
S1 Table.  RNA-seq analysis techniques 
There are several downstream analysis goals for which RNA-seq is well suited.  Main 
categories of these are described briefly below with reference to supporting materials.  Refer to 
S2 Table for specific tools relevant to many of these areas.  For each application, a basic data 
recommendation is provided.  It is important to remember that these are simply examples.  In 
addition to the varying demands of each analysis technique, data requirements will depend 
heavily on the size and complexity of the genome, the complexity of the transcriptome, the 
method of RNA isolation and library preparation, the need to robustly detect transcripts with 
low copy numbers, and many other factors.  For the purposes of this table, low RNA-seq depth 
is 5-25M reads, moderate depth is 25-100M reads, and high depth is 100-500M.  Similarly, 
short reads are 50-200bp and long reads are 200-500bp. 
 

RNA-seq 
analysis 
technique 

Description 

Gene annotation 
and transcript 
discovery [7-13] 

RNA-seq produces short reads (often paired) from short (~100-500 bp) 
fragments of cDNA by shotgun sequencing.  When performed to high 
depth for a single sample it is possible to make strong inferences 
regarding the regions of transcriptional activity within a genome and the 
exon-intron structure of transcripts expressed from each region.  When a 
reference genome sequence is available, RNA-seq reads can be aligned 
to this sequence using a splice aware aligner and the intron-exon 
boundaries and exon-exon connections of expressed transcripts can be 
determined.  More generally, the gene loci where expression occurs can 
be enumerated.  The presence of multiple transcript isoforms expressed 
from a single locus can also be determined in many cases, though the full 
length structure may be difficult to completely resolve.  In addition to 
aligning reads to a reference genome sequence, transcripts can also be 
inferred by de novo transcript assembly.  If a reference genome sequence 
is available, the resulting assembled contigs can be aligned and used to 
determine exon-intron structure.  If no reference genome sequence is 
available, the resulting contigs can still be used for gene annotation by 
analysis with ORF finding tools, sequence conservation comparisons to 
related species, etc. 
Data recommendation: This application will benefit from longer reads, 
especially in species with large introns, small exons, and complex splicing 
patterns.  Sequence depth will influence the comprehensiveness of 
transcripts that can be annotated, with lowly expressed transcripts 
requiring perhaps 100M reads or more to effectively cover. 

Gene and 
transcript 
expression 
estimation [91-
94] 

In the ‘gene annotation and transcript discovery’ discussion above we 
described the use of RNA-seq to determine which gene loci are 
transcribed by RNA polymerase and how the exon-intron structure of 
those transcripts is determined by the splicing machinery.  Gene and 
transcript expression estimation by RNA-seq involves the abundance 
estimation of all transcripts or individual transcript isoforms expressed 



from each locus.  This step often relies on existing transcript annotations 
for a species (e.g., a transcriptome GTF file from Ensembl) or it requires 
that you first predict the transcripts present in your data and then derive 
abundance estimates for those transcripts.  Cufflinks and HTSeq are two 
examples of tools used to estimate transcript and gene abundances.  To 
estimate abundance by RNA-seq, reads are aligned either to a reference 
genome, reference transcript sequences, assembled transcript contigs 
derived from the same data, or some combination of these.  The read 
count observed at each locus or for each known transcript sequence is 
then used to estimate the relative abundance of each transcript.  If a 
spike-in reagent with known concentrations was used during library 
construction, it may be possible to estimate absolute copy number values 
in the sample.  Abundance estimation tools may attempt to normalize 
expression values to account for biases related to the different sizes of 
transcripts, varying GC content, varying library sequence depth, and so 
on.  Further normalization across a series of samples may involve 
examination of a set of ‘housekeeping genes’ and/or use of other data 
normalization techniques [95]. 
Data recommendation: This application places one of the lowest demands 
on library depth compared to other RNA-seq analysis techniques.  For 
gene-level expression estimation, as few as 5-10M reads may be 
sufficient for mRNA-seq libraries and where possible additional replicates 
may be preferable to deeper individual libraries.  This application will work 
well with long or short reads that may or may not be paired end. 

Differential gene 
or transcript 
expression 
analysis [15-17] 

Differential gene or transcript expression involves comparison of 
abundance estimates between two or more conditions.  For example, the 
abundance of a gene observed in different tissues, developmental stages, 
chemical exposures, disease versus healthy states, etc.  There are many 
biases that influence abundance estimates for each gene or transcript.  
One advantage of differential expression analysis is that many of these 
biases will be consist across the samples and ‘cancel out’ leaving 
potentially biologically relevant differences in gene expression.  
Unfortunately, many factors may introduce systematic bias that is not 
equal across the RNA-seq data sets being studied.  There are many 
approaches for identifying batch effects and for performing data 
normalization that may mitigate the effect of these systematic biases.   
Data recommendation: This application has close to the same data 
requirements as expression estimation except that some additional 
sequence depth may be required to accurately estimate subtle differences 
in expression between samples. 

Alternative 
expression 
(alternative 
transcript 
initiation, 
polyadenylation, 
and splicing) 

Alternative expression is closely related to differential expression but 
attempts to identify differences in the relative ratios of alternative isoforms 
expressed from a locus.  It is possible for the overall expression output 
from a locus or to remain unchanged between two conditions but have a 
significant shift in the relative expression levels of alternative isoforms.  
Alternative expression can be caused by changes in the use of alternative 
transcript initiation sites, exon-intron splice sites, and polyadenylation 



analysis [3] sites at a locus.  Many human protein-coding loci have extensive potential 
for alternative expression and the majority of human loci have at least one 
known alternative isoform.  Subtle changes in the structure of transcripts 
may have pronounced functional consequences but have relatively subtle 
effects on transcript or gene abundance estimates.  Alternative 
expression analysis by RNA-seq has the potential for a more nuanced 
representation of the transcriptional state of a sample compared to simple 
gene expression analysis, though it comes at the cost of more 
complicated algorithms. 
Data recommendation: This application will place some of the highest 
demands on library depth and read length.  To robustly assay the 
alternative expression patterns of human tissues we recommend at least 
300-500M reads.  This application will also benefit from longer reads. 

Allele specific 
expression 
analysis (ASE) 
[18, 19] 

In diploid (or polyploid) species RNA expression can occur independently 
from each inherited chromosome.  Maternal and paternal derived alleles 
of each gene locus may contain sequence differences such as common 
polymorphisms (e.g., SNPs) and mutations.  They also differ in their 
methylation (e.g., imprinting) or other epigenetic states.  While many gene 
loci exhibit balanced expression from each allele, some loci exhibit 
unbalanced or allele specific expression patterns [18].  This allele specific 
bias could be caused for example by a polymorphism near a promoter 
that increases transcription factor recruitment and increased polymerase 
activity for one allele compared to another.  The same kinds of allele 
specific effects can influence choice of alternative transcript initiation 
sites, alternative splice sites, and alternative polyadenylation sites.  
Mutations can result in completely novel expressed isoforms being 
generated from the mutated allele.  Allele specific expression analysis 
uses the presence of known heterozygous polymorphisms within the 
expressed portion of genes to observe the balance/imbalance of 
expression from both alleles.  In order to perform allele specific 
expression analysis it is desirable to accurately identify these 
heterozygous sites in the individual being studied.  One therefore typically 
needs both DNA sequence (DNA-seq) (e.g., WGS or Exome) data as well 
as RNA-seq data for each sample to be analyzed for allele specific 
expression. 
Data recommendation: This application has moderate demands for library 
depth compared to other RNA-seq analyses.  Getting accurate variant 
allele frequencies (VAFs) will require low library sequence depth for highly 
expressed genes but high library sequence depth for lowly expressed 
genes.  Measuring allele specific expression for single nucleotide variants 
will work well with 100 bp reads (or perhaps shorter).  Measuring allele 
specific expression for insertions and deletions (especially >10-20 bp) will 
benefit from longer read length libraries. 

RNA editing 
analysis [20-22] 

RNA editing describes nucleotide sequence modifications to RNA 
molecules that happen after transcription by an RNA polymerase.  Such 
modifications result in apparent changes in the RNA sequence from that 
which would be predicted from the genome sequence.  It is possible to 



detect such sequence changes in RNA-seq data, but in order to be 
convinced that the change is due to RNA editing, DNA-seq data is 
required for the same sample.  In simple terms, by comparing the 
transcribed sequence by RNA-seq to the genome sequence by DNA-seq 
(WGS or Exome) one can infer that RNA editing has taken place at the 
RNA level.  However, due to sequence errors, mapping artifacts and other 
sources of systematic biases, care must be taken to distinguish false 
positives from true RNA editing events and the prevalence of RNA editing 
as determined by RNA-seq analysis remains a controversial area of 
research. 
Data recommendation: This application has moderate demands for library 
depth, similar to those for allele specific expression.  However, since 
RNA-edits consist primarily of single nucleotide changes, longer read 
lengths are a lower priority for this application compared to allele specific 
expression analysis. 

Variant detection 
(variant 
discovery) [31-
33] 

While variant detection typically involves analysis of DNA-seq data such 
as WGS or exome data [96], it is also possible to perform detection of 
single nucleotide variants and small insertions or deletions using RNA-seq 
data [31-33].  RNA-seq variant detection involves alignment of RNA-seq 
reads to a reference genome sequence or database of reference 
transcript sequences followed by scanning the resulting alignments for 
sites that exhibit sequence base differences relative to the reference 
sequences.  The proportion of reads harboring the variant sequence is 
used to calculate a variant allele frequency (VAF) from 0 to 100%.  The 
number of variant supporting reads, VAF, base qualities at the variant 
position, read alignment qualities, overall level of coverage, and other 
factors collectively influence the confidence of each variant prediction (i.e. 
the probability that it is a real variant and not a false positive).  There are 
several factors that complicate this variant detection when performed with 
RNA-seq instead of DNA-seq data.  In eukaryotic species, the presence 
of introns complicates alignment of reads to a reference genome and may 
lead to alignment errors.  In some cases, these errors may result in false 
positive variant calls where repeated alignment errors result in systematic 
mismatches.  These false positives are enriched near the edges of exons 
when performing variant discovery with RNA-seq data because correctly 
resolving exon-intron-exon alignments is difficult, especially with large 
introns and where only a short portion of a read spans from one exon to 
the next.  Reads that mostly align to one exon but spill over the edge of it 
can result in misaligned bases.  False negatives may also occur in 
regions of the genome that are difficult to map to, and these alignment 
holes may be more prevalent where exon-intron structures complicate 
alignment.  Some of these alignment issues may be overcome by aligning 
reads directly to predicted transcript sequences and performing variant 
detection by observing sequence differences between the known 
transcript sequence and aligned reads.  Library end bias and 
corresponding lack of coverage near the 5’ end of transcripts may also 
result in false negatives due to poor coverage.  Furthermore, detection of 



polymorphisms will be limited to genes that are expressed in the tissue 
being profiled and the ability to call variants within expressed genes will 
vary across the range of expression levels.  In highly expressed genes, 
coverage may be extremely high.  This can lead to detection of false 
positives at low variant allele frequency if the variant detector does not 
use appropriate statistics.  In genes that are not expressed, variant 
detection will not be possible.  Some mutations within exons may lead to 
nonsense mediated decay (NMD) that results in decreased stability of the 
mutant harboring transcripts.  This will reduce the ability to detect such 
loss of function events when using RNA-seq data alone. 
Data recommendation: This application has moderate to high demands on 
library depth and read length depending on the specific type of variant 
detection as outlined in the following four entries of this table. 

Common 
polymorphism 
detection [31-33] 

It is possible by RNA-seq analysis to detect common polymorphisms 
(e.g., SNPs) that occur within expressed exons [31, 32].  The sites of 
many of these are known in many species and this knowledge can be 
used to guide their detection.  Since the expected frequency of 
heterozygous and homozygous polymorphisms is high (~50% and ~100% 
respectively) they can be readily detected even in genes with low 
expression levels and therefore low read coverage.  As discussed above, 
allele specific expression may reduce or increase the expected frequency 
of heterozygous SNPs.  Since the majority of common polymorphisms 
occur within introns or outside of gene loci, a relatively narrow subset of 
polymorphisms will be assayed by RNA-seq data alone.   
Data recommendation: This application has moderate demands on library 
depth.  Since the variants are expected to occur at 50 or 100% VAF, 
detecting them should be possible with 20-30x coverage at each site.  
Target library depth will be driven by the amount of data needed to 
achieve this coverage for lowly expressed genes.  As described for allele 
specific expression above, variants with substantial nucleotide differences 
from the reference genome sequence (e.g., insertions and deletions) may 
benefit from longer read lengths to facilitate accurate alignment of reads 
containing the variant sequence.  

Germline 
mutation 
detection [31-33] 

RNA-seq analysis for germline mutation detection is largely equivalent to 
the detection of polymorphisms as described above except the variants 
being discovered are very rare in the population (they may even be 
private to a single individual).  Without prior knowledge of the expected 
site of mutation the analysis must scan the entire transcriptome.  Such 
analysis may be greatly aided by having RNA-seq data from related family 
members (e.g., a trio of mother, father, child).  As with polymorphism 
detection, mutation detection in RNA-seq data will be complicated by the 
varying expression levels of each gene and allele specific expression.   
Data recommendation: This application has essentially the same data 
needs as common polymorphism detection described above. 

Somatic 
mutation 

Somatic mutation detection has many similarities to other types of variant 
detection described above.  It still involves detection of variants but adds 



detection [31-33] an extra consideration to identify the subset of variants that were likely 
acquired in the DNA of the tumor (i.e. those that are not germline inherited 
variants).  Somatic mutation detection is possible but difficult with RNA-
seq data compared to DNA-seq data such as WGS or exome data.  Using 
DNA-seq data it is common to compare tumor sequence data directly to 
matched normal data to assess the somatic status of variants.  The 
normal DNA sample is usually blood in the case of solid tumors, and 
usually a skin biopsy in the case of hematologic tumors.  Since we expect 
approximately even coverage across the genome (or exome) for both the 
tumor and normal sample, we can compare DNA-seq reads at each 
position harboring a variant in the tumor data and assess its presence in 
the normal data.  Convincing somatic variant sites will have good 
sequence coverage in both the normal and tumor sample but will only 
have significant support for the variant base in the tumor data.  This kind 
of sample pairing for tumor/normal comparison is not usually appropriate 
for RNA-seq data.  Using a blood normal RNA sample as a comparator 
for a solid tumor would not work well because the gene expression 
pattern for the solid tumor would not be expected to match that of the 
blood sample.  In other words we often may not have coverage of variant 
sites in both normal and tumor.  Furthermore, there may be differences in 
allele specific expression between the tumor and normal comparator.  For 
some tumor types, it may be possible to obtain a tissue-matched normal 
sample to use as a comparator for determining somatic status.  For 
example, a breast tumor sample could be compared to adjacent normal 
breast tissue obtained from the same individual.  However, even in such 
cases, the matched normal may not have the same composition of cell 
types that the tumor has and there may be significant differences in the 
transcriptome landscape between tumor and normal samples that 
confounds somatic variant determination.  One strategy that could be 
used to circumvent this challenge is to compare the tumor RNA-seq data 
to normal DNA-seq data such as exome data.  Given the decreasing cost 
of WGS and exome data it is probably more appropriate to simply 
produce RNA-seq data for the tumor and DNA-seq data for both the tumor 
and a matched normal. 
Data recommendation: This application is similar to other variant detection 
types but has substantially increased demands on library sequence depth 
compared to other categories because it involves the detection of somatic 
variants in tumor samples that may be contaminated with normal DNA 
(thereby reducing the observable VAF and number of variant supporting 
reads) or confounded by tumor heterogeneity (where some mutations 
exist only in subclonal populations).  If a normal RNA sample is used as a 
comparator to determine the somatic status (often not possible), good 
coverage of that sample will also be required.  As with other variant 
detection types, characterization of complex variants may benefit from 
longer reads. 

Mutation 
expression 

Perhaps the most common application of RNA-seq data in the sphere of 
mutation detection is to first detect all mutations (germline or somatic) 



assessment [97] using DNA-seq data and then only use the RNA-seq data to assess the 
expression status of each mutation [97].  This is equivalent to the allele 
specific expression analysis described above except that instead of 
relying on known sites of polymorphism common in the population it relies 
on a prior mutation detection step using DNA-seq data.  The ability to 
assess the expression status of mutations varies by the complexity of the 
mutation.  Single nucleotide variants (SNVs) will be relatively 
straightforward but larger insertions and deletions may be more 
challenging due to challenges in alignment.  In general, one should be 
careful to remember that the failure to confirm expression of a mutation 
observed at the genome level in the transcriptome could be influenced by 
differences in alignment between the DNA-seq and RNA-seq at the site of 
the mutation as well as other RNA-seq specific biases such as reduced 
RNA-seq coverage at the 5’ ends of transcripts. 
Data recommendation: This application has perhaps the lowest demands 
on library depth compared to other variant detection applications since the 
variants are already detected at the DNA-level and RNA-seq data is only 
used to assess their expression level.  However, these variants may occur 
anywhere in a transcript and might occur in transcripts will low but 
functionally significant expression levels.  In other words, comprehensive 
and deep coverage of the transcriptome is still desirable for this 
application.  As with other variant detection types, characterization of 
complex variants may benefit from longer reads. 

Gene fusion 
detection [26-30] 

Gene fusion detection by RNA-seq is mostly performed in the context of 
tumor sequencing projects [26, 98, 99].  A gene fusion is a chimeric 
transcript that combines portions of two transcripts normally expressed 
from two distinct gene loci, ‘gene A’ and ‘gene B’ (e.g., BCR-ABL, EML4-
ALK, etc.).  Gene fusions may arise as a consequence of structural 
variations in the genome such as deletions, insertions, inversions, and 
translocations.  Identification of fusion events in RNA-seq data relies on 
two main forms of alignment information.  (1) Paired-end read information 
where one read of a pair maps to ‘gene A’ and the other read of that pair 
maps to ‘gene B’.  Such reads are sometimes referred to as 
encompassing reads.  (2) Individual reads that align across the junction of 
‘gene A’ and ‘gene B’.  For example, a read where the first half maps to 
the edge of an exon in ‘gene A’ and the second half of this read maps to 
the edge of an exon in ‘gene B’.  Such reads are sometimes referred to as 
spanning reads.  Drops or spikes in read coverage levels across the 
length of either ‘gene A’ or ‘gene B’ that correspond to the apparent 
breakpoint may also help to support the existence of a gene fusion.  In 
some cases, ‘soft clipped’ reads that align partially and become stretches 
of mismatches may suggest the presence of a fusion breakpoint.  Fusion 
detection tools currently under development attempt to combine evidence 
from both the RNA and DNA level to give more accurate predictions.  
Gene fusion detection tools generally have complex processes for 
producing alignments suitable for fusion detection, filtering steps to 
remove false positives that occur widely in genes with paralogs, an 



assembly step that attempts to determine the fusion sequence, annotation 
steps that attempt to determine if an in frame fusion product is likely to 
result from an RNA fusion transcript, and additional annotation steps. 
Data recommendation: This application has moderate demands on library 
depth assuming that an oncogenic fusion gene is likely to be expressed at 
reasonably high levels.  Reads should be paired-end as most fusion 
detection tools assume pairing information will be present.  Medium to 
long reads are desirable to ensure accurate alignment of reads to genes 
with many paralogs or pseudogenes and also to allow accurate mapping 
of reads that span across fusion breakpoints that may involve any two 
points in the genome. 

Viral detection 
[23-25] 

Expression of some viruses may be detected and their genome 
characterized by RNA-seq [23, 100].  In some human tumors, certain 
viruses may be present either as endogenous elements within the cell or 
integrated into the genome [25, 101].  In either case it may be possible to 
detect expression of viral transcripts in RNA-seq libraries generated from 
these cells.  Detection of viral sequences may involve inclusion of certain 
viral reference sequences (e.g., HPV, HBV, HCV, EBV, etc.) in the 
reference genome sequence database to which all RNA-seq reads are 
aligned.  Another strategy is to obtain only those reads that do not align to 
the reference genome sequence for the species being studies and 
attempt to align these reads to a database of viral sequences.  Some 
strategies further involve de novo assembly of these reads into contigs 
prior to alignment to viral sequence databases. 
Data recommendation: This application requires moderate to high library 
depth.  Detecting sequences that align to viral genomes or distinctive viral 
k-mers may not require a very deep library if the virus is actively 
expressing RNAs in the tissue sampled.  Identifying fusion sequences 
involving viruses has many of the same complexities as normal fusion 
detection and likewise may benefit from longer read lengths. 

 


