
S3 Text: Optimizing an evolutionary model

Marco D. Visser∗1,2, Sean M. McMahon†3, Cory Merow‡3,4, Philip
Dixon§5, Sydne Record¶6, and Eelke Jongejans‖1

1Departments of Experimental Plant Ecology and Animal Ecology
& Ecophysiology, Radboud University Nijmegen, the Netherlands

2Smithsonian Tropical Research Institute, Panama
3Smithsonian Environmental Research Center, Edgewater, USA
4Department of Ecology and Evolutionary Biology, University of

Connecticut, USA
5Department of Statistics, Iowa State University, USA

6Department of Biology, Bryn Mawr College, USA

January 28, 2015

Contents

1 Model description 2

2 Summary of the optimization 2

3 Profiling the original code 3

4 Parallel execution 12

5 Re-factoring in C++ 14

∗m.visser@science.ru.nl
†mcmahons@si.edu
‡cory.merow@gmail.com
§pdixon@iastate.edu
¶srecord@fas.harvard.edu
‖e.jongejans@science.ru.nl

1

2 SUMMARY OF THE OPTIMIZATION

The following sections document the steps taken to optimize the code from
Visser et al. (ref [11] in the main text), shown in Figure 3-D in the main text.
The methods used to speed-up this example have been largely covered in the
previous appendices (S1 Text, sections 1-6), with the exception of the use of
Rcpp in the final sections. The interested reader is welcome to follow these
steps as a case study.

1 Model description

Mast fruiting, or the intermittent production of large seed crops (”masts”) is
a reproductive strategy displayed by many plant species worldwide. It is hy-
pothesized that this behavior results in starvation of seed predators between
mast years and satiation during mast years which decreases seed predation and
enhances regeneration. Visser et al. (ref [11] in the main text) built a stochas-
tic population model which attempts to capture this reproductive behaviour
for the large stature tropical tree species Shorea leprosula. Here, mast fruiting
strategies are compared with an annual reproductive strategy by contrasting the
costs of delaying reproduction with the benefits of greater seed survival through
predator satiation. The model is a stochastic matrix population model where
reproduction, growth and survival vary at random. Visser et al. (ref [11] in
the main text) study the effects of interaction between delaying reproduction
and seed predation on the population growth rate. They find that mast-fruiting
is strongly favored over annual reproduction when seed predation pressure is
strong.

This document will illustrates optimization of the original code, and recreates
Figure 3 from Visser et al. (ref [11] in the main text). In this figure stochastic
simulations were used to calculate the long-term stochastic growth rates (means
of 15 replicate simulations) for all combinations of two variables: predation rate
(50 levels) and mast frequency (50 levels). The resulting selection landscape
predicted the optimal reproductive (mast) frequency for a given predation rate.
The re-run of the original code, took 3.5 hours to complete, totalling 37 500
simulations of 10 000 years each.

We only slightly adapt the original code, replacing the stochastic nature
of some vital rates with average rates and removing calculations of stochas-
tic elasticities. This was done to decrease complexity and code length, easing
comprehension of the code in this appendix. We assume that the reader has
worked through Appendix A - our tutorial - and has read the main text before
attempting to run these code examples.

2 Summary of the optimization

We optimized the original algorithm by;

1. Conducting profiling exercises which identified un-vectorized use of the
function ifelse() as a major bottleneck, and we consecutively optimized

2

3 PROFILING THE ORIGINAL CODE

the code by replacing ifelse() with simple if statements. This resulted in
an execution time reduction of 1.94 times.

2. Next, standard mathematical operations, such as matrix multiplication,
took the most time (e.g. ”%*%”). These could not be vectorized due to
the stochastic nature of the model and the dependence on the previous
state of the population. Therefore we used the Byte Compiler function
in R, which resulted in a speed-up of 1.83 times above the previously
optimized version.

3. Next, we refactored a critical part of the code in C++ using the RcppAr-
madillo package (which allows - amongst others - the use of C++ linear
algebra libraries in R). The refactored section replaced 42 out of 429 lines
of code (or 9.8% of the original length). This improved the execution time
further by a factor 35.8.

3 Profiling the original code

We start with profiling the original code. We will be using the package aprof
for this example. In the following sections, we assume that the code below is
saved as a file called original.R in the working directory. We will later need
this file to profile our code. The code below contains two functions ”onesim”
which completes one simulation of the model over n years and shormat, a helper
function, which conducts multiple simulations.

############################## Shormat #########################

Simulates population growth by mast fruiting with a stochastic

matrix population model

##

############################ CODE START ########################

onesim=function(n=1000,cutp=500,fmat=f.matrix,mat=mat,

mprb=mast.prob,predpen=6,rep.stages=6:7)

{
##

Function to run single simulation of n time steps with the

previously loaded matrices. In the function a fruiting matrix

(fmat) is stochastically varied with a zero fecundity matrix,

with prob. mprb, the reproductive elements of fmat are a

function of the time elapsed since the previous fruiting.

The long-term average is used to calculate the population

growth rate (lambda).

[Note: this is the simplified version no variation in

growth, survival - and no calculation of stochastic

elasticities]

3

3 PROFILING THE ORIGINAL CODE

n = number of time-steps

cutp = cutoff point for analysis, to discard an x number of

years to correct for any transient effects

(following Caswell 2001)

fmat & mat = fruiting matrix (with average yearly rates, for

fecundity!) and non fruiting matrix, respectively.

return.data = logical, returns vector containing years since

the last fruiting event

mprb = annual probability of a mast year

predpen= fraction of seeds lost to predation

##

########################## INITIALIZATION ######################

Fruiting vector, fruiting vector indicates mast years

fvector <- c(rbinom(n,1,prob=mprb))

Numerically simulated population growth is saved in N

Initial population

N1 <- matrix(seq(1000,1,-(1000/dim(fmat)[1])))

initial phase

saving average yearly fruit production matrix

amat <- fmat

######## START NUMERICAL SIMULATION OF POPULATION GROWTH ########

i <- 1

time elapsed since previous fruiting, defines accumulated

reserves.

te <- 1

first time step using initial population vector

New.N <- N1

loop for steps 1:cutpoint (cut point is used to correct for

transient effects)

for(i in 1:cutp){

set fecundity after predation

fmat[1,rep.stages] <- (amat[1,rep.stages]*te)-

(predpen*amat[1,rep.stages])

4

3 PROFILING THE ORIGINAL CODE

#make sure fecundity is not lower than 0

fmat[1,rep.stages] <- ifelse(fmat[1,rep.stages]<0,

0,fmat[1,rep.stages])

Conduct matrix multiplication

if(fvector[i]==0) {New.N <- mat%*%New.N;te=te+1}
else {New.N <- fmat%*%New.N;te=1}

}

N.cutpoint <- New.N

loop for steps cutpoint to n (n years)

for(i in (cutp+1):n){

set fecundity after predation

fmat[1,rep.stages] <- (amat[1,rep.stages]*te)-

(predpen*amat[1,rep.stages])

#make sure fecundity is not lower than 0

fmat[1,rep.stages] <- ifelse(fmat[1,rep.stages]<0,

0,fmat[1,rep.stages])

if(fvector[i]==0) {New.N <- mat%*%New.N;te=te+1}
else {New.N <- fmat%*%New.N;te=1}

}

N.nyears <- New.N

######## END NUMERICAL SIMULATION OF POPULATION GROWTH #########

stochastic lambda (long run growth rate)

L <- exp((1/(n-cutp))*(log(sum(N.nyears))-log(sum(N.cutpoint))))

return(L)

}

shormat=function(m=10,n=1500,cutp=500,fmat=f.matrix,

mast.prob=0.15,predpen=0,rep.stages=6:7){
###

Calculates population growth with onesim()

for a series of m simulations for n number of time steps

5

3 PROFILING THE ORIGINAL CODE

m = number of simulations

n = number of time steps

cutp = cutoff point for analysis, to discard an x amount

of years to correct for any transient effects

(following Caswell 2001)

fmat & mat = fruiting matrix (with yearly averages) and

non fruiting matrix resp.

mast.prob = annual probability of a mast year

(equiv. of exp. mast frequency)

predpen= fraction of seeds lost to predation

##

Results <- rep(NA,m)

#set zero fecundity matrix

mat<-fmat

mat[1,rep.stages]=0

for(i in 1:m){
Results[i] <- onesim(fmat=fmat,mat=mat,

mprb=mast.prob,n=n,cutp=cutp,

rep.stages=rep.stages,predpen=predpen)

}

return(Results)

}

Next, let’s profile the program, and see where it is spending the most of its
time. However, first we need a matrix defining the transitions of individuals
over the life cycle of Shorea leprosula (the study species).

define matrix for simplified simulations

f.matrix <- structure(c(0.650655890403144, 0.014640764537846,

0, 0, 0, 0, 0, 0, 0.815783111999429, 0.0583850537923953, 0, 0,

0, 0, 0, 0, 0.798164997610948, 0.13163411890922, 0, 0, 0, 0, 0,

0, 0.92083524123849, 0.0421190583490148, 0, 0, 0, 0, 0, 0,

0.931474808615322, 0.0479076141721554, 0, 32.0679073140385,

0, 0, 0, 0, 0.967900035808755, 0.0164662971550416,

190.014411283517, 0, 0, 0, 0, 0, 0.979252500646358),

.Dim = c(7L, 7L), .Dimnames = list(NULL, c("V1", "V2",

"V3", "V4", "V5", "V6", "V7")))

The profiling is done with the next piece of code. In this case it is very
important that we switch on line profiling.

6

3 PROFILING THE ORIGINAL CODE

Load original.R

source("original.R")

set seed to reproduce exactly these results

set.seed(1)

Start the profiling exercise

Rprof(file="original.out",line.profiling=TRUE)

original <- shormat(m=15,n=10000)

Rprof(append=F)

Next let’s inspect where the program spends most of its time:

load aprof package

require(aprof)

Loading required package: aprof

#make aprof object

modelprofile <- aprof("original.R","original.out")

modelprofile

##

Source file:

original.R (125 lines).

##

Call Density and Execution time per line number:

##

Line Call Density Time Density (s)

[1,] 56 1 0.02

[2,] 62 10 0.2

[3,] 79 174 3.48

[4,] 74 2 0.04

[5,] 81 24 0.48

[6,] 65 3 0.06

[7,] 59 4 0.08

[8,] 82 6 0.12

[9,] 77 73 1.46

##

Totals:

Calls 298

Time (s) 6.12 (interval = 0.02 (s))

We see that there are some clear bottlenecks in a only few lines of code.
Then when we summarize the aprof object we see that the most promising line
for optimization is line 120:

7

3 PROFILING THE ORIGINAL CODE

summary(modelprofile)

Largest attainable speed-up factor for the entire program

##

when 1 line is sped-up with factor (S):

##

Speed up factor (S) of a line

1 2 4 8 16 S -> Inf**

Line*: 79 : 1.00 1.40 1.74 1.99 2.14 2.32

Line*: 77 : 1.00 1.14 1.22 1.26 1.29 1.31

Line*: 81 : 1.00 1.04 1.06 1.07 1.08 1.09

Line*: 62 : 1.00 1.02 1.03 1.03 1.03 1.03

Line*: 82 : 1.00 1.01 1.01 1.02 1.02 1.02

Line*: 59 : 1.00 1.01 1.01 1.01 1.01 1.01

Line*: 65 : 1.00 1.00 1.01 1.01 1.01 1.01

Line*: 74 : 1.00 1.00 1.00 1.01 1.01 1.01

Line*: 56 : 1.00 1.00 1.00 1.00 1.00 1.00

##

Lowest attainable execution time for the entire program when

##

lines are sped-up with factor (S):

##

Speed up factor (S) of a line

1 2 4 8 16

All lines 6.120 3.060 1.530 0.765 0.383

Line*: 79 : 6.120 4.380 3.510 3.075 2.858

Line*: 77 : 6.120 5.390 5.025 4.842 4.751

Line*: 81 : 6.120 5.880 5.760 5.700 5.670

Line*: 62 : 6.120 6.020 5.970 5.945 5.933

Line*: 82 : 6.120 6.060 6.030 6.015 6.007

Line*: 59 : 6.120 6.080 6.060 6.050 6.045

Line*: 65 : 6.120 6.090 6.075 6.068 6.064

Line*: 74 : 6.120 6.100 6.090 6.085 6.083

Line*: 56 : 6.120 6.110 6.105 6.103 6.101

##

Total sampling time: 6.12 seconds

* Expected improvement at current scaling

** Asymtotic max. improvement at current scaling

A targetedSummary of this line shows us that the function onesim is called
most often, which in turn calls line 79 the most (onesim is the parent call of
line 79):

head(targetedSummary(target=120,modelprofile,findParent=TRUE))

Function Parent Calls Time

8

3 PROFILING THE ORIGINAL CODE

1 onesim L120 297 5.94

2 L79 onesim 175 3.50

3 ifelse L79 166 3.32

4 L77 onesim 74 1.48

5 L81 onesim 24 0.48

6 %*% L81 17 0.34

Upon investigation we will see that this line (79) contains the following code:

ifelse(fmat[1,rep.stages]<0,0,fmat[1,rep.stages])

Which in turn calls the ifelse function most often:

targetedSummary(target=79,modelprofile,findParent=TRUE)

Function Parent Calls Time

1 ifelse L79 158 3.16

2 any ifelse 10 0.20

3 < ifelse 7 0.14

4 is.atomic ifelse 2 0.04

5 length ifelse 2 0.04

6 is.na ifelse 1 0.02

The ifelse function is a vectorized function, however, here it was used in a
non-vectorized fashion. As ifelse contains some ”overhead” compared to alter-
native functions, and its non-vectorized use will incur a large penalty. We can
therefore replace the ifelse lines with a much simpler statement, which has the
same effect.

fmat[fmat<0]=0

Next we replace lines 79 (and 62 which contains an identical ifelse statement)
with the above statement. We then save the file as ”optimized.R”. The reader
will have to do this to keep on following these examples. Once this is done, we
can see what we have gained and whether the results are identical:

Load optimized.R

source("./optimized.R")

#set seed to reproduce exactly these results

set.seed(1)

time the execution

system.time(optimized <- shormat(m=15,n=10000))

user system elapsed

2.164 0.000 2.169

9

3 PROFILING THE ORIGINAL CODE

test if the results are really the same

identical(optimized,original)

[1] TRUE

It seems that by simply changing two lines of code we have already achieved
a speed-up of about 200%! Next lets see what else can be optimized and whether
it is worthwhile to optimize:

Load optimized.R

source("optimized.R")

#set seed to reproduce exactly these results

set.seed(1)

Start the profiling exercise

Rprof(file="optimized.out",line.profiling=TRUE)

optimized <- shormat(m=15,n=10000)

Rprof(append=F)

Look at projected returns

summary(aprof("optimized.R","optimized.out"))

Largest attainable speed-up factor for the entire program

##

when 1 line is sped-up with factor (S):

##

Speed up factor (S) of a line

1 2 4 8 16 S -> Inf**

Line*: 77 : 1.00 1.31 1.55 1.71 1.80 1.90

Line*: 79 : 1.00 1.13 1.20 1.24 1.27 1.29

Line*: 81 : 1.00 1.09 1.15 1.18 1.19 1.21

Line*: 62 : 1.00 1.01 1.02 1.02 1.02 1.03

Line*: 35 : 1.00 1.01 1.01 1.02 1.02 1.02

Line*: 82 : 1.00 1.01 1.01 1.02 1.02 1.02

Line*: 65 : 1.00 1.00 1.01 1.01 1.01 1.01

##

Lowest attainable execution time for the entire program when

##

lines are sped-up with factor (S):

##

Speed up factor (S) of a line

1 2 4 8 16

All lines 2.320 1.160 0.580 0.290 0.145

Line*: 77 : 2.320 1.770 1.495 1.358 1.289

10

3 PROFILING THE ORIGINAL CODE

Line*: 79 : 2.320 2.060 1.930 1.865 1.833

Line*: 81 : 2.320 2.120 2.020 1.970 1.945

Line*: 62 : 2.320 2.290 2.275 2.268 2.264

Line*: 35 : 2.320 2.300 2.290 2.285 2.283

Line*: 82 : 2.320 2.300 2.290 2.285 2.283

Line*: 65 : 2.320 2.310 2.305 2.303 2.301

##

Total sampling time: 2.32 seconds

* Expected improvement at current scaling

** Asymtotic max. improvement at current scaling

We see that no single line jumps out as highly promising. Therefore, lets use
the following code to get a general summary of the functions taking the most
time.

summaryRprof("optimized.out")

$by.self

self.time self.pct total.time total.pct

"onesim" 1.48 67.89 2.18 100.00

"<" 0.18 8.26 0.18 8.26

"*" 0.16 7.34 0.16 7.34

"%*%" 0.16 7.34 0.16 7.34

"-" 0.08 3.67 0.08 3.67

"(" 0.04 1.83 0.04 1.83

"+" 0.04 1.83 0.04 1.83

".External" 0.04 1.83 0.04 1.83

##

$by.total

total.time total.pct self.time self.pct

"onesim" 2.18 100.00 1.48 67.89

"shormat" 2.18 100.00 0.00 0.00

"<" 0.18 8.26 0.18 8.26

"*" 0.16 7.34 0.16 7.34

"%*%" 0.16 7.34 0.16 7.34

"-" 0.08 3.67 0.08 3.67

"(" 0.04 1.83 0.04 1.83

"+" 0.04 1.83 0.04 1.83

".External" 0.04 1.83 0.04 1.83

"rbinom" 0.04 1.83 0.00 0.00

##

$sample.interval

[1] 0.02

##

$sampling.time

[1] 2.18

11

4 PARALLEL EXECUTION

The output of summaryRprof() shows us that most time is spent within
”onesim()” executing basic mathematical operations. In cases like these the
only options for increased speed would be to conduct the computations in par-
allel or to re-factor the key parts of the code (i.e. rewrite most lines returned by
aprof() above in a lower-level language like C or Fortran). We give an example
on how to do both in the next sections. However, we should try to use R’s Byte
compiler first (see the main document or online text S1 for details). This is a
highly simple procedure, as shown in the next section of code, where we byte
compile the function ”onesim()”, time its execution and test whether the results
are identical to our first code example.

Byte compile onesim

onesim <- compiler::cmpfun(onesim)

Time the code execution

set.seed(1)

system.time(bytecompiled<- shormat(m=15,n=10000))

user system elapsed

1.536 0.000 1.539

test if the results are identical

identical(bytecompiled,original)

[1] TRUE

We see that the Byte Compiler improved the code even further from roughly
3 seconds to 1.5.

4 Parallel execution

We can further speed-up calculations by replacing the shormat() function with
a parallel version. Details on parallel computing can be found in the main
text and in online text S1. The parallel code we used to replace the original
shormat() was (note that we are using parallel execution through forking which
is not compatible with windows - see online text S1 for a windows example):

shormat <- function(m=10,n=1500,cutp=500,fmat=f.matrix,

mast.prob=0.15,predpen=0,rep.stages=6:7,ncores=2){

start dividing problem for parallel computing

Workload <- table(cut(1:m,ncores,labels=F))

Ensuring independence of Random number sequences

set RNG to "L'Ecuyer-CMRG"

RNGkind("L'Ecuyer-CMRG")

12

4 PARALLEL EXECUTION

Calling the following will make

runs from mcparallel reproducible

mc.reset.stream()

make object to store child id's

childs<-vector("list", ncores)

for(i in 1:ncores){

start parallel streams

childs[[i]]<-mcparallel(runonesim(

m=Workload[i],fmat=fmat,

mat=mat,mprb=mast.prob,

n=n,cutp=cutp,

rep.stages=rep.stages,

predpen=predpen))

}

collect results

final<-mccollect(childs)

Reset RNG to default

RNGkind("Mersenne-Twister")

reshape final and make useful

return(unlist(final))

}

The following function will be run in parallel

within shormat

runonesim <- function(m,fmat,mat,mprb,n,cutp,

rep.stages,predpen){

Results=rep(NA,m)

mat<-fmat

mat[1,rep.stages]=0

for(i in 1:m){
Results[i]=onesim(fmat=fmat,mat=mat,mprb=mprb,n=n,

cutp=cutp,rep.stages=rep.stages,predpen=predpen)

}

13

5 RE-FACTORING IN C++

return(Results)

}

Now that we have replaced shormat() with a parallel version, let see how
much speed we have gained:

load parallel package

require(parallel)

Loading required package: parallel

Time the code execution with 4 cores

system.time(parallel <- shormat(m = 15, n = 10000, ncores = 4))

user system elapsed

0.414 0.414 0.419

With the parallel execution we see that we have cut execution time down
from 1.5 to 0.414 seconds. Note that we did not test whether our results were
identical. This is because it is good practice to use a special random number
generator (RNG) when conducting parallel calculations (see online text S1 and
the main document for details). As the RNG is different here we should not be
surprised that the results are not identical. Closer evaluation, however, reveals
that the mean values of the simulations are indistinguishable.

5 Re-factoring in C++

In the next sections we use the RcppArmadillo package (Eddelbuettel & Sander-
son, 2013) and replace the core simulation code in the function onesim() with
a function written in C. Readers who would like to learn more about the below
code are advised to read the Rcpp and RcppArmadillo documentation - which
are highly accessible (Eddelbuettel & François, 2011; Eddelbuettel & Sanderson,
2013).

In the below example we reload our optimized serial R version, this is so we
can later confirm that our C++ function returns identical results to our first
program (we can’t do this with the parallel version as we use a different random
number generator in that example). It should be clear that before the next code
can be run, a working installation of RcppArmadillo and all its dependencies
are needed.

load optimized

source("optimized.R")

create Rccp function

define function

require(Rcpp)

14

5 RE-FACTORING IN C++

Loading required package: Rcpp

require(RcppArmadillo)

Loading required package: RcppArmadillo

require(inline)

Loading required package: inline

Loading required package: methods

##

Attaching package: ’inline’

##

The following object is masked from ’package:Rcpp’:

##

registerPlugin

src <- '

arma::mat A = Rcpp::as<arma::mat>(amat);

arma::mat F = Rcpp::as<arma::mat>(fmat);

arma::mat N = Rcpp::as<arma::mat>(NNew);

Rcpp::NumericVector FV = Rcpp::NumericVector(fvec);

Rcpp::NumericVector PR = Rcpp::NumericVector(pred);

int n = FV.size();

double te = 1,fr1 = F(0,5), fr2 = F(0,6); // Return to R with N

for (int i=1; i<n; i++) {

F(0,5) = (fr1 * te)-(fr1*PR[0]);

F(0,6) = (fr2 * te)-(fr2*PR[0]);

if(F(0,5)<0) { F(0,5) = 0; }
if(F(0,6)<0) { F(0,6) = 0; }

if(FV[i]==1){
N = F*N;

te = 1;

}

else {
N = A*N;

te++;

}

}
return Rcpp::wrap(N); // Return to R with N

'

15

5 RE-FACTORING IN C++

create the compiled function

rcppNsim <- cxxfunction(signature(amat="numeric",fmat="numeric",

NNew="numeric",fvec="numeric",

pred="numeric"),

src,plugin="RcppArmadillo")

Next we replace our old version of onesim with one where the key calculations
are conducted by the above function.

onesim=function(n=1000,cutp=500,fmat=f.matrix,mat=mat,

mprb=mast.prob,predpen=6,rep.stages=6:7)

{
#################### INITIALIZATION ######################

Fruiting vector, fruiting vector indicates mast years

fvector <- c(rbinom(n,1,prob=mprb))

Numerically simulated population growth is saved in N

Initial population

N1 <- matrix(seq(1000,1,-(1000/dim(fmat)[1])))

initial phase

saving average yearly fruit production matrix

amat <- fmat

#make zero fruiting matrix for use in rcppNsim

zmat <- fmat

zmat[rep.stages] <- 0

START NUMERICAL SIMULATION OF POPULATION GROWTH

first time step using initial population vector

New.N <- N1

Use Rcpp function to replace loop for steps 1

to cutpoint

New.N <- rcppNsim(zmat,fmat,N1,

fvector[1:cutp],predpen)

N.cutpoint <- New.N

loop for steps cutpoint to n (n years)

16

REFERENCES

Use Rcpp function to replace loop for steps

cutpoint to n (n years)

New.N <- rcppNsim(zmat,fmat,N.cutpoint

,fvector[(cutp+1):n],predpen)

N.nyears <- New.N

END NUMERICAL SIMULATION OF POPULATION GROWTH

stochastic lambda (long run growth rate)

L <- exp((1/(n-cutp))*(log(sum(N.nyears))-log(sum(N.cutpoint))))

return(L)

}

Finally, let’s time our code to see if all our efforts have paid-off.

system.time(Rcppversion<-shormat(m=15,n=10000))

user system elapsed

0.024 0.000 0.024

We see that it has most certainly paid-off: we started with an execution
time of 5.7 seconds and end-up with about 0.03, that is a speed-up of 190 times!
Using the new code we recreated Figure 3 from Visser et al. 2011 (Figure 5.1).
In the original document the amount of time required to create the figure in
panel A was 217.7 minutes, using the new code we were able to increase the
resolution and number of simulations greatly from a total of 37 500 to 13 500 000
before the run time was similar to the original (214.4 minutes). This amounts
to an increase in speed where we are now able to conduct 63054.7 simulations
per minute (panel b) compared to only 172.3 simulations per minute using the
original code. In total no more than 10% of the code was altered.

References

Eddelbuettel, D. & François, R. (2011) Rcpp: Seamless r and c++ integration.
Journal of Statistical Software, 40, 1–18.

Eddelbuettel, D. & Sanderson, C. (2013) Rcpparmadillo: Accelerating r with
high-performance c++ linear algebra. ComputationalStatistics and Data
Analysis, in press.

Visser, M.D., Jongejans, E., van Breugel, M., Zuidema, P.A., Chen, Y.Y., Kas-
sim, A.R. & de Kroon, H. (2011) Strict mast fruiting for a tropical dipterocarp
tree: a demographic cost-benefit analysis of delayed reproduction and seed
predation. Journal of Ecology, 99, 1033–1044.

17

REFERENCES

A
1

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0

1 2 3 4 5 6

 0.98

 0.99

 1.01

 1.02

 1.029

 1.029

 1

B

1 2 3 4 5 6
 0.98

 0.99

 1.01

 1.01

 1.02

 1.02

 1.029

 1.029

 1

 1

Increasing predation

In
cr

ea
si

ng
 r

ep
ro

du
ct

iv
e

fr
eq

ue
nc

y

Figure 5.1: Re-calculation of the model in Visser et al (2011), where the
optimal reproductive frequency (y-axis) is calculated at various seed predations
rates (x-axis). The graphs show contour plots depicting the joint relationship
of seed predation (x) and delayed reproduction (y) on the population fitness.
Within each graph the white line shows the ‘crest’ of the fitness landscape or
the maximum value for each combination of x and y (hereafter ”pixel”). The
vertical and horizontal solid lines are the estimates of the observed reproductive
frequency and seed predation (see Visser et al. 2011 for details). Panel A is
the the result rerunning the original code for 2500 (50 x 50) iterations in x
and y, with each pixel value being the mean of 15 simulations (totalling 37
500 simulations). Creation of panel A took 217.7 minutes. In panel B exactly
the same simulations are run with an optimized version of the code. Here we
increased the detail by a factor of 360. This was done in such a way that the
total execution time, here 214.1 minutes, closely matches that of panel A. Panel
B has 90 000 pixels (300 x 300) compared to 2500 in panel A, while the total
number of completed simulations was 13 500 000 (each pixel is the mean of 150
simulations) compared to 37 500 simulations in panel A.

18

	Model description
	Summary of the optimization
	Profiling the original code
	Parallel execution
	Re-factoring in C++

