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Supplementary Methods

Tight clustering algorithm

Lemon-Tree uses a tight clustering step to extract consensus modules from an ensemble of clustering
solutions. A novel spectral edge clustering algorithm [1] was implemented in Lemon-Tree for this purpose.
This algorithm proceeds as follows:

Pre-processing

First, let C(k) be the cluster assignment matrix for the kth ganesh run, i.e. C(k) is an N ×Mk matrix
where N is the number of genes and Mk the number of clusters in the kth run such that

C
(k)
im =

{
1 if gene i belongs to cluster m in run k

0 otherwise
.

Ganesh clusters are non-overlapping and all genes belong to a cluster, i.e.
∑

m C
(k)
im = 1 for all i. Next,

an N ×N co-clustering matrix O(k) for the kth run is defined as

O
(k)
ij =

{
1 if gene i and j belong to the same cluster in run k

0 otherwise
.

O(k) is obtained from C(k) via the matrix multiplication

O(k) = C(k)(C(k))T .

Averaging O(k) over all K runs gives the co-occurence frequency matrix

G =
1

K

K∑
k=1

O(k).

Entries of G close to 1 represent pairs of genes which robustly cluster together irrespective of the stochastic
fluctuations introduced by the ganesh Gibbs sampling algorithm, whereas entries close to 0 represent noisy
relations between gene pairs accidentally clustering together by random chance. We convert G to a sparse
weighted adjacency matrix A by choosing a threshold ε and setting

Aij =

{
Gij if Gij > ε

0 otherwise
.

In our experience, thresholds in the range ε ∈ [0.2, 0.4] produce suitably sparse graphs while retaining all
information about robust gene pairings. The default value is set to ε = 0.25.

Spectral clustering

Tight clusters are defined as subsets of genes X with a high total edge weight in the thresholded co-
occurence frequency graph, as expressed by a score function

S(X) =

∑
i,j∈X Aij

|X|
,
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where |X| denotes the number of elements in X. The spectral edge clustering algorithm iteratively
searches for the set X which (approximately) maximizes S, removes X from the graph, and repeats the
procedure until no more edges remain. Specifically:

1. Calculate the dominant eigenvector x corresponding to the largest eigenvalue of A; x is normalized
to have

∑
i x

2
i = 1, and by the Perron-Frobenius theorem, all its elements are positive xi ≥ 0.

2. Find the set X for which the vector uX with components uX,i = 1 for i ∈ X and 0 otherwise is as
similar as possible to x, more precisely

X = argmax
Y

1

|Y |1/2
∑
i∈Y

xi.

Since all xi ≥ 0, X must be of the form X = {i : xi > c} for some threshold value c and is easily
found.

3. Store X and perform one of two alternatives

(a) (Node clustering) Remove all nodes in X from the graph, i.e. set

Aij ← 0 if i ∈ X OR j ∈ X

(b) (Edge clustering) Remove all edges in X from the graph, i.e. set

Aij ← 0 if i ∈ X AND j ∈ X

4. Repeat 1− 3 until A = 0.

The solution for X in step 2 is an approximation to the real solution X = argmaxY S(Y ). However,
because the dominant eigenvector x maximizes the quantity

x = argmax
y

∑N
i,j=1Aijyiyj

(
∑N

i=1 y
2
i )

1
2

.

over all possible choices of vectors y, including vectors of the form uY , it can be shown that the approx-
imate solution is in some sense optimal. More precisely, the quantity maximized by x provides an upper
bound to the (unknown) maximum value maxY S(Y ) and numerical simulations on a variety of graphs
have shown that the score of the approximate solution is always close to the upper bound, and therefore
also to the true maximum. For more details, see [1].

Removal of nodes [step 3(a)] implies that every gene can belong to only one tight cluster whereas removal
of edges [step 3(b)] results in possibly overlapping tight clusters. In module network applications, we al-
ways apply node clustering, because only non-overlapping clusters can be given a statistical interpretation
in the form of an underlying Bayesian network model.

Post-processing

The spectral clustering algorithm runs until all edges in the thresholded co-occurence frequency graph A
have been removed, but not all clusters found represent well-supported tight clusters, particularly towards
the end of the algorithm when tight clusters will consist of very few nodes and edges. We therefore apply
a post-processing step whereby clusters that are too small or have too low value for the score function S
are removed. The default values are to keep all tight clusters with minimum size of 10 genes and score
value (i.e. weighted edge to node ratio) of 2. As a result, some genes may not belong to any tight cluster
and are discarded from any subsequent analysis.
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Benchmark between Lemon-Tree and CONEXIC

We downloaded gene expression and copy number glioblastoma datasets from the Cancer Genome Atlas
(TCGA, [2]) data portal and we selected a set of 250 samples that were matched for copy number
and gene expression data. We built a matrix of gene expression ratios (normal/disease) and discarded
genes having a flat profile (standard deviation <0.25), keeping a total of 9,367 genes. To build a list
of candidate regulators, we applied the program JISTIC [3] on copy-number profiles to determine genes
that were significantly amplified or deleted in the samples (with a default q-value cutoff of 0.25), and we
selected the top 1,000 genes for each category as input for the candidate regulators for both CONEXIC
and Lemon-Tree.

To run CONEXIC, we followed the instructions of the manual and more specifically used the recom-
mended bootstrapping procedure to get robust results. For the Single Modulator step (initial grouping of
genes into modules), we performed 100 bootstrap runs, with 10,000 permutations each. We selected the
regulators that appear in at least 90% of the runs for the final Single Modulator run. We also performed
100 bootstrap runs for the Module Network step (learning the modulators that best fit the data and
improving the grouping of genes into modules). We selected regulators appearing in at least 40% of the
bootstrap files for the final Module Network run. The final network was composed of 281 modules and
6,292 genes.

For Lemon-Tree, we generated 150 two-way clustering solutions that were assembled in one robust solution
by node clustering (minimum weight 0.33), resulting in a set of 257 clusters composed of 5,354 genes.
Then we assigned the regulators using the same input list as with CONEXIC, with 10 hierarchical trees
for each module. A global score was calculated for each regulator and for each module and we selected
the top 1% regulators as the final list.

The GO enrichment for the CONEXIC and Lemon-Tree clusters were calculated using the built-in tool of
the Lemon-Tree software package, which is based on the BiNGO Java library [4]. The same list of reference
genes, GO ontology file and annotation file were used for the two sets (see the latest version for the gene
ontology file at http://geneontology.org/page/download-ontology, and the latest version for human
gene association file at http://geneontology.org/page/download-annotations). To compare the GO
categories between Lemon-Tree and CONEXIC, we built a list of all common categories for a given
p-value threshold and converted the corrected p-values to converted the corrected p-values to − log10(p-
value) scores. We selected the highest score for each GO category and we counted the number of GO
categories having a higher score for Lemon-Tree or CONEXIC, and calculated the sum of scores for each
GO category and each software.

We downloaded all the human protein-protein interactions (PPI) from Reactome [5], Intact [6] and
HPRD [7] through the Pathway Commons portal [8]. The resulting network was composed of 9,599 genes
and 168,117 interactions. We calculated the shortest paths between all pairs of genes in the network, using
Dijkstra’s algorithm from the JUNG library (http://jung.sourceforge.org). Interaction distances can
be defined as the number of steps needed to ’walk’ from one gene to another.

For a network G and interaction distance k, we followed [9] and calculated the enrichment ratio Er (as
a relative proportion) as:

Er =
P (Rij = k|i and j are connected in G)

P (Rij = k|i and j are connected in Gpermuted)

where Rij is the shortest path length in the PPI network between nodes i and j, and Gpermuted was
generated by random permutations of the non-diagonal G elements (network edges).

http://geneontology.org/page/download-ontology
http://geneontology.org/page/download-annotations
http://jung.sourceforge.org
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Integrative analysis of TCGA glioblastoma expression and copy-number data

We downloaded data from the Cancer Genome Atlas project portal (TCGA [2]) and we selected 484
glioblastoma tumor samples from different patients, matched for mRNA expression and copy-number
data. The expression data was composed of a total of 12,042 genes. We selected genes differentially ex-
pressed (ttest p-value < 0.05, Benjamini-Hochberg correction, all calculations done with R [10]) compared
to normal tissue samples. We excluded genes having flat profiles (standard deviation < 0.3), resulting in
an expression matrix of 7,574 genes that was centered, scaled and taken as input for Lemon-Tree. We
generated 127 two-way clustering solutions that were assembled in one robust solution by node clustering
(minimum weight 0.33, minimum size 10, minimum score 2), resulting in a set of 121 clusters composed
of 5,423 genes (median cluster size of 34 genes, see complete list of genes and clusters in supplementary
table S1).

We assembled a list of genes amplified and deleted in glioblastoma tumors from the most recent GIS-
TIC run of the Broad Institute TCGA Copy Number Portal on glioblastoma samples (http://www.
broadinstitute.org/tcga/home). GISTIC [11] is the standard software tool used for the detection of
peak regions significantly amplified or deleted in a number of samples from copy-number profiles. We
also included in the list a number of key genes amplified or deleted from previous studies [11–13]. The
final list is composed of 353 amplified and 2,007 deleted genes (with all genes present on sex chromo-
somes excluded). To build the copy-number matrix profiles, we downloaded the segmented data (level
3 files) corresponding to Affymetrix Human SNP Array 6.0 hybridizations for all glioblastoma samples,
and mapped all genes and miRNAs to the segments in each sample. Each gene is then assigned the
copy-number value corresponding to the segment in which it is located or a missing value if there is no
segment corresponding to the location of the gene. All the profiles were centered and scaled and used to
infer the regulation programs. We assigned regulators independently for amplified and deleted genes lists,
and we selected the top 1% highest scoring regulators as the final list (a cutoff well above assignment
of regulators expected by chance), with 92 amplified and 579 deleted selected genes (see supplementary
tables S2 and S3).
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