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Visualization	  of	  the	  Updated	  Regulatory	  Component	  of	  MTBPROM2.0	  

	  

Figure S1. Visual comparison of the regulatory component of the MTB regulatory-metabolic models. (A) 
Regulatory component from MTBPROM1.0, based on the Balazsi 2008 network [1]. (B) Regulatory component 
from MTBPROM2.0 based on the Minch 2015 network [2]. Transcription factors are nodes colored blue, and 
metabolic genes are nodes colored red. 
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Updating	  the	  Metabolic	  Model	  of	  MTB	  

The metabolic component of MTBPROM2.0 is a refined genome-scale metabolic model, called 
Mycobacterium tuberculosis iSM810, which contains updated biochemical reaction information extracted 
from the multiple existing genome-scale reconstructions of MTB metabolism that are described below. 
The original integrated model, MTBPROM1.0, incorporated the genome-scale metabolic model iNJ661, 
which was reconstructed based on the genome annotation of MTB strain H37Rv in 2007 [3]. The model 
iNJ661 contains 1025 reactions based on evidence from homology and experiments from literature that 
have been mapped to 661 genes. Four other genome-scale metabolic network have been reconstructed for 
MTB (GSMN-TB by [4], GSMN-TB1.1 by [5], iNJ661m by [6], and HQ-Mtb by [7] (see Table S1 for 
summary of network properties).  

Table S1: Summary of existing genome-scale metabolic models for in vitro MTB. 

Genome-scale 

metabolic model 

Reference Number of Genes Number of 

Reactions 

Number of 

Metabolites 

GSMN-TB [4] 726 856 645 

GSMN-TB 1.1 [5] 759 876 667 

iNJ661 [3] 661 1025 826 

iNJ661m [6] 663 1049 838 

HQMtb [7] 686 607 734 

To assess their utility in contributing to an updated metabolic model, we compared the existing metabolic 
models by two criteria: 1) model contents and 2) their respective abilities to simulate metabolic 
phenotypes under varying genetic and environmental conditions. GSMN-TB1.1 captures the effect of the 
greatest number of metabolic genes (759 genes), which enables the broadest scope of genetic perturbation 
simulations. The model iNJ661m has the greatest number of total reactions described (1049 reactions), 
although GSMN-TB1.1 contains more reactions that are based on literature-derived, experimental 
biochemical evidence (279 reactions in GSMN-TB1.1 vs. 204 reactions in iNJ661m).  

In evaluating the respective abilities to simulate metabolic phenotypes under varying genetic and 
environmental conditions, we compared GSMN-TB, GSMN-TB1.1, iNJ661, and iNJ661m (the metabolic 
reconstruction HQMtb does not include explicit gene-protein-reaction-associations for all reactions or a 
biomass objective function, which precludes metabolic phenotype simulations by flux balance analysis).  

To compare the ability of the models to correctly simulate growth under different environmental 
conditions, we simulated growth of the four models with different input carbon and nitrogen sources. We 
compared these growth simulations with experimental carbon and nitrogen source growth data from [8-
10]. We considered only carbon and nitrogen sources that already existed as metabolites in the models, 
which total 51 different carbon sources and 40 different nitrogen sources. Of the carbon sources 
considered, MTB has been experimentally shown to be able to grow with 29 of the metabolites as the sole 
carbon source. Of the nitrogen sources, MTB has been shown to grow with 14 of the metabolites as the 
sole nitrogen source.  



Tables S2-S5 list detailed carbon and nitrogen source growth prediction and experiment information. 
GSMN-TB1.1 and GSMN-TB can predict the growth rate of MTB under the broadest range of simulated 
media conditions. GSMN-TB1.1 correctly predicts an ability to grow with 23 compounds as the sole 
carbon source and 12 compounds as the sole nitrogen source (69% sensitivity, 55% specificity for the 
carbon sources; 86% sensitivity, 85% specificity for the nitrogen sources), whereas GSMN-TB can 
correctly predicts an ability to grow with 20 compounds as the sole carbon source and 12 compounds as 
the sole nitrogen source (79% sensitivity, 45% specificity for the carbon sources; 86% sensitivity, 77% 
specificity for the nitrogen sources). In contrast, iNJ661 and iNJ661m correctly predict an ability to grow 
only on glycerol as the sole carbon source, and 10 compounds as the sole nitrogen source (3% sensitivity 
on carbon sources; 71% sensitivity, 88% specificity for the nitrogen sources).  

To each model’s ability to predict the effect of genetic perturbations, we compared metabolic 
consequences of simulating single gene deletions based on the models GSMN-TB, GSMN-TB1.1, and 
iNJ661, under media conditions stipulated by Griffin et al., and we compared the simulation results to 
corresponding experimental gene essentiality data [11] (we did not include iNJ661m in these calculations 
because the unperturbed model was not able to simulate growth under the Griffin media conditions). 
Figure S2 shows the Matthews Correlation Coefficients (MCCs) evaluating the performance of single gene 
deletion simulations based on the different metabolic models. The highest predictive accuracy was 
achieved with GSMN-TB1.1 (MCC = 0.51) and GSMN-TB (MCC = 0.51), with iNJ661 achieving an 
MCC = 0.27.  

Given that GSMN-TB1.1 can predict growth phenotypes under the broadest range of environmental 
conditions and genetic perturbations with the greatest accuracy, this model had the most appealing 
properties for simulating growth phenotypes in this study.  

Although GSMN-TB1.1 has favorable modeling properties, the models iNJ661 and HQMtb contain 
information on reactions known to be catalyzed by MTB that are not captured in GSMN-TB1.1. To 
consolidate the knowledge base of metabolism represented by a genome-scale metabolic model, we 
updated GSMN-TB1.1 by integrating the gene-associated reactions with literature evidence in iNJ661 and 
HQ-Mtb that were absent from GSMN-TB1.1. The resulting updated metabolic model, Mycobacterium 
tuberculosis iSM810, expands the consolidated knowledgebase of MTB metabolism represented by the 
model, with 51 new genes and 57 new literature-associated reactions spanning a broad range of metabolic 
functions (see Table 3 for full list of reactions added to the model). The updated model has added 
reactions needed for the metabolism of cholesterol, glycogen, and carbon monoxide.  

Evaluating	  the	  Predictive	  Ability	  of	  the	  iSM810	  
To evaluate the ability of M. tuberculosis iSM810 to predict the growth effects of genetic perturbations, 
we compared single gene deletion growth predictions to the Griffin essentiality data [11] (see main text 
Methods for details). We found that iSM810 predicted gene essentiality with MCC = 0.52, which is 
comparable to the performance of GSMN-TB and GSMN-TB1.1 (see Figure S2). 



	  

Figure S2. Comparing performance of predicting metabolic gene essentiality. Performance is evaluated by the 
Matthews Correlation Coefficient. iSM810 (red bar) is comparable to GSMN-TB and GSMN-TB1.1, and GSMN-
TB and GSMN-TB1.1 perform better than iN661m and iNJ661. 

We also evaluated the ability for iSM810 to simulate growth under a broad range of media conditions. We 
compared experimentally derived media-specific growth phenotypes with growth phenotypes predicted 
by the metabolic model (see main text Methods for details). Tables S2-S5 list the growth abilities that 
were predicted by iSM810 and Figure S3 compares its predictive performance with the other metabolic 
models. The updated model, iSM810, correctly predicts an ability to grow with 24 compounds as the sole 
carbon source and 12 compounds as the sole nitrogen source (83% sensitivity, 55% specificity for the 
carbon sources; 86% sensitivity, 81% specificity for the nitrogen sources). Overall, iSM810 correctly 
predicts growth in a greater number of carbon and nitrogen sources than the other models. 

	  

Figure S3. Comparison of ability to predict growth in different carbon and nitrogen sources. Performance is 
evaluated by the Matthews Correlation Coefficient (see Methods for description) calculated by combining the 
carbon and nitrogen source predictions together (i.e. considering all 91 metabolite predictions). iSM810 improves 
upon GSMN-TB and GSMN-TB1.1, and GSMN-TB and GSMN-TB1.1 perform better than iN661m and iNJ661. 
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Table S2. Summary of Growth Predictions for Metabolites that Can Be Used as Sole Carbon Source. ‘0’ 
indicates no growth, and ‘1’ indicates growth either measured experimentally (column 2) or as predicted by the 
metabolic models (column 3-6). Note that iNJ661 and iNJ661m yielded the same growth predictions. 

Carbon sources Experiment iSM810 GMSN-TB1.1 GSMN-TB iNJ661/iNJ661m 
2-Oxoglutarate 1 1 1 1 0 

Acetate 1 1 1 1 0 
Acetoacetic Acid 1 0 0 0 0 

Caproic Acid (hexanoate) 1 1 1 1 0 
Cholesterol 1 1 0 0 0 

Citrate 1 1 1 1 0 
D-Glucose 1 1 1 1 0 
D-Mannose 1 1 1 1 0 
D-Trehalose 1 1 1 1 0 

Glycerol 1 1 1 1 1 
Glycine 1 1 1 0 0 

L-Alanine 1 1 1 1 0 
L-Arginine 1 0 0 0 0 

L-Asparagine 1 1 1 0 0 
L-Aspartic Acid 1 1 1 1 0 

L-Glutamate 1 1 1 1 0 
L-Isoleucine 1 1 1 1 0 

L-Lactate 1 1 1 1 0 
L-Malic Acid 1 1 1 1 0 

L-Proline 1 1 1 1 0 
L-Serine 1 1 1 0 0 

Oleate (9-Octadecenoate) 1 1 1 1 0 
Palmitate (Hexadecanoate) 1 1 1 1 0 

Propanoate 1 1 1 1 0 
Pyruvate 1 1 1 1 0 
Succinate 1 1 1 1 0 

Caprylate (Octanoate) 1 0 0 0 0 
Mycolic Acid 1 0 0 0 0 

Carbon Monoxide 1 0 0 0 0 
 



Table S3. Summary of Growth Predictions for Metabolites that Cannot Be Used as Sole Carbon Source. ‘0’ 
indicates no growth, and ‘1’ indicates growth either measured experimentally (column 2) or as predicted by the 
metabolic models (column 3-6). Note that iNJ661 and iNJ661m yielded the same growth predictions. 

Carbon sources Experiment iSM810 GMSN-TB1.1 GSMN-TB iNJ661/iNJ661m 
2-Deoxyadenosine 0 0 1 0 0 

Adenosine 0 0 1 0 0 
D-Cellobiose 0 0 0 1 0 
D-Fructose 0 1 1 1 0 

D-Galactose 0 1 1 1 0 
D-Glucose-1-phosphate 0 0 1 0 0 

D-Ribose 0 1 1 1 0 
D,L -α-Glycerol 

phosphate 0 1 0 1 0 

Formic Acid 0 0 0 0 0 
Glycolic Acid 0 1 1 1 0 

Inosine 0 0 1 0 0 
L-Histidine 0 0 0 0 0 
L-Leucine 0 0 0 0 0 
L-Lysine 0 0 0 0 0 

L-Methionine 0 0 0 0 0 
L-Ornithine 0 1 0 0 0 

L-Phenylalanine 0 0 0 0 0 
L-Threonine 0 1 1 1 0 

L-Valine 0 1 1 1 0 
Maltose 0 1 1 1 0 
Sucrose 0 1 1 1 0 
Uridine 0 0 0 0 0 

 

  



Table S4. Summary of Growth Predictions for Metabolites that Can Be Used as Sole Nitrogen Source. ‘0’ 
indicates no growth, and ‘1’ indicates growth either measured experimentally (column 2) or as predicted by the 
metabolic models (column 3-7).	  

Nitrogen sources Experiment iSM810 GMSN-TB1.1 GSMN-TB iNJ661 iNJ661m 
Ammonia 1 1 1 1 1 1 
Glycine 1 1 1 1 1 1 

L-Alanine 1 1 1 1 1 1 
L-Arginine 1 0 1 0 1 1 

L-Asparagine 1 1 1 1 1 1 
L-Aspartic Acid 1 1 1 1 1 1 

L-Cysteine 1 0 0 0 0 0 
L-Glutamic Acid 1 1 1 1 1 1 

L-Glutamine 1 1 1 1 0 0 
L-Isoleucine 1 1 1 1 0 0 
L-Ornithine 1 1 0 1 1 1 
L-Proline 1 1 1 1 1 1 
L-Serine 1 1 1 1 1 1 
L-Valine 1 1 1 1 0 0 

	  

Table S5. Summary of Growth Predictions for Metabolites that Cannot Be Used as Sole Nitrogen Source. ‘0’ 
indicates no growth, and ‘1’ indicates growth either measured experimentally (column 2) or as predicted by the 
metabolic models (column 3-7).	  

Nitrogen sources Experiment iSM810 GMSN-TB1.1 GSMN-TB iNJ661 iNJ661m 
Adenine 0 0 1 0 0 0 

Adenosine 0 0 1 0 0 0 
D-Alanine 0 1 1 1 1 1 

D-Glutamic Acid 0 0 0 0 0 0 
Guanine 0 0 0 0 0 0 

Guanosine 0 0 0 0 0 0 
Inosine 0 0 0 0 0 0 

L-Citrulline 0 0 0 0 0 0 
L-Histidine 0 0 0 0 0 0 

L-Homoserine 0 0 1 0 0 0 
L-Leucine 0 0 0 0 0 0 
L-Lysine 0 0 0 0 0 0 

L-Methionine 0 0 0 0 0 0 
L-Phenylalanine 0 0 0 0 1 1 

L-Threonine 0 1 1 1 0 0 
L-Tryptophan 0 0 0 0 1 1 

L-Tyrosine 0 0 0 0 0 0 
N-Acetyl-D,L 
Glutamic Acid 0 0 0 0 0 0 

Nitrate 0 0 0 0 0 1 
Nitrite 0 1 0 0 0 1 
Uracil 0 0 0 0 0 0 
Urea 0 1 1 1 0 0 

Uridine 0 0 0 0 0 0 
Xanthine 0 0 0 0 0 0 

Xanthosine 0 0 0 0 0 0 
γ-Amino-N Butyric 

Acid 0 1 0 1 0 0 



TF	  knockout	  essentiality	  predictions	  
The performance of MTBPROM1.0 and MTBPROM2.0 at identifying essential gene knockouts is 
dependent upon the values chosen for multiple parameters, including (1) the cutoff threshold of the 
Griffin essentiality score used to delineate between essential and non-essential genes in the experimental 
validation dataset and (2) the cutoff threshold of the predicted relative growth rates used to designate 
essential vs. non-essential genes in the PROM models. To assess the degree to which these parameters 
affected the performance of the models, we generated a series Receiver Operating Curves (ROCs) using 
the R package ‘pROC’ [12] by adjusting both of the aforementioned parameters (see Figure S4). We find 
that MTBPROM2.0 displays overall improved performance compared to MTBPROM1.0 across different 
selections of parameters (evaluated by AUC of the ROC curves, see Figure S5).  

	  

Figure S4. Receiver Operating Curves showing performance of the regulatory-metabolic models at predicting 
gene essentiality. (A) Performance of MTBPROM1.0. (B) Performance of MTBPROM2.0. The different colored 
lines represent different Griffin score threshold cutoffs for defining essentiality in the experimental data, ranging 
from 0.05 to 0.5. Each ROC curve was generated by varying the cutoff threshold of the predicted relative growth 
rates used to define the model-based essentiality assignments. 

	  	  



	  

Figure S5. Areas under curves of ROC curves as a function of the Griffin Score cutoff threshold for 
designating gene essentiality. The AUCs were calculated from the curves generated in Figure S4. The AUCs of 
MTBPROM2.0 remained higher than those evaluating the performance of MTBPROM1.0. 

Estimating	  the	  confidence	  of	  PROM	  TF	  overexpression	  phenotype	  
predictions	  
To estimate the confidence of the MTBPROM2.0 TF overexpression predictions, we applied a logistic 
regression model to associate the prediction outcomes with model features. Table S6 shows the logistic 
regression parameters tested. Of the variables tested, two features were significantly associated with 
correct MTBPROM2.0 predictions. The negative association between the average number of regulatory 
interactions that the essential target genes have and the likelihood of a true MTBPROM2.0 prediction 
indicates that MTBPROM2.0 is more likely to predict correctly for TFs linked to metabolic genes that 
have simple regulatory architectures (i.e., those that have few influences from TFs other than the one 
being perturbed). The positive association between the likelihood that a MTBPROM2.0 prediction is true 
and whether the MTBPROM2.0 prediction matches the iMAT prediction suggests that performance 
depends on whether the influence of a TF upon its targets can be successfully estimated from the gene 
expression data. Increased disagreement between iMAT and MTBPROM2.0 predictions suggests 
uncertainty in the estimates of the TF influence on its targets, which would confound the assumptions 
made by the MTBPROM2.0 TF influence estimation approach. Using a logistic regression model 
constructed with these two significant features, we identified 46 TFs with network properties that yield 
higher confidence MTBPROM2.0 predictions. The TFs selected by the logistic regression model were 
statistically enriched for correct MTBPROM2.0 predictions (p < 10^-4, hypergeometric test). The 
prediction results of these high confidence TFs were reported in the main text.  



 

Table S6. Logistic regression feature variables. The following network properties were applied to a logistic 
regression model to estimate the confidence of each TF overexpression growth prediction made by MTBPROM2.0. 
Features with starred p-values were found to be significantly associated with ability to distinguish between TFs 
predicted correctly vs. incorrectly by MTBPROM2.0 when a logistic regression model containing solely these 
variables was tested. 

Coefficient Estimate Standard 
Error 

Z Value P(>|z|) 

iMAT agree PROM 2.0 0.57 3.56 0.0004* 
Average # TFs 

for essential targets 
-0.44 0.19 -2.4 0.02* 

# Metabolic targets 0.12 0.06 2.0 0.04 
PROM growth variance -190 114 -1.7 0.08 

# Essential metabolic targets -0.19 0.16 -1.1 0.26 
# Combinatorial TFs 
for essential targets 

-0.17 0.21 -0.84 0.40 

Fraction essential targets 0.45 0.99 0.46 0.65 
	  

TF-‐drug	  synergy	  predictions	  
A major challenge in developing new therapies for TB is finding effective combinations of drug 
treatments. Integrating MTBPROM2.0 with condition-specific metabolic models enables predictions of 
the effect of combinatorial perturbations on the growth consequences of MTB. An application relevant to 
therapeutic development efforts is to predict novel drug targets that will synergize with the activity of 
antibacterial agents. Using the transcriptional profiles of MTB response to different drugs (described in 
the main text), we generated drug-specific metabolic models based on iSM810 using the iMAT algorithm. 
To binarize the expression data, genes with log2 fold change < -1 upon exposure to drug were designated 
as ‘OFF.’ The iMAT algorithm applies these binarized data to constrain iSM810 by maximizing the fit of 
reaction flux state to catalyzing enzyme expression state [13, 14]. The TF perturbations (overexpression 
and knockout) are simulated in the context of these drug-specific models using the MTBPROM2.0 
framework. 

Figure S6 shows heatmaps summarizing the predictions of relative growth rate of each drug-TF 
perturbation combination, relative to the growth rate predicted for each drug in absence of TF 
perturbation and growth rate predicted for each TF perturbation in the absence of each drug (Panel A 
shows knockouts, Panel B shows overexpression perturbations). The rows represent the TF perturbations, 
and the columns represent the drugs. Black bars spanning the rows and columns represent TF 
perturbations and drugs that are predicted to be lethal to growth irrespective of secondary perturbations 
(See S4 Table for the full results). 



	  
Figure S6. Heatmaps of relative growth rate simulated from TF-drug combinatorial perturbations. (A) TF 
knockout-drug synergy predictions. (B) TF overexpression-drug synergy perturbations. Darker colors indicate 
greater growth defect. The rows represent the TF perturbations, and the columns represent the drugs. Black bars 
spanning the rows and columns represent TF perturbations and drugs that are predicted to be lethal to growth 
irrespective of secondary perturbations. 
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