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Appendix S1: Building a single output emulator.

This document describes the procedure for building an emulator. We start with the simpler case of a
zero mean-unit variance emulator and we proceed with the more general case that we follow for building
the emulators used in the main manuscript.

A zero-mean, unit-variance emulator

According to their definition [1] a Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution.

Suppose that u(x) is a zero mean and unit variance Gaussian process, we can write this as

u(x) ∼ GP(0, c(x,x′)). (1)

The c(x,x′) term is known as the covariance function and plays a fundamental role in Gaussian processes
as it determines the association between u(x) and u(x)′ based on the distance between x and x′. If
we denote this distance as W , the covariance function can take a multitude of forms, some of the most
common are shown in table 1. The covariance functions cannot take an arbitrary form, as they have
to satisfy the constraint of positive definiteness (see chapter 4 of [1]). Suppose that we have two p-

Correlation function Formula

Gaussian c(x,x′) = exp
(
−W 2

)
α-exponential (α < 2) c(x,x′) = exp (−Wα)

Matérn 3/2, c(x,x′) =
(
1 +
√

3W
)

exp
(
−
√

3W
)

Table 1. Some common correlation functions c(x,x′), with W denoting a weighted distance between x
and x′.

dimensional points x = [x1, x2, . . . , xp] and x′ = [x′1, x
′
2, . . . , x

′
p]. Their weighted distance is defined

as

W =

[
p∑
i=1

(
xi − x′i
δi

)2
]1/2

(2)

The parameters δ = [δ1, δ2, . . . , δp] are known as correlation lengths and weigh the distance between x
and x′. A large δi implies that u(x) and u(x′) will be strongly correlated along the ith dimension of x
and vice versa.

Suppose now that we observe the Gaussian process at n discrete points D = {xi : i = [1, . . . , n]}
and we get the vector of observations u(D) = [u(x1), u(x2), . . . , u(xn)]. D and u(D) here represent the
emulator’s training points. According to the definition of a Gaussian process, the observations u(D) will
follow a joint Gaussian distribution,

p(u(D)|δ) =
|Ã|−1/2

(2π)n/2
exp

[
−1

2
u(D)TÃ−1u(D)

]
, (3)
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where Ã is the covariance matrix of the design points u(D), which is defined as

Ã =


1 c(x1,x2) . . . c(x1,xn)

c(x2,x1) 1 . . . c(x2,xn)
...

...
. . .

...
c(xn,x1) . . . . . . 1

 .

The distribution of u(D) is conditioned on the covariance function hyperparameters δ. One way of
training the emulator could be to search for a value of δ that maximises equation 3, i.e.

δ̂ = arg max
δ

[p(u(D)|δ)]

A more involved approach, would be to define a prior distribution for δ and draw samples from the
posterior distribution p(δ|u(D)). For sake of simplicity, we assume here the first approach.

We are now interested in estimating the value of the Gaussian process at an unknown point x,
conditional on the observed data u(D) and δ̂. This distribution is

p(u(x)|u(D), δ̂) = N (E∗[u(x)],Var∗[u(x)]) (4)

where

E∗[u(x)] =c(x)TÃ−1u(D)

Var∗[u(x)] =c(x,x′)− c(x)TÃ−1c(x′)

with the vector c(x) defined as c(x) = [c(x,x1), c(x,x2), · · · , c(x,xn)]T. The above distribution is the
posterior distribution of a zero mean - unit variance emulator.

The general case

We will now present the equations of the more general non-zero mean emulator with arbitrary variance.
The model assumed is

g(x) ∼ GP(hT(x)β, σ2c(x,x′)). (5)

which is the same as equation 1, apart from the mean term hT(x)β and σ2 that controls the scaling
(variance) of the process. Assuming again a set of n observations g(D), the likelihood of this model is

p(g(D)|β, σ2, θc) = N (Hβ, σ2A)

=
|A|−1/2

(2πσ2)n/2
exp

[
− 1

2σ2
(g(D)−Hβ)TA−1(g(D)−Hβ)

]
(6)

where
H = [h(x1), h(x2), · · · , h(xn)]T

The matrix A is defined as A = Ã+ νI, where I a diagonal matrix and ν is a parameter, commonly
known as the nugget [2]. The role of the nugget is to account for the existence of noise in the model (i.e.
if the observations g(D) were noisy measurements of the process, rather than the process itself), while it
can also safeguard against numerical instabilities that can occur in the calculations involved in training
and fitting the emulator. The parameters δ and ν are jointly referred to as θc = [δ, ν].
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If we assume a non informative prior for σ2 and β p(σ2, β) ∝ σ−2 [3], these two parameters can be
marginalised in the Bayesian sense, yielding

p(g(D)|θc) ∝
|A|−1/2|HTA−1H|−1/2

(σ̂2)(n−q)/2
(7)

where σ̂2 = g(D)T[A−1−A−1H(HTA−1H)−1HTA−1]g(D). This was the expression we optimised w.r.t.
θc when we trained the emulators in the manuscript.

In the same fashion, one can obtain the posterior distribution for the emulator p(g(x)|g(D), θ̂c), which
will be a multivariate t-distribution, with n− q degrees of freedom and mean

E∗[g(x)] = hT(x)β̂ − cT(x)A−1(g(D)−Hβ̂) (8)

where β̂ = (HTA−1H)−1HTA−1g(D) and variance

Var∗[g(x)] =
σ̂2

n− q − 2
c1(x,x′), (9)

with

c1(x, x′) = c(x, x)− cT(x)A−1c(x)

+ (hT(x)− cT(x)A−1H)(HTA−1H)−1(hT(x)− cT(x)A−1H)T.

If the degrees of freedom (n − q) of the t-distribution are sufficiently large (e.g. n − q > 20) we can

consider p(g(x)|g(D), θ̂c) as being a multivariate normal distribution with the same mean and variance
as above.
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