Supplemental text S1: MCMC Proof

The observed interaction data, \hat{I} , defines a posterior distribution over the set of possible conformations of the protein complex: $P[S|\hat{I}] = P[\hat{I}|S] \cdot P[\hat{I}] / P[S]$. Since we apply a constant constraint on the state space and the probability of the observed data (\hat{I}) is constant with respect to **S**, we get $P[S|\hat{I}] = \kappa \cdot P[\hat{I}|S]$ for some constant κ , and thus we have:

$$P[S|\hat{I}] = \kappa \cdot \left(\prod_{\substack{interacting \\ i,j}} P[\hat{I}(i,j)||I(i,j) = f(D_s(i,j),k)]\right) \cdot \left(\prod_{\substack{not-interacting \\ i,j}} P[\hat{I}(i,j)||NI(i,j) = g(D_s(i,j))]\right)$$

where *f* and *g* are the Weibull and Cumulative Weibull distribution as described in the method.