<u>Text S3</u>. Definitions and relationships between the model state variables and parameters and details on the derivation of model equations.

Each compartment i in the model is defined by its total nitrogen (N) content $(N_i = {}^{14}N_i + {}^{15}N_i)$ and its isotopic enrichment $(\delta^{15}N_i)$, which constitute the two state variables or species of the model. The amount of ${}^{15}N$ in compartment i can be calculated using the usual definition of $\delta^{15}N_i$:

$$\boldsymbol{\delta^{15}N_i} = \left(\frac{{}^{15}N_i/{}^{14}N_i}{R_{standard}} - 1\right) \times 1000$$

and by approximating the isotope ratio $^{15}N_i/^{14}N_i$ using the $^{15}N_i/N_i$ ratio (i.e., the fractional abundance), so that:

15
N_i \approx N_i $\times \left(\frac{\delta N_i}{1000} + 1\right) \times R_{std}$ (E1)

where R_{std} is the N isotope ratio for the internationally defined standard (atmospheric N_2 , R_{std} =0.0036765).

In the model, for each compartment i, we defined inward and outward fluxes of total N ($f_{i,j}$ and $f_{j,i}$, respectively) and of the heavy N isotope ($^{15}f_{i,j}$ and $^{15}f_{j,i}$, respectively). These fluxes were assumed to follow mass action laws and were modeled according to the following equations:

$$\begin{split} &f_{i,j}(t) = k_{i,j} \times N_j(t) \quad \text{and} \quad ^{15}f_{i,j}(t) = ^{15}k_{i,j} \times ^{15}N_j(t) \text{for the inward flux from compartment } j \text{ to } i, \\ &f_{j,i}(t) = k_{j,i} \times N_i(t) \quad \text{and} \quad ^{15}f_{j,i}(t) = ^{15}k_{j,i} \times ^{15}N_i(t) \text{ for the outward flux from compartment } i \text{ to } j, \end{split}$$

where $\mathbf{k_{j,i}}$ and $\mathbf{k_{i,j}}$ are the reaction rate constants (d⁻¹) for the corresponding N fluxes. and $^{15}\mathbf{k_{i,i}}$ and $^{15}\mathbf{k_{i,j}}$ are the reaction rate constants (d⁻¹) for the corresponding 15 N fluxes.

We defined the fractionation factor $\varepsilon_{j,i}$, representing the isotopic effect associated with the flux $f_{j,i}$, as $\varepsilon_{j,i} = (\alpha_{j,i} - 1) \times 1000$, with $\alpha_{j,i} = {}^{15}k_{j,i}/k_{j,i}$. (E2)

Each compartment i is characterized by two differential equations describing respectively the kinetic evolution of its total N content (N_i) and its isotopic enrichment $(\delta^{15}N_i)$.

Evolution of the total N content of compartment i:

According to the mass conservation principle, the evolution of total N content in compartment i is described by the following equation:

$$\frac{dN_{i}(t)}{dt} = \sum_{i} f_{i,j} - \sum_{i} f_{j,i} = \sum_{i} \left(\mathbf{k}_{i,j} \times N_{j}(t) \right) - \sum_{i} \left(\mathbf{k}_{j,i} \times N_{i}(t) \right)$$
(E3)

Under the assumption of elemental steady state, the total N amounts in compartments are constants (i.e., $dN_i(t)/dt = 0$) and consequently Eq. E3 simplifies to:

$$\sum_{i} f_{i,j} = \sum_{i} f_{j,i}$$

Evolution of the isotopic enrichment of compartment i:

The equation describing the isotopic enrichment of compartment i was derived by applying the mass conservation principle to the heavy N isotope (15 N), as:

$$\frac{d^{15}N_{i}(t)}{dt} = \sum_{i} {}^{15}f_{i,j}(t) - \sum_{i} {}^{15}f_{j,i}(t)$$
 (E4)

Consequently, the evolution of the ¹⁵N amount in compartment i can be expressed as:

$$\frac{d^{15}N_{i}(t)}{dt} = \sum_{i} (^{15}k_{i,j} \times ^{15}N_{j}(t)) - \sum_{i} (^{15}k_{j,i} \times ^{15}N_{i}(t))$$
 (E5)

Using Eq. (E1) and applying the Leibniz rule to calculate the derivatives of $(N_i \times \delta^{15} N_i)$, Eq. E5 can be rewritten as:

$$\frac{N_{i}}{1000} \times \frac{d\delta^{15}N_{i}(t)}{dt} + \left(\frac{\delta^{15}N_{i}}{1000} + 1\right) \times \frac{dN_{i}(t)}{dt} = \sum_{i} \left[{}^{15}k_{i,j} \times N_{j}(t) \times \left(\frac{\delta^{15}N_{j}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{j,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,j} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,i} \times N_{i}(t) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1\right)\right] - \sum_{i} \left[{}^{15}k_{i,$$

By introducing the isotopic fractionation factors $\alpha_{j,i}$ and $\alpha_{i,j}$, defined according to Eq E2, the previous equation can be rewritten as:

$$\frac{N_i}{1000} \times \frac{d\delta^{15}N_i(t)}{dt} + \left(\frac{\delta^{15}N_i}{1000} + 1\right) \times \frac{dN_i(t)}{dt} = \sum_j \left[\alpha_{i,j} \times \mathbf{k}_{i,j} \times N_j(t) \times \left(\frac{\delta^{15}N_j}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right] - \sum_j \left[\alpha_{j,i} \times \mathbf{k}_{j,i} \times N_i(t) \times \left(\frac{\delta^{15}N_i}{1000} + 1\right)\right]$$

which combined with Eq. E3, and using the mass action relations for the $f_{j,i}$ and $f_{i,j}$ fluxes, yields the following equation:

$$\frac{N_{i}}{1000} \times \frac{d\delta^{15}N_{i}(t)}{dt} = \sum_{j} \left[f_{i,j}(t) \times \left(\alpha_{i,j} - 1 + \alpha_{i,j} \times \frac{\delta^{15}N_{j}(t)}{1000} - \frac{\delta^{15}N_{i}(t)}{1000} \right) \right] - \sum_{j} \left[f_{j,i}(t) \times \left(\alpha_{j,i} - 1 \right) \times \left(\frac{\delta^{15}N_{i}}{1000} + 1 \right) \right]$$

Using the ε notation ($\alpha = \varepsilon/1000 + 1$) and assuming that ε and $\delta^{15}N$ are negligible compared to 1000, this equation can be rearranged to yield the final equation describing the evolution of the nitrogen isotopic enrichment in compartment i:

$$\frac{d\delta^{15}N_{i}(t)}{dt} = \sum_{i} \left[\frac{f_{i,j}(t)}{N_{i}} \times \left(\epsilon_{i,j} + \delta^{15}N_{j}(t) - \delta^{15}N_{i}(t) \right) \right] - \sum_{i} \left[\frac{f_{j,i}(t)}{N_{i}} \times \epsilon_{j,i} \right]$$
(E6)

It should be noted that $\epsilon_{j,i}$ is approximately equal to the difference between the isotopic enrichment of flux $f_{j,i}$ and that of its precursor compartment i, according to the following equation:

 $\pmb{\epsilon_{j,i}} = \delta^{15} N f_{j,i}(t) - \delta^{15} N_i(t), \text{ where } \delta^{15} N f_{i,j} \text{ is the isotopic enrichment of flux } f_{i,j}.$