Numerical Example

In this section, we present a numerical example that depicts the use of the equations. Let $S_{1}=$ AAACCC, $S_{2}=$ ACC be two sequences with lengths $n_{1}=6$ and $n_{2}=3$. For simplicity, assume that the sequences are defined over the alphabet $\pi=\{\mathrm{A}, \mathrm{C}\}$ with size $b=2$. Given $l=3$ and $k=2$, Table S1 shows the counts for all b^{l} possible l mers, and Table S 2 shows the counts for all $\binom{l}{k} b^{k}$ possible gapped k-mers of length l defined over the alphabet π for S_{1} and S_{2}. Given $l=3, k=2$ and $b=2$, Equation (6) gives the weight corresponding to different number of mismatches: $w_{0}=7 / 24, w_{1}=-2 / 24, w_{2}=1 / 24$ needed to calculate l-mer count estimates from gapped k-mer counts. For example, to calculate the estimated count for AAA, we have:
$\hat{x}_{A A A}=w_{0}\left(N_{\mathrm{nAA}}+N_{\mathrm{AnA}}+N_{\mathrm{AAn}}\right)+w_{1}\left(N_{\mathrm{nAC}}+N_{\mathrm{nCA}}+N_{\mathrm{AnC}}+N_{\mathrm{CnA}}+N_{\mathrm{ACn}}+N_{\mathrm{CAn}}\right)+w_{2}\left(N_{\mathrm{nCC}}+N_{\mathrm{CnC}}+N_{\mathrm{CCn}}\right)$
Therefore, given the gapped k-mer counts in Table S 2 , the count estimate for AAA in sequence S_{1} is $\frac{7}{24}(1+1+2)-\frac{2}{24}(1+0+2+0+1+0)+\frac{1}{24}(2+1+1)=1$. The count estimates can be calculated more efficiently without the need to compute the gapped k-mer counts by using Equation (11). For example, to compute the count estimate for $u=$ AAA in S_{1}, we compare it with all the l-mers in S_{1} which are $\{\mathrm{AAA}, \mathrm{AAC}, \mathrm{ACC}, \mathrm{CCC}\}$ and count the number of l-mers in S_{1} with $0,1,2$, and 3 mismatches. Here there is one l-mer with perfect match (AAA), one l-mer with one mismatch (AAC), one with two mismatches (ACC) and one with three mismatches (CCC), hence we have $\hat{x}_{\text {AAA }}=1 g_{0}+1 g_{1}+1 g_{2}+1 g_{3}$. The weights for different number of mismatches are given by Equation (10): $g_{0}=7 / 8, g_{1}=1 / 8, g_{2}=-1 / 8, g_{3}=1 / 8$. Therefore, $\hat{x}_{A A A}=1$, which is consistent to the result from using the gapped k-mer counts and w_{m} 's. To ensure that the estimated count is non-negative, we truncate the filter g_{m}. In this example, for truncated g, we have $g_{t r, 0}=7 / 8, g_{t r, 1}=1 / 8, g_{t r, 2}=0, g_{t r, 3}=0$. Table S3 shows the count estimates for all the l-mers in S_{1} and S_{2} using g and $g_{t r}$.

Now, for obtaining the l-mer count estimate similarity score (gkm-kernel with truncated filter) between sequences S_{1} and S_{2}, we need to find the inner product of the count estimates vectors. Using count estimates from Table 3, we obtain $\left\langle f^{S_{1}}, f^{S_{2}}\right\rangle=1 \times 0+\frac{9}{8} \times \frac{1}{8}+\frac{1}{4} \times \frac{1}{8}+\frac{9}{8} \times \frac{7}{8}+\frac{1}{8} \times 0+\frac{1}{4} \times 0+\frac{1}{8} \times 0+1 \times \frac{1}{8}=\frac{41}{32}$.

We can more efficiently calculate this inner product directly from the sequences of S_{1} and S_{2} without the need to compute the l-mer count estimates vectors. For this, we compare every l-mers in S_{1} with every l-mers in S_{2} and count the number of pairs with $0,1,2$, and 3 mismatches. Here we have one pair with perfect match (ACC, ACC), two pairs with one mismatch $\{(\mathrm{AAC}, \mathrm{ACC}),(\mathrm{CCC}, \mathrm{ACC})\}$, one pair with two mismatches (AAA, ACC), and no pairs with three mismatches. Hence, the mismatch profile between S_{1} and S_{2} is given by $\{1,2,1,0\}$. Using Equation (14), the weights $c_{0}=26 / 32, c_{1}=7 / 32, c_{2}=1 / 32$, and $c_{3}=0$ are obtained. Hence
$\left\langle f^{S_{1}}, f^{S_{2}}\right\rangle=1 \times \frac{26}{32}+2 \times \frac{7}{32}+1 \times \frac{1}{32}+0 \times 0=\frac{41}{32}$, which is consistent with the result above. Similarly, for computing the inner product of the gapped k-mer count vectors, using gapped k-mer counts from Table S 2 , we have: $\left\langle f_{g}^{S_{1}}, f_{g}^{S_{2}}\right\rangle=1 \times 0+1 \times 0+0 \times 0+2 \times 1+1 \times 0+2 \times 1+0 \times 0+1 \times 0+2 \times 0+1 \times 1+0 \times 0+1 \times 0=5$. This inner product can be more efficiently found by using weights given in Equation $h_{m}=\binom{l-m}{k}$ with the above
mismatch profile. We have $\mathrm{h}_{0}=3, \mathrm{~h}_{1}=1, \mathrm{~h}_{2}=0$, and $\mathrm{h}_{3}=0$. Hence: $\left\langle f_{g}^{S_{1}}, f_{g}^{S_{2}}\right\rangle=1 \times 3+2 \times 1+1 \times 0+0 \times 0=5$, which is also consistent with the result above.

Table S1. Example of \boldsymbol{l}-mer count table

\boldsymbol{l}-mer	count in $\boldsymbol{S}_{\mathbf{1}}$	count in $\boldsymbol{S}_{\mathbf{2}}$
AAA	1	0
AAC	1	0
ACA	0	0
ACC	1	1
CAA	0	0
CAC	0	0
CCA	0	0
CCC	1	0

Table $\mathbf{S} 2$. Example of gapped \boldsymbol{k}-mer count table

gapped \boldsymbol{k}-mer	count in $\boldsymbol{S}_{\mathbf{1}}$	count in $\boldsymbol{S}_{\mathbf{2}}$
nAA	1	0
nAC	1	0
nCA	0	0
nCC	2	1
AnA	1	0
AnC	2	1
CnA	0	0
CnC	1	0
AAn	2	0
ACn	1	1
CAn	0	0
CCn	1	0

Table S3. Example of count estimates

\boldsymbol{l}-mer	count estimate in $\boldsymbol{S}_{\mathbf{1}}$		count estimate in $\boldsymbol{S}_{\mathbf{2}}$	
	Full	truncated	Full	truncated
AAA	1	1	$-1 / 8$	0
AAC	1	$9 / 8$	$1 / 8$	$1 / 8$
ACA	0	$1 / 4$	$1 / 8$	$1 / 8$
ACC	1	$9 / 8$	$7 / 8$	$7 / 8$
CAA	0	$1 / 8$	$1 / 8$	0
CAC	0	$1 / 4$	$-1 / 8$	0
CCA	0	$1 / 8$	$-1 / 8$	0
CCC	1	1	$1 / 8$	$1 / 8$

