S5 Table. Plasticity

Туре	Description
mSTDP	W and Q initialized separately, uniformly distributed in range $(0, W_{init})$. For
	visible unit <i>i</i> , hidden unit <i>j</i> , feedforward learning rate η :
	$\Delta w_{ij} = \Delta q_{ji} = \eta \sum_{k \in S_i} \sum_{l \in S_j} \begin{cases} +e^{- t_l - t_k /\tau_+} & \text{if } t_l > t_k \\ -e^{- t_l - t_k /\tau} & \text{if } t_l \le t_k \end{cases}.$
	$\int e^{- t_l - t_k /\tau} \text{if } t_l \le t_k$
	Weights to-from inhibitory pools $\mathbf{W}_{Vis,Inh}$ initialized separately from exponen-
	tial distributions with means $W_{\text{Vis,Inh}}$ etc, and do not undergo plasticity.
Homeostatic adaptation	Synaptic scaling factors initialized to ϕ_{init} or Φ_{init} . $\Delta \phi_j = \Delta \Phi_j = \beta(\rho - A_j)$
	ρ = target activation rate, A_j = average activation, initialized equal to 0 and
	updated after each presentation via
	$A_j \leftarrow \begin{cases} e^{1/\tau_{\rm fr}} A_j + \left(1 - e^{1/\tau_{\rm fr}}\right) & \text{if neuron j active during the presentation} \\ e^{1/\tau_{\rm fr}} A_j & \text{otherwise} \end{cases}.$
	$A_j \leftarrow e^{1/\tau_{\rm fr}} A_j$ otherwise