (S3.4)

where α and β run over all spatial dimensions, and n and m are the nth and mth time steps,
respectively.

Double-barrel potential energy landscape

It is prudent to reiterate that the double-barrel model’s purpose is to generate “large-scale” transitions
that are induced by an external ramp potential, particularly so that certain aspects of path similarity
analysis (PSA) can be examined. The total potential energy in Eq. (S3.3) consists of an external
potential and particle interaction terms: U = U (ext) + U (int), respectively. The external potential is
broken into a ramp potential and double-barrel potential, where, for particle i (in a cluster), located
at position ri

.
= (xi, yi, zi),

U (ext)(ri) = Uramp(ri) + Ubarrel(ri) (S3.5)

U (ramp) = F zi, (S3.6)

U (barrel) = Ax2i +B y2i
(
y2i − 2C2

)
, (S3.7)

where A controls the strength of confinement in the x-direction, B and C control the shape of the
barrels with y = ±C defining the barrel minima in nanometers, and F dictates the ramp steepness
or transition force. The inter-particle potential is modeled by Hookean springs:

U (int)(r) =
1

2

ks
2

N∑
j 6=i

(ri − rj)
2 , (S3.8)

ks is the inter-particle spring constant.
The ramp potential generates directed progress along the z-coordinate that replicates a large-scale

transition. (Note that although these transitions were produced by forcing center-of-mass translation
in the positive z-direction, one should keep in mind that real transitions do not necessarily correspond
to center-of-mass translations of the system, though they may be present.) The double-barrel
potential operates as a means to produce two distinct pathways at sufficiently low temperatures.
The inter-particle springs are independent of the coarse-graining level and serve to confine particles
into compact clusters.
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Conditions and parameter selection for consistent coarse-graining

As PSA can take advantage of the full configuration space, the double-barrel model was designed in
part to test PSA when a system is coarse-grained to reduce the degrees of freedom. Transitions
generated by the double-barrel model should therefore be consistent in some sense across clusters of
varying size. To achieve a reasonable coarse-graining scheme, (1) the transition rate and (2) net
diffusivity of a cluster should be independent of its size. In particular, condition (1) demands that
if all particles in a cluster are initialized at precisely the same location under zero-temperature
conditions—so they all move identically under the external potential—they must transition at a
rate independent of the number of particles in the cluster.

As discussed above, we assume all particles in an N -cluster are identical spheres subject to Stokes’
flow in the same solvent bath. The Stokes’ (viscous) drag force on a particle of radius r in a fluid of
dynamic viscosity η is

Fdrag = 6πηrU∞, (S3.9)

where U∞ is the uniform (far-field) velocity of the surrounding fluid [2], which we treat as unperturbed
by neighboring particles. For the above fluid at temperature T , the Einstein relation gives the
diffusion coefficient,

D =
kBT

mγ
=
kBT

ζ
=
kBT

6πηr
, (S3.10)

in terms of, γ, the collision frequency, and ζ = 6πηr, the viscous damping coefficient [3, 4]. The last
equality in Eq. (S3.10) follows directly from Eq. (S3.9). In the analysis that follows, we consider an
N -cluster, where each particle, i, is subject to the dynamics in Eq. (S3.1) in the cases of zero and
finite temperature.

Constraints on the friction and potential from zero-temperature dynamics

We first examine conditions for constancy of the transition rate at zero temperature given identical
initial conditions of all particles in an N -cluster (i.e., ri(t) = r0 for i = 1, . . . , N). Under these
conditions, the stochastic term vanishes and Eq. (S3.1) reduces to

ṙi =
1

ζ
∇iU(r0). (S3.11)

Since a transition takes place by traversing a set length of the barrels along the z-coordinate, the
transition rate depends only on the z-component of the velocity in Eq. (S3.11). Furthermore, the
velocity will depend only on the ratio of the magnitude of the gradient of the external potential and
the friction coefficient, ζ. Thus, under coarse-graining, we are permitted to change ζ and U for the
CG particle so long as they are scaled by the same factor.

One may appeal to the necessity of conserving mass under coarse-graining so that the CG particle
mass is the sum of the masses in the N -cluster. In this case, the friction coefficient of the CG particle
should be N -times larger than those of the individual N -cluster particles. However, the diffusion
coefficient for the CG particle will decrease by a factor of N , which will change the dynamics at
finite temperature when the stochastic term is non-vanishing. We keep the general analyses above
in view before deciding on an appropriate scaling factor for ζ (or, equivalently, D) as we proceed to
the finite-temperature case.

Diffusion constraints from finite-temperature dynamics

To derive more general CG constraints at finite temperature, we further require the net diffusive
behavior of the CG particle to match its N -cluster. Indeed, if the diffusion coefficient in Eq. (S3.3),
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which is proportional to the average squared displacement, is preserved, then the average velocity
and, thus, average transition rate will also be preserved.

We consider replacing an N -cluster of total mass M by a CG particle positioned at the center of
mass of the cluster, where

r̄(t) =
1

M

N∑
i=1

miri(t) =
1

N

N∑
i=1

ri(t), (S3.12)

is the center of mass, and

˙̄r(t) =
1

N

N∑
i=1

ṙi(t) (S3.13)

is the center-of-mass velocity. We formulate our constraint on the transition rate to be equivalent
to requiring that the diffusion of the CG particle be identical to the net diffusion of center of mass
of the N -cluster it replaces.

To see how coarse-graining modifies the dynamics, we take Eq. (S3.1), sum over all particles in
the cluster, and divide by N , to obtain the center-of-mass equation of motion for an N -cluster:

˙̄r(t) =
1

ζ

1

N

N∑
i=1

∇iU(r(t)) +
1

N

N∑
i=1

√
2D Ĝi(t), (S3.14)

where ζ and D are the friction and diffusion coefficients of each particle, and
√

2D Ĝi(t) = Ŵi(t).
We can simplify the equation of motion by working individually with each term on the right-hand
side.

Potential term. The external potential, U (ext), is a linear function of the positions and takes the
same form for each particle, but the inter-particle potential, U (int), includes nonlinear cross terms.
To simplify the analysis, we begin by assuming the particles in the N -cluster are initialized at a
single point and are rigidly connected. Then R(t) = r1(t) = · · · = rN (t) for all t. We furthermore
allow the spring potential to remain constant in the limit as ks →∞ and (ri − rj)

2 → 0 for all i
and j. Under these conditions, U and its gradient become linear functions of the positions, so that
the force on each particle i,

∇iU(r) = Fi(r̄), (S3.15)

depends only on the center-of-mass coordinate; the potential term in Eq. (S3.14) then becomes

1

ζ

1

N

N∑
i=1

∇iU(r) =
1

ζ

1

N

N∑
i=1

Fi(r̄) =
1

ζ
F̄(r̄), (S3.16)

where F̄(r̄) is the average of the individual forces acting on the particles, which acts at the center
of mass of the N -cluster. We consider scenarios where the particles have arbitrary locations and
nonzero inter-particle forces in the subsequent section.

Thermal noise term. The second term on the right hand side of Eq. (S3.14) can be viewed as
the average of N realizations of the stochastic process Ĝi. Alternatively, it is the average of the
partial sum of N independent, identically distributed (iid) random variables, ŜN =

∑N
i=1 Ĝi. The

mean and variance of ŜN is the sum of the means and sum of the variances, respectively, of the
Ĝi. Furthermore, since the Ĝi are iid Gaussian random variables, ŜN and M̂N = ŜN/N are also a
Gaussian random variables, with zero mean and respective variances N and 1/N . Using the central
limit theorem, we replace the stochastic term in Eq. (S3.14) with a new stochastic process,

M̂(t) =
1

N

N∑
i=1

Ĝi(t), (S3.17)
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where 〈
M̂α(t) M̂β(τ)

〉
=

1

N

〈
Ĝα(t) Ĝβ(τ)

〉
=

2D

N
δαβδ(t− τ). (S3.18)

Therefore, the center-of-mass motion of an N -cluster due to N independent, identical stochastic
processes acting on the particles is statistically equivalent to a single stochastic process with a
rescaled diffusion coefficient, D(com) = D/N , acting on the center of mass of the particles.

Coarse-grained equation of motion. By Eq. (S3.18), we can write the stochastic term in terms
of Ĝi(t) with a rescaled diffusion coefficient. Combining this with Eq. (S3.16), the expression for
the center-of-mass dynamics of a rigid N -cluster becomes

˙̄r(t) =
1

ζ
F̄(r̄(t)) +

√
2

(
D

N

)
Ĝi(t). (S3.19)

We see that the center-of-mass diffusion is smaller than the individual particle diffusion by a factor of
N . If one were to replace the cluster with a CG particle at the center of mass of an N -cluster using
the same diffusion coefficient D, as for each of the particles, the CG particle would diffuse too quickly.
The CG particle’s diffusion coefficient should thus be scaled by N so that D(CG) = D(com) = D/N
to preserve the rate of diffusion and, thus, the transition rate.

To maintain the proper relationship between the friction and diffusion coefficients through
Eq. (S3.10), the new friction coefficient must also be increased by a factor of N : ζ(CG) = Nζ.
However, the external force must in turn be increased by a factor of N to ensure the external force
on the CG particle is the same as the net force on the corresponding N -cluster. Thus, if we begin
with an N -cluster under forces Fi(r), with diffusion coefficient D and friction ζ, the equation of
motion for the CG particle should be

Ṙ(t) =
1

ζ(CG)
F(CG)(R(t)) +

√
2D(CG) Ĝ1(t), (S3.20)

where R(t) is the position of the CG particle at time t, D(CG) = D/N = kBT/ζ
(CG), and F(CG)(R) =

F1(R) (where we picked i = 1 to denote terms identical to quantities for any single particle in the
cluster). The new friction coefficient, ζ(CG), is additionally consistent with the previous consideration
of conserving particle mass under coarse-graining:

ζ(CG) = Nζ = (Nm)γ = m(CG)γ, (S3.21)

where the mass of the CG particle, m(CG) = Nm = M , is the sum of the masses of the individual
(identical) particles. Furthermore, we see that the collision frequency, γ, can be held fixed across
simulations at all levels of coarse-graining.

Deviations from rigid-cluster coarse-grained behavior

It is clear that F(CG)(R) = F1(R) = F̄(R) (averaged over all particles i) in the case where all
particles are constrained to the same point for all time. This assumption guarantees the linearity of
the potential energy function. Our simulation system on the other hand has finite inter-particle
spring constants and an N -cluster will tend to have its constituent particles wandering to some
degree. If the single-point, rigid-cluster assumption is relaxed, we can then ask under what conditions
the force on the center of mass is well-approximated by the average of the individual particle forces.

If all particles are located at different positions, then they will see different parts of the external
potential and will also have nonzero inter-particle forces between them. However, due to Newton’s
third law these inter-particle forces sum to zero and do not contribute to a force acting on the
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center of mass. On the other hand, the sum of the external forces on all particles will not generally
be equal to the gradient of the external potential evaluated at their center of mass. Now consider
replacing an N -cluster with a CG particle that feels N times the force of a regular particle at the
same point: F (CG)(r∗) = NF1(r

∗). In this case, the net force on the N -cluster (at its center of
mass) is, in general, different than the force on the CG particle due to the external potential (at the
center of mass):

F(CG)(R) = −N∇RU
ext(R) 6=

N∑
i=1

Fi(r) = −
N∑
i=1

∇iU
ext(ri) (S3.22)

In particular, Eq. (S3.22) will occur when the external potential U ext has non-vanishing second (or
higher) derivatives, i.e., the external force is not a constant function of position.

These statements can be made more precise by first transforming to coordinates relative to the
center of mass and writing the positions as

ri = ∆ri + R, (S3.23)

where ∆ri is the displacement vector of the ith particle relative to the center of mass. The total
external force,

F(total) =

N∑
i=1

Fi(ri) =

N∑
i=1

Fi(∆ri + R), (S3.24)

can then be expressed, for small displacements in ∆ri, as a Taylor series expansion about the center
of mass,

N∑
i=1

Fi(∆ri + R) =
N∑
i=1

[
Fi(R) +

∂Fi

∂ri
·∆ri + O

(
∆r2i

)]
. (S3.25)

For sufficiently small displacements, the product ∂Fi
∂ri
·∆ri can be dropped, giving

F(total) ∼
N∑
i=1

Fi(R). (S3.26)

In the case that the (external) forces are derivable from a potential function, Eq. S3.26 holds when
the second derivatives of the potential are small.

If we assume the particles are sufficiently proximate at time t such that ∇iU(r(t)) can be treated
as approximately constant across the space occupied by the N -cluster, then coarse-graining according
to the above prescription will approximately preserve net diffusion to first order in the displacements,
∆ri, of the particles. Under this condition, the total force on the cluster can be approximated
by the external force on the CG particle. For the form of the potential in Eq. (S3.7), we expect
diffusive behavior orthogonal to the z-coordinate for an N -cluster to deviate from that of the CG
particle since the potential is nonlinear along those directions. However, as our transition rate
is determined by the constant-gradient potential in the z-direction in Eq. (S3.6), the transition
rate will be statistically identical for CG particles if the same identical initial conditions as the
N -clusters are used. This is the key result that assures the average transition rate is unchanging
with respect to N .

Double-barrel simulation parameters

We emphasize that the double-barrel system was designed to produce noisy, non-trivial trajectories
to test PSA and the path metrics. The parameter values used for the double-barrel simulations,
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while guided by realistic physical systems, were determined in part by our coarse-graining constraints
and practical considerations (i.e., numerical stability of the integrator, simulation time, number of
simulation steps, etc.).

Table 1 summarizes the parameters used for single- and eight-particle simulations. The potential

was constructed to produce potential energy changes on the order of (or less than) 10 kJ ·mol−1Å
−1

with a time step then chosen as large as allowed by the numerical stability of the integrator. The
friction coefficient, γ, was heuristically chosen to reflect typical values using water as a solvent,
which can range from 0.1–100 ps to depending on the solute of interest [5–8]. Spring constants,

which approximate bond strength, are usually on the order of 0.1–10 kJ ·mol−1 · Å−2 [9–11] and
were set to within an order of magnitude of values used in the literature.

Table 1. Parameters for double-barrel simulations of one- and eight-particle clusters.

Potential landscape parameters Dynamical parameters

N A* (kJ/mol/nm2) B* (kJ/mol/nm4) C (nm) F * (kJ/mol/nm) ks (kJ/mol/nm2) γ† (ps−1) m* (Da) ∆t‡ (fs)

1 30.0 12.18 0.8 7.5 — 50.0 10.0 0.5-2.5

8 3.75 1.523 0.8 0.9375 41.84 50.0 1.25 0.5-2.5

Simulations were performed in 50 K steps from 0 K to 500 K, and also at 600 K. Values for N = 8 are either unchanged
from the N = 1 case or scaled down by a factor of eight to produce (zero-temperature) center-of-mass dynamics
corresponding to single-particle dynamics. A controls x-direction confinement, B and C control the barrel shape, with
y = ±C being the barrel minima in nanometers, and F is the ramp steepness. The collision frequency, γ, was the same for
all systems, but particle masses (and friction coefficient, ζ = mγ) were scaled to keep total cluster mass constant.
*Value of parameter was scaled inversely proportionally to N .
†Constant collision frequency; friction coefficient, ζ = mγ, scales proportionally to the particle mass, m, and particle
number, N .
‡Time steps were chosen to mitigate simulation time while maintaining integrator stability for a given temperature. Values
for N = 8 are either unchanged from the N = 1 case or scaled down by a factor of eight to produce (zero-temperature)
center-of-mass dynamics corresponding to the dynamics of one-particle systems. Simulations were performed in 50 K steps
from 0 K to 500 K, and also at 600 K. Time steps were chosen heuristically at each temperature to balance simulation
length and stability of the integrator.
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