
Suns: The Structural Search Engine

Suns provides the missing search engine for the Protein Data Bank complete with a PyMOL interface:

- Point and click within PyMOL to build search queries
- Search for sophisticated all-atom motifs
- PyMOL streams aligned search results into your session
- Interactively build motifs using search results
- Validate modeled or designed structures against real crystal structures

PyMOL Plugin

The easiest way to use Suns is through the PyMOL plugin. You can install this plugin in two ways:

- Using PyMoL's plugin manager (only available to latest incentive builds of PyMoL).
- Using a Debian/Ubuntu package (assuming you also installed PyMOL this way, too)

Requirements

- PyMOL
- An internet connection (or a locally installed Suns search engine)

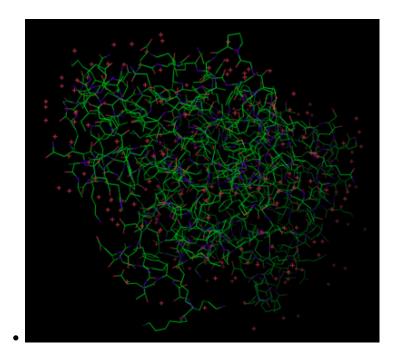
Install using Plugin Manager

B Download Plugin

• Download the Suns plugin (suns.zip).

- Open PyMOL
- Select Plugin -> Plugin Manger from the menu
- Go to the Install New Plugin tab
- Click Choose file... and select the downloaded plugin (suns.zip)

Install using Debian/Ubuntu Package


Download Package

- Download the pymol-suns-search package
- Install the package using your system's package manager

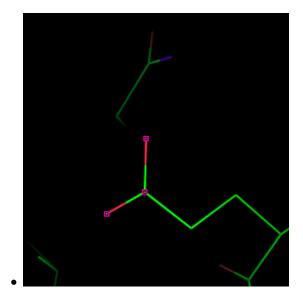
Tutorial

Start PyMOL and load the structure for glucose binding protein (PDB ID: 2GBP). You can either:

- use the Plugin -> PDB Loader Service menu option and choose 2gbp, or
- \bullet type fetch 2gbp at the <code>PyMOL</code> command prompt.

Glucose binding protein - PDB ID 2gbp

Select the Plugin -> Suns Search menu option to open the search wizard, which lets you build and submit structural search queries:

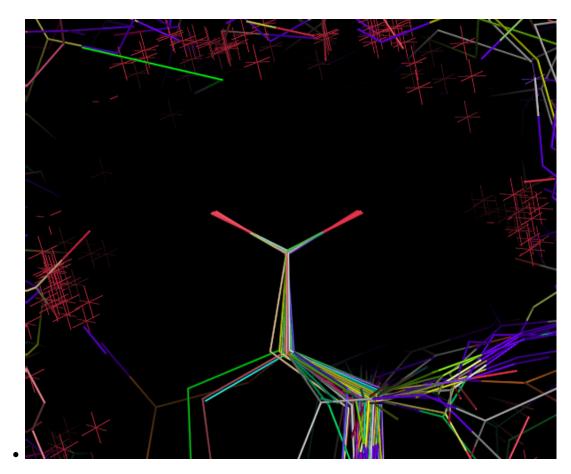

	The P	YMOL N	Molecula	ar Graphi	ics Syst	em			
<u>F</u> ile <u>E</u> dit	<u>B</u> uild	<u>M</u> ovie	<u>D</u> isplay	<u>S</u> etting	S <u>c</u> ene	M <u>o</u> use	<u>W</u> izard	<u>P</u> lugin	
Color: d PyMOL>ray Ray: ren ScenePNG You clic	PyMOL>rebuild Color: defined table 'pymol'. PyMOL>ray Ray: render time: 4.70 sec. = 766.4 frames/hour (4.7 ScenePNG: wrote 1635x1038 pixel image to file "/home You clicked /2gbp//A/GLU`174/CD Selector: selection "sele" defined with 9 atoms. PyMOL>					"/home/	<u>A</u> ppeara <u>M</u> easure <u>M</u> utager <u>P</u> air Fitti <u>D</u> ensity <u>F</u> ilter <u>S</u> culptin	bp.pn	
<u>L</u> abel <u>C</u> harge									
							D <u>e</u> mo Su <u>n</u> s Se	arch	

The wizard menu

The search wizard

•

Left-click a carboxyl group to select it and add it to your search query:

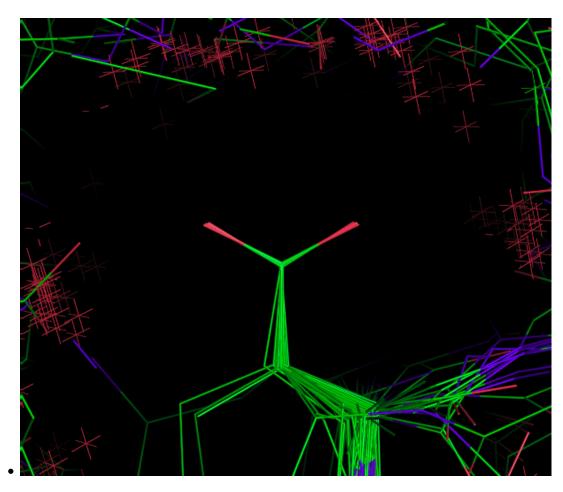


Selected carboxyl group

Suns pre-indexes chemical motifs from protein structures and the PyMOL search wizard automatically expands your selection to pre-indexed motifs, including:

- carboxyls,
- peptides,
- hydroxyls, and
- phenyl groups.

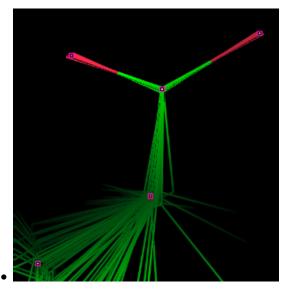
Click "Search" to search for the carboxyl motif. The search wizard contacts the public search engine at suns.degradolab.org and streams in aligned search results:



Carboxyl search results

PyMOL uniquely colors each new result, but you can impose a uniform coloring by setting all carbons to green:

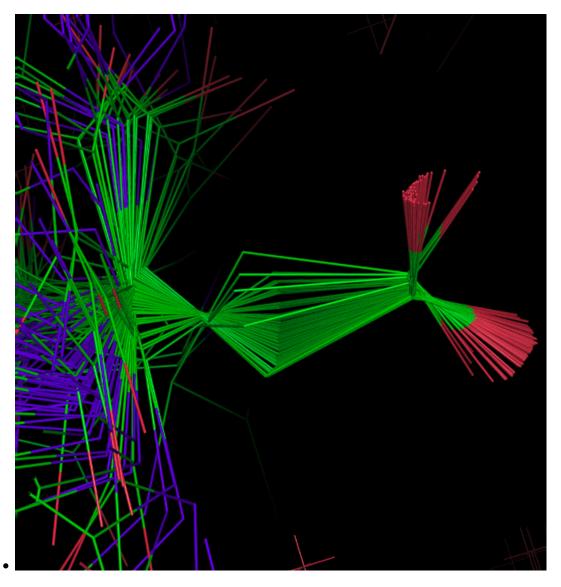
all	Atoms	Color:			
2gbp	HNOS	by element			
(sele	CHNOS _{N++}	by chain			
(suns		by ss			
2hba_i	CHNOS	spectrum			
2hba_i	CHNOS	auto			
2hba_i	CHNOS	reds			
3d7j_)	CHNOS	greens			
3d7j_∪	CHNOS	blues			
3d7	CHNOS	yellows			
1001 0-1	set 2	magentas			
	set 3	cyans			
3d7.j_i	set 4	oranges			
3d7.i_	set 5	tints			
3d7.i_	set 6/H	grays			


Set the backbone to green

The re-colored search results

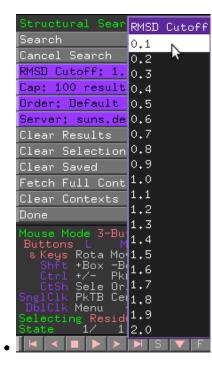
Some motifs match multiple residues. For example, the carboxyl search query will match carboxyls from both aspartate acid and glutamate.

Other motifs uniquely identify residues, such as linkers. Click on any search result's linker and the wizard will expand the selection to include the remainder of the side chain. The linker uniquely identifies the residue as aspartate or glutamate.

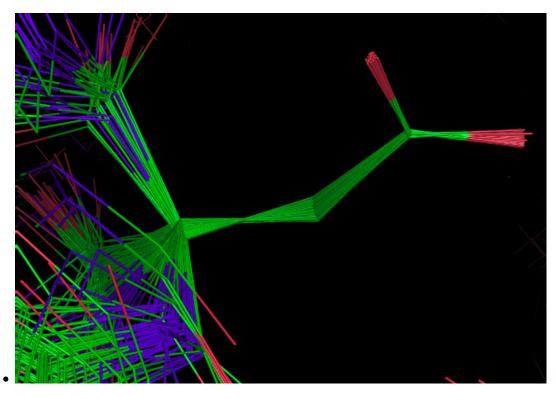


Selection expanded to include linker

Suns saves search results that you add to your search query by renaming them to end with _save so that future searches don't delete them.


Click "Search" to search for the expanded selection. The new search will automatically delete old search results. To save them, you must copy them to a new object. You can also remove results manually at any time using "Clear Results".

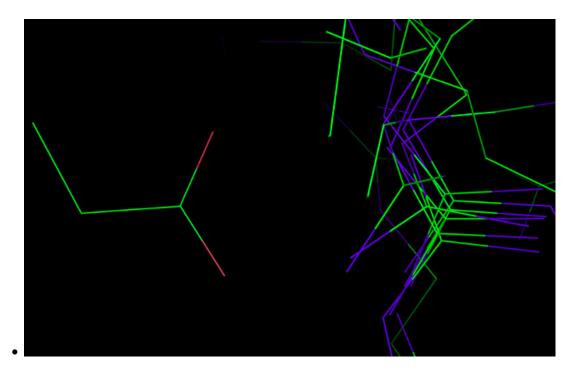
The search engine will return several less-than-perfect matches since searches default to an RMSD cutoff of 1.0 Angstroms:



Loose results

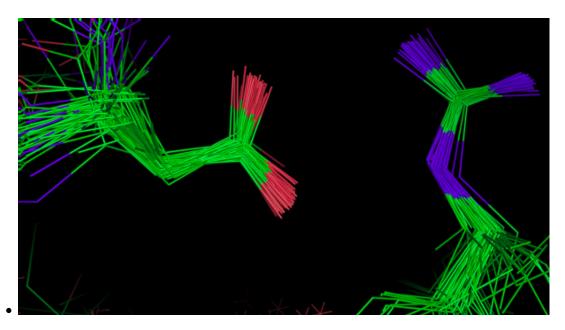
Use the "RMSD Cutoff" option to improve the result quality. Set the RMSD to 0.1 Angstroms and redo the search, which will considerably tighten up the linker:

Change the RMSD Cutoff to 0.1 Angstroms



Tight results

You don't have to limit yourself to contiguous motifs. You can search for disconnected elements, too. Let's hide everything except aspartate and arginine to find a candidate salt bridge:


hide everything, not (resn arg or suns_query)

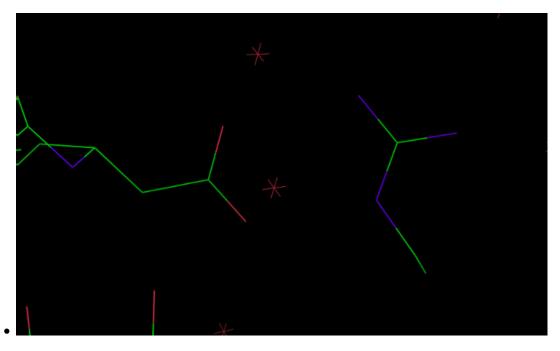
This reveals a cluster of arginines:

Cluster of arginines near the aspartate

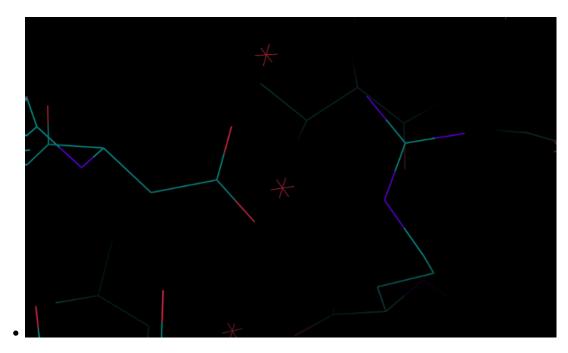
Pick any arginine's guanidinium group and loosen the search cutoff to 0.5 RMSD to search for geometrically similar salt bridges:

Several identical salt bridge matches

Search results only bring in a 15 Angstrom cube around the match, but sometimes we desire more context for a given search result. To pull in the original structure, just disable all selections except the desired result(s) and click "Fetch Full Contexts":


2jcq_0000_save	A	S	Η	L	C
2jcq_0000_resu	A	S	Η	L	C
3mqd_0000_resu	A	S	Η	L	C
3awu_0000_resu	A	S	Η	L	C
1ryl_0000_resu	A	S	Η	L	C
4g6c_0000_resu	A	S	Η	L	C
4e6f_0000_resu	A	S	Η	L	C
1gkp_0000_resu	A	S	Η	L	C
1gkp_0001_resu	A	S	Η	L	C
3sig_0000_resu	Ĥ	S	Η	L	C
3giw_0000_resu	Ĥ	S	Η	L	C
3h4t_0000_resu	A	S	Η	L	C
3zuc_0000_resu	A	S	Η	L	C

Enable the selections you wish to expand

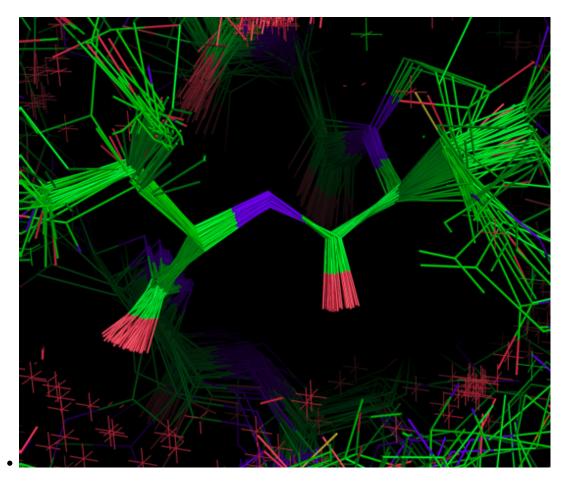

Structural Search Engine
Search
Cancel Search
RMSD Cutoff: 0.1 Angstroms
Cap: 100 results
Order: Default
Server: suns.degradolab.org
Clear Results
Clear Selection
Clear Saved
Fetch Full Contexts
Clear Contexts 😽 😽
Done

Click "Fetch Full Contexts"

This will fetch the original structures from the Protein Data Bank and align them to their respective results:

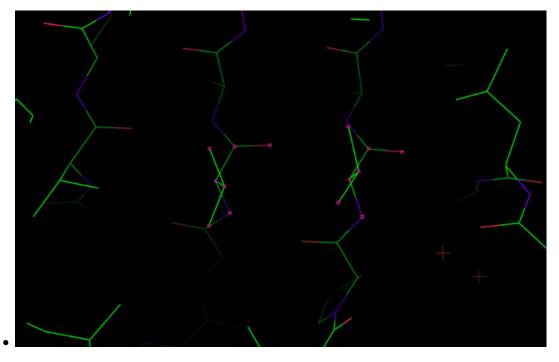
Before adding context

After adding context

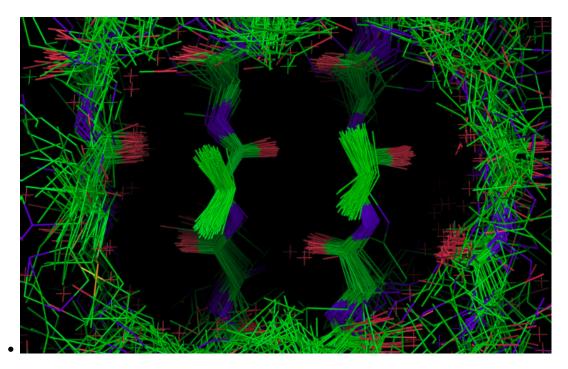

suns also supports backbone peptide searches. Reset the wizard by clicking:

- Clear Results: Removes search results ending with _result
- Clear Selection: Empties the suns_query selection
- Clear Saved: Removes saved results ending with _save
- Clear Contexts: Removes fetched contexts ending with _fetch

Then type:

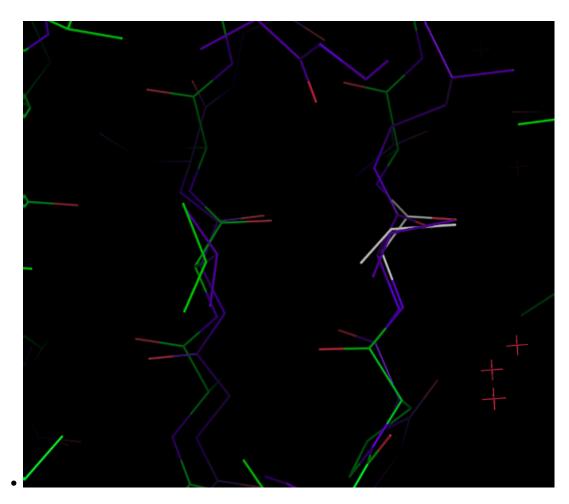

show all

Now select two consecutive peptide bonds from a helix and search with a cutoff of 0.3 Angstroms. The search results extend the initial query for several helical turns in each direction:


Inferred helical context

You can also search for residues V207 and V232 and include both the valine and backbone atoms in your search query: in the preferred surrounding backbone:

Double valine selection


Searching at 0.4 Angstrom RMSD cutoff brings in an entire beta sheet worth of context:

Inferred beta sheet context

Suns plays well with other PyMOL wizards, including the mutagenesis wizard. We can combine the two wizards to infer contextual preferences for different rotamers.

Use the mutagenesis wizard to rotate V232 counterclockwise and repeat the search:

Only one match to the search query

The number of matches drops precipitously, indicating an unfavorable motif. You can use suns as a crude measure of the quality of modeled or designed protein motifs.

Command Line Client

suns-cmd is a command line client to the Suns protein search engine. Use suns-cmd to automate searches for scripting purposes.

Installation

You can install the command line client from the following source package:

Download suns-cmd source

To install the source package, first install the <u>Haskell Platform</u>.

\$ cabal update
\$ cabal install

Quick Start

To use suns-cmd, just create a directory to store the results:

\$ mkdir results

 \dots and feed in the motif to search to the program's standard input. This source package provides example motifs in the test/ subdirectory:

\$ ~/.cabal/bin/suns-cmd -d results/ -r 0.2 < test/figure2/search1.pdb</pre>

The -d parameter tells the program to store all results in the results/ directory:

```
$ ls results
1tqg_0.pdb 1v7w_2.pdb 2fr5_1.pdb 3a6r_0.pdb 3cuz_1.pdb 3fke_0.pdb
1tqg_1.pdb 1v7w_3.pdb 2fr5_2.pdb 3a6r_1.pdb 3cuz_2.pdb 3fke_1.pdb
...
```

Each result is labeled by the structure name followed by a number which distinguishes results originating from the same structure. These results are already aligned to the original search query.

This program also accepts the following options:

```
suns-cmd: The Suns search command line client
Usage: suns-cmd [--hostname STRING] [-r|--rmsd DOUBLE] [-n|--num INT] [-s|--seed INT] [-d|--directory FILEPATH]
Send search requests and store results as PDB files
Available options:
    -h,--help Show this help text
    -hostname STRING Search engine address (default: suns.degradolab.org)
    -r,--rmsd DOUBLE RMSD cutoff (default: 1.0)
    -n,--num INT Number of results (default: 100)
    -s,--seed INT Randomization seed (default: 0)
    -d,--directory FILEPATH Results directory (default: ./)
```

Report bugs to suns-search@googlegroups.com

Search Engine

The public Suns server at suns.degradolab.org imposes three limitations in order to handle a high search volume:

- Queries must fit inside a 15 Angstrom box
- You can only search on pre-defined protein substructures
- Searches time out after 10 seconds

If you set up your own local search engine, you can bypass these limitations, allowing you to:

- Change the database of indexed protein structures
- Index ligands or alternative protein substructures
- Run search queries without time limits

For instructions on how to do this, download the source package at <u>https://github.com/Gabriel439</u>

<u>/suns-cmd</u> and follow the instructions to build and customize your own local search engine.

Support

To report bugs, request features, or ask for support, contact the official mailing list at suns-search@googlegroups.com.