Numerical Example

In this section, we present a numerical example that depicts the use of the equations. Let $S_1 = AAACCC$, $S_2 = ACC$ be two sequences with lengths $n_1 = 6$ and $n_2 = 3$. For simplicity, assume that the sequences are defined over the alphabet $\pi = \{A, C\}$ with size b = 2. Given l = 3 and k = 2, Table S1 shows the counts for all b^l possible l-

mers, and Table S2 shows the counts for all $\binom{l}{k}b^k$ possible gapped *k*-mers of length *l* defined over the alphabet

 π for S_1 and S_2 . Given l = 3, k = 2 and b = 2, Equation (6) gives the weight corresponding to different number of mismatches: $w_0 = 7/24$, $w_1 = -2/24$, $w_2 = 1/24$ needed to calculate *l*-mer count estimates from gapped *k*-mer counts. For example, to calculate the estimated count for AAA, we have:

$$\hat{x}_{AAA} = w_0 (N_{\text{nAA}} + N_{\text{AnA}} + N_{\text{AAA}}) + w_1 (N_{\text{nAC}} + N_{\text{nCA}} + N_{\text{AnC}} + N_{\text{CNA}} + N_{\text{ACn}} + N_{\text{CAA}}) + w_2 (N_{\text{nCC}} + N_{\text{CNC}} + N_{\text{CCA}})$$

Therefore, given the gapped *k*-mer counts in Table S2, the count estimate for AAA in sequence S_1 is $\frac{7}{24}(1+1+2) - \frac{2}{24}(1+0+2+0+1+0) + \frac{1}{24}(2+1+1) = 1$. The count estimates can be calculated more efficiently without the need to compute the gapped *k*-mer counts by using Equation (11). For example, to compute the count estimate for u = AAA in S_1 , we compare it with all the *l*-mers in S_1 which are {AAA, AAC, ACC, CCC} and count the number of *l*-mers in S_1 with 0,1,2, and 3 mismatches. Here there is one *l*-mer with perfect match (AAA), one *l*-mer with one mismatch (AAC), one with two mismatches (ACC) and one with three mismatches (CCC), hence we have $\hat{x}_{AAA} = 1g_0 + 1g_1 + 1g_2 + 1g_3$. The weights for different number of mismatches are given by Equation (10): $g_0 = 7/8$, $g_1 = 1/8$, $g_2 = -1/8$, $g_3 = 1/8$. Therefore, $\hat{x}_{AAA} = 1$, which is consistent to the result from using the gapped *k*-mer counts and w_m 's. To ensure that the estimated count is non-negative, we truncate the filter g_m . In this example, for truncated g, we have $g_{tr,0} = 7/8$, $g_{tr,1} = 1/8$, $g_{tr,2} = 0$, $g_{tr,3} = 0$. Table S3 shows the count estimates for all the *l*-mers in S_1 and S_2 using g and g_{tr} .

Now, for obtaining the *l*-mer count estimate similarity score (gkm-kernel with truncated filter) between sequences S_1 and S_2 , we need to find the inner product of the count estimates vectors. Using count estimates from Table 3, we obtain $\langle f^{S_1}, f^{S_2} \rangle = 1 \times 0 + \frac{9}{8} \times \frac{1}{8} + \frac{1}{4} \times \frac{1}{8} + \frac{9}{8} \times \frac{7}{8} + \frac{1}{8} \times 0 + \frac{1}{4} \times 0 + \frac{1}{8} \times 0 + 1 \times \frac{1}{8} = \frac{41}{32}$.

We can more efficiently calculate this inner product directly from the sequences of S_1 and S_2 without the need to compute the *l*-mer count estimates vectors. For this, we compare every *l*-mers in S_1 with every *l*-mers in S_2 and count the number of pairs with 0, 1, 2, and 3 mismatches. Here we have one pair with perfect match (ACC, ACC), two pairs with one mismatch {(AAC, ACC), (CCC, ACC)}, one pair with two mismatches (AAA, ACC), and no pairs with three mismatches. Hence, the mismatch profile between S_1 and S_2 is given by {1, 2, 1, 0}. Using Equation (14), the weights $c_0 = 26/32$, $c_1 = 7/32$, $c_2 = 1/32$, and $c_3 = 0$ are obtained. Hence $\langle f^{S_1}, f^{S_2} \rangle = 1 \times \frac{26}{32} + 2 \times \frac{7}{32} + 1 \times \frac{1}{32} + 0 \times 0 = \frac{41}{32}$, which is consistent with the result above. Similarly, for computing the inner product of the gapped *k*-mer count vectors, using gapped *k*-mer counts from Table S2, we have: $\langle f_g^{S_1}, f_g^{S_2} \rangle = 1 \times 0 + 1 \times 0 + 0 \times 0 + 2 \times 1 + 1 \times 0 + 2 \times 0 + 1 \times 0 + 2 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 0 = 5$. This

inner product can be more efficiently found by using weights given in Equation $h_m = \begin{pmatrix} l - m \\ k \end{pmatrix}$ with the above

mismatch profile. We have $h_0 = 3$, $h_1 = 1$, $h_2 = 0$, and $h_3 = 0$. Hence: $\langle f_g^{S_1}, f_g^{S_2} \rangle = 1 \times 3 + 2 \times 1 + 1 \times 0 + 0 \times 0 = 5$, which is also consistent with the result above.

<i>l</i> -mer	count in S_1	count in S_2
AAA	1	0
AAC	1	0
ACA	0	0
ACC	1	1
CAA	0	0
CAC	0	0
CCA	0	0
CCC	1	0

 Table S1. Example of *l*-mer count table

 Table S2. Example of gapped k-mer count table

gapped k-mer	count in S_1	count in S_2
nAA	1	0
nAC	1	0
nCA	0	0
nCC	2	1
AnA	1	0
AnC	2	1
CnA	0	0
CnC	1	0
AAn	2	0
ACn	1	1
CAn	0	0
CCn	1	0

Table S3. Example of count estimates

<i>l</i> -mer	<u>count estimate in S₁</u>		count estimate in S ₂	
	Full	truncated	Full	truncated
AAA	1	1	-1/8	0
AAC	1	9/8	1/8	1/8
ACA	0	1/4	1/8	1/8
ACC	1	9/8	7/8	7/8
CAA	0	1/8	1/8	0
CAC	0	1/4	-1/8	0
CCA	0	1/8	-1/8	0
CCC	1	1	1/8	1/8