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Abstract

Any organism is embedded in an environment that changes over time. The timescale for and statistics of environmental
change, the precision with which the organism can detect its environment, and the costs and benefits of particular protein
expression levels all will affect the suitability of different strategies–such as constitutive expression or graded response–for
regulating protein levels in response to environmental inputs. We propose a general framework–here specifically applied to
the enzymatic regulation of metabolism in response to changing concentrations of a basic nutrient–to predict the optimal
regulatory strategy given the statistics of fluctuations in the environment and measurement apparatus, respectively, and the
costs associated with enzyme production. We use this framework to address three fundamental questions: (i) when a cell
should prefer thresholding to a graded response; (ii) when there is a fitness advantage to implementing a Bayesian decision
rule; and (iii) when retaining memory of the past provides a selective advantage. We specifically find that: (i) relative
convexity of enzyme expression cost and benefit influences the fitness of thresholding or graded responses; (ii)
intermediate levels of measurement uncertainty call for a sophisticated Bayesian decision rule; and (iii) in dynamic contexts,
intermediate levels of uncertainty call for retaining memory of the past. Statistical properties of the environment, such as
variability and correlation times, set optimal biochemical parameters, such as thresholds and decay rates in signaling
pathways. Our framework provides a theoretical basis for interpreting molecular signal processing algorithms and a
classification scheme that organizes known regulatory strategies and may help conceptualize heretofore unknown ones.
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Introduction

Any organism is embedded in an environment that changes in

ways that are typically outside the organism’s control and

stochastic, yet not entirely unpredictable. In response to such

changing environmental conditions, organisms dynamically regu-

late the expression of their genomes to meet physiological

demands [1]. For example, microorganisms implement circuits

of signal transduction and regulation that collect information from

the environment and modulate expression of metabolic enzymes

to convert environmental nutrients into energy for functional goals

such as protein production, cell growth, and division [2,3].

For environmental sensing and gene regulation, biomolecular

circuits often employ complex information processing and

control algorithms [4] that can be schematically classified into

broad and qualitatively-distinct classes, including: insensitivity to

environmental conditions, sensing changes and then responding,

temporal averaging [5], adaptation [6], stochastic switching [7],

or prediction of future changes on the basis of past conditions

[8,9]. An important goal of systems biology is to catalog the

molecular circuits [10] and corresponding information process-

ing algorithms [11] used by a range of organisms and to

understand how information processing algorithms are adapted

to particular cellular tasks like metabolic regulation as well as to

particular environmental niches [4].

Microorganisms occupy a diverse range of environmental

niches, so that characteristic time scales of environmental change

range over many orders of magnitude [12–14]. Temporal

correlations in environmental structure emerge through day and

night cycles, seasons, weather patterns, timescales of host

dynamics, and complex physical processes like fluid flow,

turbulence, and diffusion [15–18]. Intuitively, various architec-

tures of sensing and control circuits will differ in their suitability

across a range of environmental statistical patterns and dynamic

time scales, but a rigorous connection is lacking. Put concretely,

when does it make sense to ignore one’s surroundings, to trust

one’s immediate senses, to do more complicated inference, or to

remember the past?

Here, we develop a general decision-theoretic framework for

deriving optimal regulatory algorithms for a model cellular task–

the regulation of expression of a single enzyme in response to a

time-varying environmental nutrient concentration [19,20] –given

the statistics of environmental fluctuations, measurement preci-

sion, and enzymatic expression costs. Whereas much research has

focused on how to achieve particular regulatory functions, here we

focus on the related question of how preferences for different

regulatory strategies depend on stochastic characteristics of the cell

and environment. The timescales for environmental change, the

statistical properties of the environment, and the precision with

which the organism can detect its environment all will affect the
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suitability of different regulatory strategies. We demonstrate how

different regimes of these basic physical properties of the

environment and cell demarcate common signal processing

strategies. For example, with perfect nutrient sensors, it is optimal

for the cell to simply respond to the measured concentration of a

nutrient signal; as sensors become noisy, the optimal strategy

switches to one of internalization through Bayesian priors of the

statistics of environmental dynamics, which overcomes inherent

physical limitations in measurement precision.

Previous studies have postulated a role for Bayesian decision

rules in nutrient sensing and studied biochemical implementations

of optimal Bayesian sensing strategies in a limited number of

circumscribed environmental contexts [21]. In our framework,

Bayesian inference emerges as a natural consequence of

maximizing enzymatic benefit, averaged over a probabilistic

environment. Further, our theoretical framework enables an-

alytical calculation of optimal enzymatic regulatory strategies over

a large range of different environmental statistics.

Results/Discussion

Model system: Regulation of a single metabolic enzyme
We consider the cellular task of responding to a time-varying

stochastic environmental signal by regulating the expression of a

single metabolic enzyme E that metabolizes a nutrient S directly

into some useful downstream product P [19] (see Fig. 1). We

formulate the cell’s task as implementing the regulatory strategy

eo p t(s), a mapping of nutrient concentration s to enzyme

concentration e that maximizes a payoff function F (e,s). F(e,s)
quantifies the net payoff to the cell as the difference of a benefit

B(e,s) and a cost C(e). Initially we assume precise cellular

measurement of the environment, namely the cell measures s
exactly.

The benefit B(e,s) reflects the downstream product generated

by enzyme-catalyzed metabolism of the nutrient. Under Michae-

lis-Menten enzyme kinetics we propose a benefit function

B(e,s)~
es

Kzs
, for Michaelis constant K and enzyme concentra-

tion e in units of Vmax. When concentrations remain sufficiently

low that the enzyme is in the unsaturated regime, the Michaelis-

Menten benefit function becomes linear in both enzyme and

nutrient levels,

B(e,s)~
es

K
: ð1Þ

We model the enzyme production cost C(e) as depending only

on the current enzyme concentration e, reflecting the consump-

tion of precursor molecules and energy in the synthesis of enzyme

[22]. In particular we adopt a simple cost function C(e)~cen,

nw0, a polynomial function of the current enzyme concentration

e, where n determines the convexity of the function. (A strictly

concave function has nv1, whereas a strictly convex function has

nw1.) Different studies suggest that components of the lactose

regulatory machinery may have convex [19] or concave [23]

costs across the expression range experimentally probed, and

hence we explore how optimal regulatory strategies vary with cost

convexity.

Precise measurement and the suitability of thresholding
versus graded response

In this section we ask when should a cell threshold: when should

it implement a discrete response or instead produce a graded

response to environmental concentrations? We find that the

relative convexity of the expression cost function produces a

preference for either graded or switch-like regulatory strategies.

For perfect sensing of the environment, the optimal regulatory

strategy eopt(s) is determined by maximizing the payoff function

F (e,s) for each precisely-detectable nutrient level s. In the regime

of strictly convex cost, nw1 (Fig. 2 right column), the optimal

regulatory algorithm continuously tracks s according to a graded

Figure 1. Model system. A time-varying environmental signal, the
concentration of a nutrient, is read by the cell through a noisy process.
Through regulation, the cell chooses an enzyme level, which interacts
with the true nutrient concentration to produce product. In this work
we focus on the optimization of the regulatory strategy, the choice of
enzyme level as a function of the imperfect readout of nutrient
concentration.
doi:10.1371/journal.pcbi.1003826.g001

Author Summary

All organisms live in environments that dynamically
change in ways that are only partially predictable. The
seasons, diurnal cycles, oceanic fluid dynamics, and the
progression of food through the human gut, all impose
some predictability on common microbial ecosystems.
Microbes are also at the whim of random processes (like
thermal motion) that introduce uncertainty into environ-
mental change. Here, we develop a theoretical framework
to analyze how cellular regulatory systems might balance
this predictability and uncertainty to most effectively
respond to a dynamic environment. We model a simple
cellular goal: regulating a single enzyme to maximize the
energy generated from a nutrient whose environmental
concentration varies. In this context, optimal regulatory
strategies are determined by an uncertainty ratio compar-
ing cellular measurement noise and environmental vari-
ability. Intermediate levels of uncertainty call for sophisti-
cated Bayesian decision rules, where selective advantage
accrues to organisms that incorporate past experience in
their inference of the current environmental state. When
uncertainty is either high or low, optimal signal processing
strategies are comparatively simple: constitutive expres-
sion or naive tracking, respectively. This work provides a
theoretical basis for interpreting molecular signal process-
ing algorithms and suggests that relative levels of
environmental variability and cellular noise affect how
microbes should process information.
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response whose specific form is determined by the curvature of the

cost function:

eopt(s)~
s

Kcn

� � 1
n{1

: ð2Þ

For strictly concave enzymatic costs, nv1 (Fig. 2 left column), the

payoff function has no local maximum for non-negative e, and

thus the optimal enzyme level must be on the boundary, either

zero or emax (the maximum level of enzyme that the cell can

produce). For threshold nutrient concentration ~ss:Kcen{1
max , if

sw~ss, then the optimal regulatory strategy sets eopt(s)~emax,

whereas when sv~ss, the payoff function F (e,s) is negative for all e,

so enzymatic production consumes more energy than it generates,

and eopt(s)~0. Thus the cell should switch between no enzyme

production and maximal enzyme production whenever nutrient

concentration s crosses ~ss.

When nutrient concentration is relatively high, s 6%K , the

benefit function adopts the Michaelis-Menten form. The benefit

function becomes hyperbolic in s but remains linear in e, so the

solution again breaks into two qualitatively distinct scenarios of

thresholding and graded response, depending on the convexity of

the cost function (see Models). More generally, for any cost and

benefit functions C(e)!en and B(e)!em that are power laws of

the enzyme concentration e, the optimal regulatory strategy will

involve graded response whenever the cost function is strictly

convex relative to the benefit function, nwm, and thresholding

whenever cost is strictly concave relative to benefit, nvm (see

Models).

In this way, optimal regulatory algorithms with perfect

measurement fall into two qualitative classes: for a cost function

strictly convex relative to benefits, the cell should track the

environment with a graded regulatory strategy; and for a cost

function strictly concave relative to benefits, the cell should

perform thresholded switching between on and off enzyme states.

Thus, a discrete or continuous regulatory strategy is optimal

depending on the relative curvatures of the enzymatic cost and

benefit functions.

Imperfect measurement and the value of a Bayesian
response strategy

In this section we ask when there is a fitness advantage to

implementing sophisticated Bayesian decision rules, which com-

bine information from present measurement and prior knowledge

of environmental statistics. We find such an advantage in contexts

of medium measurement imprecision relative to environmental

variability, when uncertainty is sufficiently low that individual

measurements have informational value, but sufficiently high that

prior knowledge is also useful.

Cells measure the concentration of environmental nutrients

through protein sensors (often membrane-bound receptors). These

sensors exist in small copy numbers and are subject to strong

thermal conformational fluctuations, thus the cellular measure-

ment apparatus operates stochastically rather than deterministi-

cally, providing imperfect measurements of nutrient concentra-

tions [17,21]. In this way, instead of responding to s, the true

concentration of an environmental nutrient, the cell responds to

s�, a corrupted measurement or readout of s. We now ask how a

cell can optimally regulate enzyme level based upon imperfect

knowledge of the environment.

The cell’s regulatory strategy must depend only upon

measured concentration s�, but the cell’s payoff F(e,s) will

depend upon the true concentration of nutrients. The nutrient

Figure 2. Cost convexity relative to benefit produces preference for either thresholding or for graded response. For a benefit function
that is linear in nutrient concentration s (purple curves in top panel) and a simple polynomial cost function cen , concave cost (nv1, left column)
implies an optimal enzyme expression level eopt of either zero or the maximal enzyme level emax (thresholding), whereas convex cost (nw1, right
column) implies an optimal enzyme expression level that varies continuously with the cellular readout (graded response). Top row: costs (green
curves) and benefits (purple curves) associated with an enzyme expression level for a given nutrient concentration. Bottom row: optimal regulatory
strategy specifying a enzyme expression level for a given cellular readout.
doi:10.1371/journal.pcbi.1003826.g002
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sensor is characterized by the conditional measurement

distribution, P(s�Ds), the probability of the sensor measuring

a nutrient level s� given a true nutrient concentration s. The

optimal regulatory strategy eopt(s
�) maximizes the expected

payoff function F (e,s�):E½F(e,s)Ds�� given a measurement s�,
averaging over the different possible true nutrient concentra-

tions s. Note that in this optimization we assume that fitness

only depends on cost and benefit averages, not on their

variances or higher-order moments. We initially consider

environments that vary but are uncorrelated in time, and

introduce the prior environmental distribution P(s), the

probability of the nutrient concentration at any instant in

time. In this section we explore the optimal regulatory strategy

for specific forms of the payoff function, environmental prior of

nutrient concentrations, and conditional measurement distri-

bution.

For the unsaturated enzyme benefit function [Eq. (1)] with

strictly convex costs, nw1, the optimal enzyme level for a given

measured nutrient concentration s� is:

eopt(s
�)~

E½sDs��
Kcn

� � 1
n{1

: ð3Þ

Due to the linear dependence of this benefit function on nutrient

concentration, the optimal response now depends upon E ½sDs��,
the expectation of the environmental nutrient concentration s

given a measurement s�. Via Bayes’ rule this expectation depends

upon both the prior distribution of nutrient concentrations P(s)
and the conditional measurement distribution P(s�Ds):

E½sDs��~
ð

ds
P(s�Ds)P(s)

P(s�)
s : ð4Þ

In the presence of measurement noise, Bayes’ rule motivates

consideration of environmental statistics, encoded in P(s), in the

maximization of F (e,s�), through calculation of the cell’s expectation

E ½sDs�� of s given a measured s�. The prior distribution, P(s), is

presumably learned over evolutionary timescales. Several previous

studies have postulated a role for Bayesian inference in nutrient

sensing [21,24]; in our framework, Bayesian inference emerges as a

result of maximization of expected enzymatic benefit averaged over

realizations of a stochastic environment.

Expectations preserve convexity, so the basic results under

perfect measurement are preserved: e.g., in the strictly concave

cost regime where nv1, a switch-like response is again optimal,

now depending on the expected nutrient level given the

measurement. Henceforth we assume strictly convex costs, nw1,

and an unbiased Gaussian measurement error, and we examine

optimal enzymatic regulatory strategies for different environments

specified by the nutrient distribution P(s).
Unimodal nutrient distribution. First we assume a simple

Gaussian distribution of nutrient concentrations. Straightforward

calculation reveals that for mean nutrient level m,

E ½sDs��~ 1

1zr
s�z

r

1zr
m , ð5Þ

where r is the dimensionless ratio of variances of conditional

nutrient distributions and measurement errors:

r:
s2

m

s2
s

: ð6Þ

In this context r is the inverse of the signal-to-noise ratio. The

optimal enzyme level is graded with respect to the measurement

s�:

eopt(s
�)~

1

1zr
s�z

r

1zr
m

K c n

2
64

3
75

1
n{1

: ð7Þ

When measurement uncertainty is small compared to

environmental variability, s2
m%s2

s and hence r%1 (‘‘definitive

measurement,’’ Fig. 3 left column), the cell can confidently

distinguish between many different common nutrient concen-

trations on the basis of a single measurement, with the

environmental prior providing negligible additional informa-

tion. The expected nutrient level is the measurement,

E ½sDs��&s�, and hence the optimal strategy involves naive

response to the measurement. Conversely, for high relative

measurement uncertainty, r&1 (‘‘useless measurement,’’ Fig. 3

right column), measurement provides negligible information

not already contained in the environmental prior distribution.

The expectation is the mean of the prior, E ½sDs��&m,

corresponding to an optimal strategy of constitutive expres-

sion, i.e., unresponsiveness to changing measurements. In the

intermediate regime, r*1 (‘‘ambiguous measurement,’’ Fig. 3

middle column), the measurement provides some useful

information but is not dispositive, so one updates the prior

mean by the measurement, with relative weightings depending

on the relative variances of nutrient concentrations s2
s (Fig. 3

top row) and measurement errors s2
m (Fig. 3 middle row). This

produces an optimal strategy of a non-degenerate Bayesian

decision rule, one that makes use of both prior information and

the current measurement. Notice that the quantitative level of

optimal enzyme expression is determined by statistical prop-

erties of the environment: for r&1, the optimal expression level

is set by the mean of the environmental nutrient concentration.

Bimodal nutrient distribution. We now examine an

environmental nutrient distribution with more complex structure,

specifically an environment that fluctuates between two dominant

conditions, one of abundant nutrient and one of scarce nutrient

(Fig. 4). Concretely, we assume P(s) is an equiprobable mixture of

two Gaussians, each with the same variance s2
s , with means

separated by Dm (Fig. 4 top row), and overall environmental mean

m. Integration shows that the posterior mean of the true

environmental concentration s, conditioned on the measurement

s�, is

E ½sDs��~ 1

1zr
s�z

r

1zr
mz

1

2
Dm tanh

Dm(s�{m)

2(s2
mzs2

s )

� �
: ð8Þ

When measurement uncertainty is small compared to environ-

mental variability within a given mode, r%1, the expectation is the

measurement, E ½sDs��&s�.
Where measurement uncertainty is large compared to environ-

mental variability within a given mode, r&1, the cell can only

hope to distinguish between modes, not specific nutrient levels

within a mode. In this context we highlight three qualitatively

distinct regimes (Fig. 4) demarcated by the dimensionless param-

eter q:s2
m=(Dm½1

2
Dmzss�). q is the ratio of the measurement

uncertainty to the product of the separation Dm between the two

Environmental Statistics and Optimal Regulation
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Figure 3. Increasing measurement noise shifts the optimal strategy from naive response to constitutive response. For a quadratic cost
function (n~2) and relatively slow environmental dynamics, the dimensionless ratio r:s2

m=s2
s of the measurement imprecision s2

m (middle row) and
the environmental variation s2

s (top row) determines the preference for different regulatory strategies [see Eq. (5)]. Low relative measurement noise
(r%1, left column) leads to a preference for naive response; high relative measurement noise (r&1, right column) produces a preference for
constitutive response; and the intermediate case (r*1, middle column) leads to a preference for more sophisticated inference incorporating both
prior knowledge and the current measurement of the environment. Top row: distribution of possible environmental nutrient concentrations around
the mean m. Middle row: distribution of cellular readouts given a particular nutrient concentration (red dotted line).
doi:10.1371/journal.pcbi.1003826.g003

Figure 4. In a bimodal environment, increasing measurement noise shifts the optimal strategy from classification to constitutive
response. For a quadratic cost function, tight distribution within each environmental mode (such that r&1), and relatively slow environmental

dynamics between distinct environmental modes (with mode separation Dm), the dimensionless ratio q:s2
m=(Dm ½1

2
Dmzss�) determines the

preference among regulatory strategies [see Eq. (8)]. High relative measurement noise (q&1, right column) leads to a preference for constitutive
response; low relative measurement noise (q%1, left column) produces a preference for classifying the environment into the most likely among the
two modes; and the intermediate case (q*1, middle column) produces a preference for non-degenerate Bayesian inference.
doi:10.1371/journal.pcbi.1003826.g004
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mean nutrient levels and the typical distance s�{Dm*
1

2
Dmzss

of a measurement to the mean.

Larger q corresponds to a wider range of measurements that

leave some ambiguity about which mode the environment is in:

when q&1 (‘‘indistinguishable modes,’’ Fig. 4 right column),

measurement is insufficiently precise to distinguish between the

two modes, and hence the optimal strategy produces constitutive

enzyme expression at a level corresponding to the mean value m
of the environment. In the opposite limit, q%1 (‘‘distinguishable

modes,’’ left column), measurement is relatively precise com-

pared to the separation between the modes, and hence

essentially all possible measured nutrient levels strongly impli-

cate one or the other mode. Thus the optimal strategy is

classification, choosing either of the mean nutrient concentra-

tions mL or

mR,

E ½sDs��~
mL, s�vm

mH, s�wm

�
: ð9Þ

In the intermediate regime, q*1 (‘‘ambiguous modes,’’ middle

column), the modes are moderately distinguishable but most

measurements are not strongly indicative of one mode or the

other, so the optimal strategy calls for more nuanced inference.

Fig. S1 depicts optimal regulatory strategies across varying r
and q. These optimal strategies can also be generalized to a

multimodal Gaussian mixture model (see Models).

In this way, a stochastic environment imposes structure on the

optimal sensing strategy through estimation of nutrient levels

based on environmental statistics. Prior knowledge of the

multimodal nature of the environmental nutrient distribution

(e.g., producing only either scarcity or abundance) leads to an

optimal regulatory strategy that infers the environmental state

from a measured concentration of nutrient. When measurement

noise is low estimation is not required, and when measurement

noise is very high estimation is not possible; in the intermediate

regime, optimal regulatory strategies are non-degenerate Bayesian

decision rules.

In addition to specifying the broad structure of the optimal

sensing strategy in a bimodal environment, Eq. (8) relates the

quantitative architecture, and hence underlying biochemical

parameters, of the optimal sensing apparatus to statistical

properties of the environment. For example, the optimal

sensing strategy is to threshold the readout into a discrete on or

off response in the regime r&1 and q%1. Quantitatively, the

mean level m of the nutrient s across environmental realizations

sets the optimal location of the switch threshold. Additionally,

for r&1 and varying q the optimal strategy adopts the

sigmoidal shape of the tanh function where the steepness or

cooperativity of the optimal thresholded response is deter-

mined by the ratio of the separation between the two

environments Dm and the summed environmental and mea-

surement variances (s2
mzs2

s ). The thresholding strategy could

be implemented using sigmoidal responses (commonly arising

in biochemical networks), where the statistical properties of the

environment and measurement apparatus set the biochemical

parameters, including dissociation constant and Hill coeffi-

cient, that optimize the thresholding properties of the switch

[25,26]. In this way, the model suggests a fitness benefit for

internalizing environmental structure in the value of specific

biochemical parameters, in agreement with recent theoretical

work analyzing the fundamental connections between ener-

getic efficiency and predictive efficiency [27].

Ref. [21] analyzed Bayesian decision rules in an environ-

ment that is a mixture of two sharply-peaked Gaussians in log

space, representing high nutrient and low nutrient concentra-

tions, respectively. By continuously parametrizing both the

statistics of the environment as well as measurement impreci-

sion, our framework generalizes these results to environments

that switch more gradually. Like [21], we find that the optimal

sensing strategy is a switch-like strategy when the environment

has a sharp two-state structure. Additionally, our generalized

framework allows continuous analysis of optimal regulatory

strategy while titrating the environmental structure from

one that is sharply peaked to one with more continuous

variation.

Dynamic environments and the value of memory
In this section we ask when should a cell remember: when does

a cell benefit from retaining memory of past environmental

states? In dynamic contexts, we find that retaining memory

produces a fitness advantage for intermediate levels of measure-

ment imprecision, where measurement is sufficiently precise to

constrain possible environmental states, but still noisy enough

that inference benefits from combining present and past

measurements.

So far, we have implicitly assumed that a cell does not retain

any memory of specific past measurements. But an environ-

ment with temporal correlations that persist longer than

cellular measurement intervals will reward more sophisticated

inference algorithms. Here we address how a cell can optimally

combine sequential measurements of a nutrient signal in

time to regulate the level of the corresponding metabolic

enzyme.

In particular, we seek a regulatory strategy eopt(s
�
‘ ,s
�
‘{1) that

maximizes the value of the payoff function F (e,s‘) averaged

over possible current nutrient concentrations s‘, where now the

regulatory strategy depends in principle on both current (s�‘ )
and past (s�‘{1) measurements of the nutrient signal. We find

qualitatively similar features to the simpler uncorrelated case,

namely the effect of relative cost convexity on the preference

for graded or switch-like responses, and the transitioning

between naive response, Bayesian response, and constitutive

response on the basis of the ratio of relevant noises. However

in this dynamic context, the intermediate case of a non-

degenerate Bayesian decision rule depends on past measure-

ments.

We assume that the environmental dynamics are Markovian,

and that successive measurements depend only on the current true

nutrient via a time-invariant measurement distribution P(s�‘ Ds‘).

For the specific payoff function F(e‘,s‘)~
e‘

K
s‘{cen

‘ , the expected

payoff is

F (e‘,s
�
‘ ,s
�
‘{1)~

e‘

K
E ½s‘Ds�‘ ,s�‘{1�{c en

‘ : ð10Þ

For further concreteness, we specify a mean-reverting diffusive

environment with conditional nutrient distribution

P(s‘Ds‘{1)~f (s‘; mza ½s‘{1{m�,½1{a2�s2
s ), where a (0ƒaƒ1)

is the environmental persistence and f (x; m,s2) is a normal

distribution for x with mean m and variance s2. Such an

environment executes a random walk in nutrient concentration

space with constant marginal distribution P(s‘)~f (s‘; m,s2
s ) and

correlation time {1= ln a. Hence the smaller a is, the quicker

Environmental Statistics and Optimal Regulation
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the nutrient concentration reverts to its mean and hence the

more rapidly correlation decays between nutrient concentra-

tions at different time points. With the same Gaussian

measurement error as before, straightforward integration leads

us to an expected nutrient concentration, given the current and

previous measurements,

E ½s‘Ds�‘ ,s�‘{1�~
½(1{a2)zr�s�‘za rs�‘{1z½(1{a)rzr2�m

(1{a2)z2rzr2
: ð11Þ

The linear mean-reversion, quadratic diffusion, and quadratic

measurement errors ensure that this estimate is precisely that of

a Kalman filter [28,29].

When the conditional variance of nutrients dwarfs the

measurement error, r%1 (Fig. 5 left column), the best inference

is the current measurement s�‘ ; when measurement imprecision is

relatively high, r&1 (right column), the best inference is the

nutrient mean m; and in the intermediate regime, r*1 (middle

column), a dynamic Bayesian decision rule combines the two along

with information from the previous measurement s�‘{1. Fig. S2

depicts optimal regulatory strategies for varying levels of r and

environmental persistence a.

Cellular memory of a past measurement s�‘{1 can be

instantiated in forms such as epigenetic chromatin modifica-

tion [30], long-lived proteins [31], and even particular network

topologies [32], and indeed such a dynamic Bayesian decision

rule as described above can be implemented by noisy receptors

and intracellular kinetics featuring dual positive feedback [24].

Inference of the current nutrient concentration can benefit

from incorporation of information from even earlier measure-

ments (s�‘{2,s�‘{3, . . .), and the above derivation generalizes

trivially, but the resulting expressions rapidly grow cumber-

some (see Models). In multicellular contexts with environmen-

tal dynamics relatively rapid compared to regulatory time-

scales, stochastic enzymatic expression can provide additional

fitness advantages [7,33].

Eq. (11) suggests that optimal regulatory strategies internal-

ize the temporal structure of the environment in the signal-

processing apparatus. Namely, a is related to the correlation

time of the environment (see Models), and r depends upon the

environmental variance, so that an optimal regulatory strategy

requires learning through evolution the correlation structure of

the environment, the feasibility of which has been demon-

strated by recent microevolution studies [8,9].

Conclusions
In the analysis presented here, measurement noise and

environmental structure interact to determine the optimal

regulatory strategy. In this work we specifically find that: (i)

convexity of enzyme expression cost, relative to benefit, influences

preferences for thresholding or graded responses; (ii) intermediate

levels of uncertainty call for a sophisticated Bayesian decision rule

that combines prior information with new measurement; and (iii)

in dynamic contexts, intermediate levels of uncertainty call for

retaining memory of the past.

The perspective adopted here provides a decision-theoretic

framework for interpreting existing biomolecular signal pro-

cessing algorithms, by relating optimal response to environ-

mental and cellular statistics in a novel yet intuitive manner. It

is easily extensible to provide computational tools for predicting

optimal regulatory strategies in complex environments where

correlations are derived directly from ecological data. The

framework represents a natural classification system that,

through continuous variation of dimensionless parameters,

relates a range of regulatory strategies that at first glance

Figure 5. In a rapidly changing environment, the value of memory peaks at intermediate measurement noise. For a quadratic cost
function and environmental changes on timescales comparable to cellular response, the dimensionless ratio r determines the preference among
different regulatory strategies [see Eq. (11)]. High relative measurement noise (r&1, right column) leads to a preference for constitutive response; low
relative measurement noise (r%1, left column) produces a preference for naive response to the present measurements; and the intermediate case
(r*1, middle column) produces a preference for dynamic Bayesian inference that takes into account both present and past measurements. In the
heat maps (bottom row), blue represents high levels of enzyme and green represents low.
doi:10.1371/journal.pcbi.1003826.g005
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appear qualitatively distinct. Further exploration of parameter

space (for example, see Fig. S1) may suggest novel forms

distinct from commonly-studied regulatory strategies such as

thresholding.

Our work motivates new experiments that compare the

fitness of signal-processing strategies in different regimes of

environmental structure and sensing noise. For example, we

predict that in a bimodal environment, varying between

starvation and nutrient-rich conditions, when measurements

are very imprecise (because of low copy number receptors) a

cell constitutively expressing the corresponding metabolic

enzyme will outperform a cell regulating enzyme expression.

Experiments to test these ideas could compare, in rapidly-

changing microfluidics environments, the fitness of synthetic

nutrient response pathways designed to implement either

constitutive or graded response, with measurement noise

titrated via differing steady-state receptor copy numbers due

to high- or low-copy number plasmids.

Models

Our model system is an enzyme E that metabolizes a nutrient S
into some useful downstream product P, according to the reaction

scheme

EzS?EzP : ð12Þ

We formulate the cell’s regulatory task as choosing the

concentration of enzyme that maximizes a function F(e,s)
quantifying the net payoff to the cell given both the enzyme

concentration e and the environmental nutrient concentration

s:

F (e,s)~B(e,s){C(e) : ð13Þ

A regulatory strategy eopt(s) specifies the enzyme level that

maximizes the net payoff F (e,s).

Under Michaelis-Menten enzyme kinetics we propose a

benefit function BMM(e,s)~es=(Kzs), for Michaelis constant

K and enzyme concentration e in units of Vmax. In the limit of

small nutrient concentration and hence unsaturated enzyme

kinetics, s%K , this benefit function simplifies to a linear

function of e and s, Bunsat(e,s)~es=K . We adopt a simple cost

function C(e)~cen.

We initially consider a model where the environment is

changing in an uncorrelated fashion so that at any instant in

time, the cell is exposed to the nutrient at concentration s with

probability P(s). The cell does not have direct access to s, but

rather it measures through noisy protein sensors an estimated

nutrient concentration s�. The aim of our framework is to derive

an expression for the optimal expression level eopt given a

measured s�, a function eopt(s
�) that maximizes the average value

of the payoff function F (e,s). (We assume that fitness does not

depend on the payoff variance or higher-order moments.) For

simplicity, we assume that the cell can respond to the measured

nutrient concentration faster than the typical timescales for

environmental change.

First, we find the average value of the payoff function

conditioned on s� by deriving an expected payoff function

F (e,s�) given a measured s�, averaging over the possible nutrient

concentrations s:

F (e,s�):E ½F (e,s)Ds�� ð14aÞ

~

ð
ds F (e,s)P(sDs�) ð14bÞ

~

ð
ds F (e,s)

P(s�Ds)P(s)

P(s�)
ð14cÞ

~

ð
ds F(e,s)

P(s�Ds)P(s)Ð
ds’P(s�Ds’)P(s’)

: ð14dÞ

This expected payoff depends upon the environmental statistics,

P(s), as well as the conditional distribution, P(s�Ds), of measuring

s� given the actual concentration s. The third line follows from

Bayes’ rule, and the fourth line follows from the law of total

probability,

P(s�)~

ð
ds P(s�Ds)P(s) : ð15Þ

Maximizing F (e,s�) with respect to e produces an expression for

eopt, the optimal level of enzyme expression e, for each

measurement s�:

eopt(s
�):argmaxe F (e,s�) : ð16Þ

We call this function eopt(s
�) the optimal regulatory strategy. For

our specified payoff function with unsaturated enzyme kinetics,

F (e,s)~
e

K
s{cen ð17aÞ

F(e,s�)~

ð
ds

e

K
s{cen

� �
P(sDs�) ð17bÞ

~
e

K
E ½sDs��{cen : ð17cÞ

In the name of simplicity, tractability, and interpretability, this

model contains a number of simplifying assumptions: the cell can

sense and respond to a signal on timescales faster than those on

which the environment varies; the metabolic benefit is linear in the

enzyme concentration; system cost is only a function of the current

level of enzyme; all regulatory mechanisms are equally costly,

regardless of their steady-state energy requirements, number of

required components, or overall complexity; the cell can set a

deterministic enzyme level in response to a given readout level;

and we only consider a single enzyme and single nutrient. We also

assume simple functional forms throughout this framework in

order to derive analytic results, though the qualitative character of

these results should be robust to modest variation of the model

details.
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Precise measurement and the suitability of thresholding
versus graded response

We start with the case of perfect detection, where we

immediately see that E ½sDs��~s�, and hence in the strictly convex

cost regime, nw1, the optimal enzyme level is

eopt(s)~
s

Kcn

� � 1
n{1

: ð18Þ

By contrast, in the strictly concave cost regime, nv1,

eopt(s)~

emax, sw
Kc

e1{n
max

0, sv
Kc

e1{n
max

8>><
>>: : ð19Þ

Michaelis-Menten kinetics. For the full Michaelis-Menten

benefit model, the benefit remains linear in e, so the solution again

breaks into two qualitatively distinct scenarios of thresholding and

graded response. For nw1,

eopt(s)~
s

cn(Kzs)

� � 1
n{1

: ð20Þ

Again, when nv1, the payoff function is always an increasing

function of enzyme level, so that

eopt(s)~

emax, sw
K

e1{n
max

c
{1

0, sƒ
K

e1{n
max

c
{1

8>>>>>><
>>>>>>:

: ð21Þ

More general benefit function. More generally, for any

cost and benefit functions that are power laws of the enzyme

concentration e, the payoff function will be

F (e,s)~b s em{cen , ð22Þ

with nw0 and mw0 reflecting increasing costs and benefits,

respectively, with increasing enzyme level. For n=m the payoff

function has zero slope at

e~
b m s

c n

� � 1

n{m : ð23Þ

If also n=1 and m=1, then the second derivative at the unique

nonzero local optimum is

L2F (e,s)

Le2
Deopt~

(b m s)n{2

(c n)m{2

" # 1

n{m
m{nð Þ , ð24Þ

which is positive for nvm and negative for nwm. Thus the

optimal regulatory strategy will involve graded response when-

ever the cost function is strictly convex relative to the benefit

function, nwm, and thresholding whenever cost is strictly

concave relative to benefit, nvm.

Imperfect measurement and the value of Bayesian
response strategies

Henceforth, instead of perfect detection we assume an

unbiased Gaussian error, whereby s� is Gaussian-distributed

with mean equal to the true concentration of the nutrient s and

variance s2
m,

P(s�Ds)~f (s�; s,s2
m) , ð25Þ

where f (x; m,s2) is a normal distribution for x with mean m and

variance s2.

Local optima are found by differentiating with respect to e:

0~
dE½F (e,s)Ds��

de
De~emax~

E ½sDs��
K

{ncen{1
max , ð26Þ

giving for strictly convex costs, nw1:

eopt(s
�)~

E ½sDs��
K c n

� � 1

n{1 : ð27Þ

We are optimizing the expected payoff, without any concern for

variance or higher-order moments of the payoff, which means that the

optimal response in a stochastic environment is the same as the

optimal response in the deterministic case, but s� is replaced by

E ½sDs��.
For our specified payoff function, in the strictly convex cost

regime, nw1, the optimal enzyme level for a given measured

nutrient concentration s� is:

eopt(s
�)~

E½sDs��
K c n

� � 1

n{1 : ð28Þ

Due to Bayes’ rule this expectation E ½sDs�� depends upon both the

conditional measurement distribution P (s�Ds) and the environ-

mental structure P (s):

E ½sDs��~
ð

ds
P(s�Ds)P(s)

P(s�)
s : ð29Þ

In the strictly concave cost regime, nv1, a switch-like response is

again optimal:

eopt(s
�)~

emax, E ½sDs��wK c en{1
max

0, E ½sDs��ƒK c en{1
max

(
: ð30Þ

Uniform nutrient distribution. A uniform probability of

nutrient levels corresponds to an uninformative prior, essentially a

constant P(s). Given the lack of any prior information about s,

E ½sDs��~s� and thus the optimal enzyme level is unchanged from

the case of perfect detection.
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Unimodal nutrient distribution. Here we assume a simple

Gaussian distribution of nutrient concentrations,

P(s)~f (s; m,s2
s ) : ð31Þ

Simple integration shows that the posterior distribution P(sDs�) is a

Gaussian with mean

E ½sDs��~ m

1zr{1
z

s�

1zr
, ð32Þ

and variance (s{2
m zs{2

s ){1, for the dimensionless parameter

r:s2
m=s2

s , the ratio of variances of the conditional measurement

distribution and the environmental nutrient distribution. Hence

for the strictly convex cost function with nw1, the optimal enzyme

level is

eopt(s
�)~

s�

K c n 1zrð Þ

� � 1

n{1 : ð33Þ

Bimodal nutrient distribution. We now assume an equi-

probable mixture of two Gaussians, each with the same variance s2
s :

P(s)~
1

2
f (s; mL,s2

s )zf (s; mH,s2
s )

	 

: ð34Þ

Here, mL and mH (mLvmH) are the mean levels of the nutrient s in

each environment. Making a change of variables to m~(mLzmH)=2
and Dm~mH{mL, and evaluating the Gaussian integrals, the

posterior for s has a mean of

E ½sDs��~ s�

1zr
z

r

1zr
mz

1

2
Dm tanh

Dm(s�{m)

2(s2
mzs2

s )

� �
: ð35Þ

Fig. S1 shows optimal regulatory strategies as a function of s�, across

several values of ss and sm.

Multimodal nutrient distribution. This model is easily

extensible to several environmental modes.

P(s)~
1

k

Xk

i~1

f (s; mi,s
2
s ) ð36aÞ

P(s�)~
1

k

Xk

i~1

f (s�; mi,s
2
mzs2

s ) ð36bÞ

P(sDs�)~f (s; s�,s2
m)

Xk

i~1
f (s; mi,s

2
s )Xk

i~1
f (s�; mi,s

2
mzs2

s )
ð36cÞ

E½sDs��~
Xk

i~1

f (s�; mi,s
2
mzs2

s )Xk

j~1
f (s�; mj ,s

2
mzs2

s )

s2
mmizs2

s s�

s2
mzs2

s

ð36dÞ

~
1

1zr
s�z

r

1zr

Xk

i~1

f (s�; mi,s
2
mzs2

s )Xk

j~1
f (s�; mj ,s

2
mzs2

s )
mi : ð36eÞ

In this case, the expectation is a weighted sum of terms,

one for each Gaussian mode in the mixture. The term

corresponding to each mode i is weighted by the likelihood

that the measurement comes from that mode,

expf{(s�{mi)
2=½2(s2

mzs2
s )�g. Each term takes the form of a

weighted sum of the mean mi of the ith Gaussian mode and the

observation s�, weighted by the uncertainties associated with the

measurement (s2
m) and with the distribution within a given

Gaussian mode (s2
s ), respectively.

This model is also trivially generalized to an arbitrary prior over

the different modes. For a prior probability pi that the

environment is in Gaussian i with distribution f (s; mi,s
2
s ):

P(s)~
Xk

i~1

pi f (s; mi,s
2
s ) ð37aÞ

P(s�)~
Xk

i~1

pi f (s�; mi,s
2
mzs2

s ) ð37bÞ

P(sDs�)~f (s�; s,s2
m)

Xk

i~1
pi f (s; mi,s

2
s )Xk

i~1
pi f (s�; mi,s

2
s zs2

m)
ð37cÞ

E½sDs��~
Xk

i~1

pi f (s�; mi,s
2
mzs2

s )Xk

j~1
pj f (s�; mj ,s

2
mzs2

s )

s2
mmizs2

s s�

s2
mzs2

s

ð37dÞ

~
1

1zr
s�z

r

1zr

Xk

i~1

pi f (s�; mi,s
2
mzs2

s )Xk

j~1
pj f (s�; mj ,s

2
mzs2

s )
mi : ð37eÞ

Dynamic environments and the value of memory
Previously, we analyzed an environment where the nutrient

signal was uncorrelated in time, so that s‘ and s‘{1 were

statistically independent random variables, where ‘ indexes the

nutrient signal in time. Now, we consider an environment with

temporal structure. We ask how a cell can optimally combine

measurements of a nutrient signal in time to optimally regulate

the level of the enzyme: what regulatory strategy eopt(s
�
‘ ,s
�
‘{1)
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maximizes the payoff F (e,s‘). This task consists in choosing the

enzyme level e‘ that, for given measurements s�‘ and s�‘{1,

maximizes the expected payoff

F (e‘,s
�
‘ ,s
�
‘{1):E ½F (e‘,s‘)Ds�‘ ,s

�
‘{1� ð38aÞ

~

ð
ds‘ F (e‘,s‘) P(s‘Ds�‘ ,s

�
‘{1) : ð38bÞ

We proceed similarly to before, but now we derive the average

value of the payoff function with respect to both past and

current measurements. To this end, we derive an expression for

P(s‘Ds�‘ ,s
�
‘{1) with two assumptions: first, that the environmental

dynamics are Markovian,

P(s‘,s‘{1)~P(s‘Ds‘{1) P(s‘{1) ; ð39Þ

and secondly, that a measurement depends only on the current

true nutrient concentration via a time-invariant measurement

distribution P(s�‘ Ds‘):

P(s�‘ ,s
�
‘{1Ds‘,s‘{1)~P(s�‘ Ds‘) P(s�‘{1Ds‘{1) : ð40Þ

Given these assumptions,

P(s‘Ds�‘ ,s
�
‘{1)~

P(s�‘ ,s
�
‘{1Ds‘)P(s‘)

P(s�‘ ,s
�
‘{1)

ð41aÞ

~

ð
ds‘{1

P(s�‘ ,s
�
‘{1Ds‘,s‘{1) P(s‘,s‘{1)

P(s�‘ ,s
�
‘{1)

ð41bÞ

~

ð
ds‘{1 P(s‘Ds‘{1)P(s‘{1)

P(s�‘ Ds‘) P(s�‘{1Ds‘{1)

P(s�‘ ,s
�
‘{1)

, ð41cÞ

where P(s‘z1Ds‘) is the environmental transition probability and

P(s�‘ ,s
�
‘{1)~ð

ds‘ ds‘{1 P(s�‘ Ds‘) P(s�‘{1Ds‘{1) P(s‘Ds‘{1)P(s‘{1) :
ð42Þ

Thus the expected payoff is

E½F (e‘,s‘)Ds�‘ ,s
�
‘{1�~ð

ds‘ ds‘{1 F (e‘,s‘)
P(s�‘ Ds‘)P(s�‘{1 Ds‘{1) P(s‘ Ds‘{1)P(s‘{1)Ð

ds’‘ ds’‘{1 P(s�‘ Ds’‘)P(s�‘{1 Ds’‘{1)P(s’‘Ds‘{1)P(s’‘{1)
:
ð43Þ

As previously, we also note that for our specific payoff function

F (e‘,s‘)~
e‘

K
s‘{cen

‘ , the expected payoff, conditional on

current and immediate past measurements, is

F (e‘,s
�
‘ ,s
�
‘{1)~

ð
ds‘

e‘

K
s‘{cen

‘

� �
P(s‘Ds�‘ ,s

�
‘{1) ð44aÞ

~
e‘

K
E½s‘Ds�‘ ,s�‘{1�{cen

‘ : ð44bÞ

We consider a mean-reverting environment with conditional

distribution P(s‘Ds‘{1)~f (s‘; mza ½s‘{1{m�,½1{a2�s2
s ) that

therefore has a constant marginal distribution

P(s‘)~f (s‘; m,s2
s ). The correlation of nutrient concentrations

decays geometrically with a,

Ss‘ s‘zjT~ans2
s , ð45Þ

such that the correlation time, in units of discrete time steps, is

tcorr:
ð

dj Ss‘s‘zjT~{
1

ln a
: ð46Þ

As before, we assume a Gaussian measurement error

P(s�‘ Ds‘)~f (s�‘ ; s‘,s
2
m). Straightforward integration leads us to a

relatively compact expression for the expected nutrient

concentration given the current and previous measurements

E½s‘Ds�‘ ,s�‘{1�~
½(1{a2)zr�s�‘zars�‘{1z½(1{a)rzr2�m

(1{a2)z2rzr2
: ð47Þ

Fig. S2 shows optimal regulatory strategies as a function of

present and past readouts s�‘ and s�‘{1, across several values of r

and environmental persistence a.

E½s‘Ds�‘ ,s�‘{1,s�‘{2�~ ð48Þ

½(1{a2)2z(1{a2)(2za2)rzr2�s�‘z½a(1{a2)rzar2�s�‘{1za2r2 s�‘{2z½(1{a)(1{a2)rz(2{a{a2)r2zr3�m
(1{a2)2z(3{2a2za4)rz3r2zr3

(43)
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We can extend the expectation to depend on two past measurements in a derivation that is algebraically tedious but

conceptually identical to the one above:



Supporting Information

Figure S1 Optimal regulatory strategy varies with
environmental variability and measurement impreci-
sion. Blue curves plot optimal regulatory strategy as a function of

cellular readout s�, for bimodal environments of varying mode

width (depicted in leftmost column) and for varying measurement

imprecision (depicted in upper row). Black dashed boxes indicate

the selected strategies shown in Fig. 4.

(PDF)

Figure S2 Optimal regulatory strategy varies with
environmental persistence and relative measurement
imprecision. Heat maps plot optimal regulatory strategy as a

function of present readout s�‘ (x-axis) and past readout s�‘{1 (y-

axis), for varying environmental variability and measurement

precision (both depicted in leftmost column) and for varying

environmental persistence. Environmental persistence is depicted

in upper row as the probability distribution of present nutrient

concentration, given steady-state mean m (black dashed line) and

previous nutrient concentration (red dashed line). Black dashed

boxes indicate the selected strategies shown in Fig. 5.

(PDF)
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