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1 Seasonal pattern in cattle trade network

Fig. S1 shows the number of active links per month in the cattle trade network. A
seasonal pattern is clearly visible: the activity drops during summer months, and
peaks during fall. The activity pattern is quite similar from one year to the other.
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Figure S1: Number of active links per month in cattle trade network. Different colors
pertain to different years, in range (2006− 2010).
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2 Loyalty’s properties

2.1 Allowed values

In the following we provide an analytical reasoning on the allowed values for the
loyalty. θ between configurations c and c+ 1 can be rewritten as

θ =
α

A− α
, (1)

where α ∈ N is the number of neighbors retained from c to c+1, and A = kc+kc+1 ∈
N is the sum of the node’s degrees. Clearly, every pair of α′, A′ for which ∃q ∈ N
such that α′ = qα and A′ = qA, will give the same θ. Therefore, in order to compute
all the possible values of θ, we must restrict ourselves to α,A coprimes: (α,A) = 1.
Moreover, since θ cannot be higher than 1, we have to impose one further constraint:
α < A/2. All divisions are to be intended as integer divisions.

For zero loyalty, we have θ = 0 ⇔ α = 0, for every positive A. If θ > 0, we need
to count the number of possible values α, given the constraints discussed above,
and given a value for A which is fixed by the node’s degrees. For A ≥ 3, there are
ϕ(A)/2 coprimes of A and smaller than or equal to A/2, as it can be inferred by
basic properties of the Euler’s totient function ϕ.

n(A) =


0 if A = 1
1 if A = 2
ϕ(A)/2 if A ≥ 3

, (2)

where n(A) counts the number of nonzero allowed values for θ, given a fixed A. In
order to compute the total number of allowed θ values in an entire network, we now
let A run from 1 to a certain Amax, which is of the order of twice the highest degree:

N (Amax) = 1 +
Amax∑
A=1

n(A) = 2 +
1

2

Amax∑
A=3

ϕ(A). (3)

The unity added to the sum takes into account the value θ = 0. In order to better
understand the behavior of N (Amax) we can use Walfisz approximation for large
Amax, and assume Amax ≈ 2kmax to get

N (kmax) = 1 +
6

π2
k2max +O

[
kmax (log kmax)

2/3 (log log kmax)
4/3
]
. (4)

This means that the sexual contact network has ∼ 104 allowed values, and the cattle
trade network has ∼ 108 allowed values. Such large number of allowed values in the
interval [0, 1] justifies our approximation of treating θ as a continuous variable.

2.2 Temporal stability of the loyalty distribution in cattle and
sexual contact networks

Fig. S2 shows the loyalty distributions in all configuration pairs included in the two
datasets under study (top, cattle trade network; bottom, sexual contact network).
In both networks, distributions are stable in time.
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Figure S2: Loyalty distributions for different configurations. (A): distributions for cat-
tle network, over the considered time period. (B): distributions for sexual
contacts network.

2.3 Correlation between loyalty and degree

Degree and loyalty, while not being independent variables, are nonetheless not triv-
ially correlated. Fig. S3 shows the scatter plots between the degree of a node in
configuration c and its loyalty for the pair of configurations c, c + 1, for both net-
works. For each value of k, θ is found to range over a wide interval. This is clearly
visible up to k ≈ 102 for the cattle trade network, and k ≈ 10 for the sexual con-
tact network. Higher degree nodes are much less frequent, so the statistics becomes
poorer and the heterogeneity in θ decreases as k increases. Pearson correlation coef-
ficients are found to be low for both networks (0.04 for the cattle trade network and
0.15 for the sexual contact network), consistently with the observed large variations.
They are however significantly larger than the coefficients of the null model: 95%
confidence interval of (−0.002, 0.002) and (−0.006, 0.007), for the cattle trade net-
work and the sexual contact network, respectively. This points to a positive, albeit
weak, correlation between degree and loyalty. The confidence intervals for the null
model are obtained by randomly shuffling several times the sequence of θ’s, in order
to highlight any spurious correlation with the degree sequence.

3 Loyalty and other similarity measures

We analyze here the relationship between loyalty and other possible measures of
similarity of the neighbor structure of a node across time. Firstly we consider a
measure introduced as social strategy in [1]. In our context, if we call k̃1,ci the
(in-)degree of node i in the network resulting from the aggregation of snapshots
1 to c, then i′s social strategy in those configurations will be computed as γ1,ci =
k̃1,ci /

(∑
c′ k

c′
i

)
. kc

′
i is as usual the (in-)degree of i in configuration c′. This definition

is the same as in [1], except for a normalizing factor c. We make this choice in order to
make the comparison with θ more straightforward. The most important qualitative
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A B

Figure S3: Scatter plots showing degree at configuration c vs loyalty between configura-
tions c, c+ 1. Each point represents a node. (A): cattle network. (B): sexual
contacts.

difference between loyalty and social strategy is that the former is always computed
between a pair consecutive snapshots, while the latter typically describes an average
behavior computed on several configurations (from 1 to c in our notation). Indeed
only in the trivial case of γ computed on just two snapshots, loyalty and strategy are
univocally related: γ1,2i = 1

1+θi1,2
. In general, γ1,ci will be a non trivial combination

of all the consecutive loyalties θ1,2i , θ2,3i · · · θ
c−1,c
i and degrees. Fig. S4A shows the

correlation between social strategy in cattle network, computed from 2006 to 2010,
and loyalty between 2009, 2010.

We now consider a measure of neighbor similarity derived from Pearson correlation
coefficient. This measure is analogous to what is called adjacency correlation in [2].
For each node we build two vectors, vci , v

c+1
i , of dimension |Vci ∪ Vc+1

i |, i.e. these
vectors will contain an entry for each vector that is neighbor of i in at least one
of the two configurations. vci has entries equal to 1 for nodes that are in Vci , and
zero otherwise, and the same for vc+1

i . We than consider the Pearson correlation
coefficient between the two vectors, ξc,c+1. This can be directly related to the loyalty
θc,c+1
i and the degrees of the node in the two configuration kci and kc+1

i through the
formula

ξc,c+1 = −k
c + kc+1

√
kckc+1

1

1 + θc,c+1

√
(1 + θc,c+1)2

kckc+1

(kc + kc+1)2
− θc,c+1 (5)

In the above equation we have omitted the subscript i: ξc,c+1 = ρc,c+1
i , kc = kci and

θc,c+1 = θc,c+1
i . Fig. S4B shows the scatter plot ξc,c+1 versus θc,c+1. We see that,

due to the definition of vectors vc, ξ ∈ [−1, 0]. This formula can be simplified if
we need just an average behavior: assuming kc = kc+1 = k, where k is the average
connectivity, the formula reduces to 〈ξc,c+1〉 = −(1− θc,c+1)/(1 + θc,c+1). From this
we get that θ = 0 (no memory) corresponds to ξ = −1, while θ = 1 (perfect memory)
corresponds to ξ = 0.

Finally, we analyze an application of cosine similarity. For each node vectors
vci , v

c+1
i are built as before. Then cosine similarity between those vectors is defined

as ζ = vci · vc+1
i /

(
|vci ||vc+1

i |
)
. It can be shown that, like ξ, ζ can be written in terms
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of degree and loyalty:

ζc,c+1 =
θ

1 + θ

kc + kc+1

√
kckc+1

(6)

The average behavior this time is 〈ζc,c+1〉 = 2θc,c+1/(1 + θc,c+1) (see scatter plot in
Fig. S4C).

In conclusion, social strategy, being computed on a sequence of more than two
configurations, represents a qualitatively different measure with respect to loyalty,
albeit the two measures being correlated (see Fig. S4A). On the other hand, both
Pearson ξ and cosine similarity ζ can be completely determined in terms of degree
and loyalty. Moreover, the mean trend is well modeled by the averaged version of
these measure, which discounts degree (see Fig. S4).

Figure S4: Cattle network: correlation between loyalty and other neighbor similarity mea-
sures. (A): scatter plot showing social strategy (γ) computed from 2006 to
2010 vs loyalty between 2009, 2010. Each point represents a node. The red
line represents γ1,2i = 1

1+θi1,2
; Pearson correlation is −0.59. (B): Pearson (ξ)

vs loyalty. The red line represents 〈ξc,c+1〉. (C): cosine similarity ζ vs loyalty.
The red line represents 〈ζc,c+1〉.

4 Modeling infection potentials

Infection potentials πD and πL are modeled with a sum of an exponential distribu-
tion, to account for the behavior at π ' 0, and a Landau distribution, to mimic the
particular asymmetry around the peak. The exact formulation is the following:

f (x;µ, σ, r, q) ∝ exp (−qx) + r

∫ ∞
0

dt sin(2t) exp

[
−tx− µ

σ
− 2

π
t log t

]
. (7)

There are four free parameters: one for the exponential distribution, two for the
Landau distribution, and one driving the relative importance of one function with
respect to the other. An overall scaling coefficient is fixed by normalization.
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5 Robustness of the risk assessment procedure in
varying parameters and assumptions

5.1 Threshold ε

In the following we examine the behavior of the infection potentials πD and πL in
varying the value of the threshold. Fig. S5 shows that in the cattle trade network
the peak position of πD increases with ε, from 0.3 to 0.6. Such behavior is present in
the sexual contact network too, albeit less evident (from 0.3 to 0.5). Unlike πD, πL
distributions remain stable as ε varies. As a result, the probability of a loyal node
being infected (πL) does not depend on the choice of ε. The choice of threshold
ε = 0.1 thus allows to maximize the distance between πD and πL distribution while
preserving enough statistics for the loyal nodes.
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Figure S5: Behavior of infection potentials πD and πL as ε varies. (A),(C): πD curves.
(B),(D): πL curves. (A),(B): cattle network. (C),(D): sexual contacts.

It is important to note that the value of ε also affects the transition probabilities
TDD, TLL in their functional dependence on the degree (Figure 3C,D of the main
text). For each threshold value, such dependence needs therefore to be assessed
through a fitting, to be used for the prediction of the loyalty values in the unknown
network configuration.
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Figure S6: Risk ratio (ν) distribution for cattle network. (A): Ics,h as set of top 50%
highest ranking nodes. (B): Ics,h as set of nodes with ρ > 0.6.

5.2 Definitions for the risk ratio ν

In the main paper the risk ratio ν is computed considering the set Ics,h of the top 25%
highest ranking nodes. Here we explore two different ways of defining this quantity:

• Ics,h as the set of the top 50% highest ranking nodes (Fig. S6A);

• Ics,h as the set of nodes with epidemic risk ρ > 0.6 (Fig. S6B).

Results are reported in Fig. S6 showing the invariance of the observed ν results on
this arbitrary choice.

5.3 Definition of the early stage of an epidemic

In the main paper we consider an initial stage of the epidemic up to τ = 6. This
choice being arbitrary, it is informed by the simulated time behavior of the incidence
curves (see Fig. S7) and the aim to focus on the initial stage of the epidemic.

We also tested a longer initial stage (τ = 10) for the sexual contacts network, to
assess the impact of this variation on the obtained results. We obtain distributions of
the infection potential, of the relative risk ratio, and of the predictive power showing
sharper peaks, however with unchanged peak positions (Fig. S8 for the sexual contact
network). Peaks are expected to be sharper, because with τ = 10 a larger fraction of
the network is reached by the outbreak. The fact that peak positions do not change,
however, reveals that we are able to provide accurate epidemic risks already at the
earlier phase of the epidemic (τ = 6), when such information is mostly needed.

5.4 Aggregation time window

The choice of yearly aggregation time in the case of the cattle trade network is
informed by its annual seasonal dynamics; the six-months aggregating window for
the sexual contact network is instead arbitrary. Here we explore other aggregating
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A B

Figure S7: Simulated incidence curves obtained by changing seeding node and network
configuration for the cattle trade network (A), and the sexual contacts net-
work (B). Black line indicates τ = 6.
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Figure S8: Invasion stage of the outbreak up to τ = 10 for sexual contacts network: dis-
tribution of the infection potentials (A), the risk ratio ν (B)and the predictive
power ω (C).

windows for both networks to explore the impact they may have on the obtained
results.

We consider configurations for the sexual contact network consisting of 3-months
aggregation. When calculating the risk ratio and the predictive power (Fig. S9B,D),
we find distributions similar to the ones reported in the main text, with unchanged
peak positions. The distributions however appear to be noisier, especially as far as
ω is concerned, likely induced by the increased sparseness of the network configura-
tions.

We also try a different aggregation time for cattle network: 4-month windows.
Risk ratio and predictive power distributions are presented in Fig. S9A,C. We ob-
serve that ω is on average quite low: this is likely due to the fact that aggregation
windows shorter than one year fail to take into account the seasonal patterns, thus
decreasing system memory.
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Figure S9: Exploration of different aggregating windows (cattle: 4-month, sex: 3-
month). Distributions of risk ratio ν in cattle (A) and sexual contacts (C).
Distribution of predictive power ω in cattle (B) and sexual contacts (D).

6 Memory driven model: analytical understandings

6.1 Amount of memory

In the following we analytically quantify the amount of memory in the memory
driven model as the probability fc,c+1 that a link present in configuration c is also
present in configuration c+ 1. This can be expressed as:

fc,c+1 = (1− d)

[
pα +

1

N

b(1− d)

b+ d

ζ(γ − 1)

ζ(γ)

]
, (8)

where the first term, (1 − d)pα, is the probability of remaining active and at the
same time keeping a particular neighbor. The second term is the probability of not
keeping a neighbor but recovering it with one of the new stubs. ζ is the Riemann
ζ-function. fc,c+1 can indeed be interpreted as the system memory, as it is a good
estimator of the fraction of links that survive from one configuration to the following.

The second term in Eq. 8 is suppressed by 1/N and can be disregarded in our
case given the large size of the networks (N = 104). fc,c+1 ≈ (1 − d)pα therefore
provides a first order approximation that correctly matches the numerical results
(see Fig. S10A for the comparison).
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6.2 Probability associated to zero loyalty

The probability of a node with in-degree hc having zero loyalty (θc,c+1 = 0) can be
computed analytically as

P (θc,c+1 = 0|kc) = d+ (1− d) (1− pα)kc . (9)
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Figure S10: Characterization of the memory driven dynamical model. (A): the memory
of the system, in terms of the fraction of edges retained from one config-
uration to the following. Boxplots represent median and quartile positions.
The distributions are computed over 50 realizations of the model. Dashed
lines represent the theoretical prediction. pα = 0.3, 0.7 for low and high
memory, respectively. (B): probability for a node with a given in-degree k
to be completely disloyal (θ = 0) between two following snapshots. Points
represent numerical simulations, while lines show the theoretical estimates.

In Fig. S10B we check this result against numerical simulations.

7 Memory driven model: additional properties

In the main paper the transitions probabilities between loyalty statuses are shown
only for the real networks (main paper Fig. 3C and 3D). Here we present them for
the memory driven model. Fig. S11 reports these probabilities in case of low and
high memory, along with the modeling functions.

In addition, we explore different values of the model parameters and discuss the
changes in the network properties. In particular, we explore different values for the
probability of becoming active (b) or inactive (d), other than the choice used in main
paper (b = 0.7, d = 0.2). Fig. S12A, S12B, S12C are the equivalent of main paper
Fig. 5A, and show the in-degree distribution for different values of b, d in the set
{0.2, 0.7}. P (kin) is very robust when changing these parameters, and in all cases
follows the slope of the βin distribution. Fig. S12D, S12E, S12F are the equivalent
of main paper Fig. 5B, and show the loyalty distributions. We observe that the
overall shape is insensitive to parameters change. There is however, a tendency to
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Figure S11: Memory driven model: loyalty transition probabilities between loyal statuses
(TLL(k), green) and disloyal statuses (TDD(k), orange) as functions of the
degree kin of the node. (A): low memory model (pα = 0.3), (B): high
memory model (pα = 0.7). Dashed lines represent the logarithmic models:
TDD(k) = 1.01−0.25 log k, and TLL(k) = 0.20+0.18 log k for the low mem-
ory; TDD(k) = 0.96 − 0.17 log k, and TLL(k) = 0.53 + 0.15 log k for high

memory. Error bars represent the deviation ±{T (k) [1− T (k)] /Nk}1/2,
where Nk is the number of nodes with degree k used to compute T (k).
Last value for k: k = 10 includes all nodes with degree equal or higher.

have higher θ values for low b, d. This is to be expected, since higher probabilities
of going from active to inactive and vice versa mean larger turnover, which leads to
lower memory and therefore lower overall loyalty.

8 Validation in the stochastic case

We repeat the analysis reported in the main text by considering a stochastic Susceptible-
Infectious approach. Given the same initial conditions, we perform r different
stochastic runs, each leading to potentially different outcomes. For each node i,
we compute the fraction fi(s) of runs that node i is infected from epidemics starting
from seed s within time step τ . For validation, we need to compare the list {ρi} (s)
of the node epidemic risks computed with our methodology with the list {fi} (s) of
the probabilities of actually getting infected. If our estimated risks are reliable, then
the two lists need to be correlated, as a higher risk should correspond to a higher
probability to get infected. In order to evaluate this, we compute the Pearson cor-
relation coefficients between {ρi} (s) and {fi} (s), for each possible seed s. The list
of these coefficients can then be summarized in a distribution. Fig. S13B and S13D
show such distributions for the sexual contact network for two different values of the
infection transmissibility (0.75 and 0.85, respectively). In order to check that the
correlation coefficients are significantly different from zero, we compute the same
distributions after reshuffling the epidemic risks (dashed lines in plots). Fig. S13A
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Figure S12: Memory driven model: degree and loyalty distribution when changing
the probabilities of becoming active or inactive. (A),(B),(C): in-degree
distributions when (b, d) = (0.2, 0.2), (0.2, 0.7), (0.7, 0.7), respectively.
(C),(D),(E): loyalty distributions for the same parameter configurations.

and S13C are the equivalent of Fig. 3B in main paper and show that the peak po-
sition of the infection potential does not change from the deterministic case. Noise
and peak width, however, increase considerably, as well as the probability of having
πD = 0, and this effect is more pronounced for lower infection transmissibilities.

9 Cattle network: taking into account links weights

Links in cattle network can be assigned a weight attribute in terms of the number of
moved animals. These additional data can be included in the modeling of diseases
spread, assuming that larger batches have a greater probability of carrying the
disease from the source holding, to the destination. This feature is included in the
disease model, by assuming a per-animal transmissibility λ. Then, given a movement
of w animals, the transmission probability along that link will be [1− (1− λ)w]
(same approach as in SI of [3]). Loyalty needs to be generalized to the case of
weighted network, too. The most straightforward generalization is obtained by
considering the quantities in Eq. (2) of main paper Vc−1i ,Vci as multisets (see, for
instance, [4]), where each neighbor appears as many times as the weight of the
corresponding link. Then the weighted loyalty on the weighted network is defined,
as before, by Eq. (2) of main paper, using the definitions of multiset union and
intersection: Vc−1i ∪ Vci =

∑
j max

(
wc−1ji , wcji

)
and Vc−1i ∩ Vci =

∑
j min

(
wc−1ji , wcji

)
,

where wcji is the weight of the link j − i in configuration c (assuming w = 0 if
no such link is present). Other choices of similarity between sets of neighbors are
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Figure S13: Applying the methodology to sexual contact networks using a stochastic
epidemic model. (A),(C): infection potentials for infectivity 0.75 and 0.85,
respectively. (B),(D): distribution of the Pearson correlation coefficient be-
tween the computed epidemic risks and the probability of actually being
infected, for infectivity 0.75 and 0.85, respectively. Dashed lines show dis-
tributions from the null model.

possible, however this one is the most natural generalization, since it has a very
similar distribution to the unweighted loyalty (Fig. S14A), and correlates well with
it (Fig. S14B). We now compute the infection potentials and then the epidemic
risks, using this new loyalty. We validate the computed risks analogously to what
we did in Sec. 8. Results are presented in Fig. S15, showing the generalizability of
our approach to the weighted case too.

10 Assessing the robustness of risk based prediction
with respect to simple predictors

We have shown that ρ effectively represents the risk of being infected, as shown in
the Validation section of main paper. We now show that ρ is a significant improve-
ment in prediction accuracy, with respect to simpler measures, like the degree of a
node. From configurations c − 1, c of cattle network we compute the risk of being
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A B

Figure S14: Weighted cattle network: extending the definition of loyalty. A shows the
cumulative distributions for the unweigthed loyalty (green) and multiset loy-
alty (red). Different tones of colors refer to different network configurations.
B Scatter plot correlating the unweighted loyalty and the multiset loyalty.
Pearson correlation coefficient is 0.92.

infected at c+1: ρi = ρc+1
i (s), as in Eq. (3) of main paper. For each node i for which

we can compute ρi we then have the binary variable outcome indicating if node i is
eventually hit by the epidemic in configuration c + 1. We perform a multivariable
logistic regression to check that ρ is actually a predictor for outcome, adjusting the
in-degree in configuration c: kci . In particular, due to the high heterogeneity of k, we
adjust for the log of the degree. Tab. S1 shows the results of the performed regres-
sions. As the crude odds ratios show, both ρ and kc, on their own, are meaningful
predictor of infection in configuration c+ 1. We are however interested in assessing
wether our risk is still a predictor, once the effect of knowing the degree is discounted
for. The odds ratio for ρ adjusted for degree is still significantly greater than one,
meaning that even within nodes of the same degree, nodes at high risk are likelier
to get infected. In other words, computing the risk (for which the knowledge of the
degree of the node is needed) gives more predicting power than the sole knowledge
of degree.

crude OR adjusted OR

log(degree) 2.88 [2.87, 2.89] 2.08 [2.07, 2.10]
risk 4.82 [4.78, 4.86] 2.50 [2.49, 2.51]

Table S1: Odds ratios of being infected in configuration c + 1, given degrees in c and
computed risks. Crude odds ratios refer to two separate univariate regressions;
adjusted odds ratios are obtained through a single multivariate regression. 95%
confidence intervals are reported.
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Figure S15: Weighted cattle network: risk prediction computation and validation.
(A),(C): infection potentials for single-animal infectivity 0.75 and 0.85, re-
spectively. (B),(D): distribution of the Pearson correlation coefficient be-
tween the computed epidemic risks and the probability of actually being
infected, for infectivity 0.75 and 0.85, respectively. Dashed lines show dis-
tributions from the null model.

11 Application to human proximity networks

The main difficulty in applying our methodology to physical proximity networks in
human is that generally those networks are much smaller than the ones we have ex-
amined, that making it difficult to reach enough statistics to fit the form of infection
potentials and transitions probability, and then perform the validation. We show
here how we can overcome these impairments and apply successfully our strategy
to a network of face-to-face proximity at a scientific conference, collected by the
Sociopatterns group [5]. This network records the interactions of 113 nodes during
a period of 2.5 days. We split such networks in 30 configurations (corresponding to
hourly time steps), and use the first 29 configurations to train our methodology, in
order to give predictions on the 30th. We use this large number of configurations in
order to be able to build reliable empirical distributions for the infection potentials
and the transition probabilities between loyalty statuses. Once risks are computed
as usual, it is not possible, however, to perform the validation as we did for cat-
tle, sexual contacts and memory driven models. This impossibility arises from the
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fact that the computed risk ratios are too few to build their distribution. In order
to validate our methodology we therefore use the same technique implemented in
Sec/ 10: for every node, we compute the odds ratio of being infected in the last
configuration, given the knowledge of degree and the computed risk. Results are
reported in Tab. S2. Computer risks are strong predictors for infection, even after
adjusting for degree. Moreover, unlike cattle network (see Tab. S1), degree alone is
not a predictor. Predictive power ω is on average high: median 0.87, with quartiles
Q1 : 0.69, Q2 : 0.97.

crude OR adjusted OR

log(degree) 1.16 [1.13, 1.20] 0.95 [0.89, 1.02]
risk 11.97 [7.79, 18.4] 22.34 [7.90, 63.3]

Table S2: Odds ratios of being infected in last configuration last, degree and computed
risk. Crude odds ratios refer to two separate univariate regressions; adjusted
odds ratios are obtained through a single multivariate regression. 95% confi-
dence intervals are reported.
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