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ATPase subdomain IA is a mediator of interdomain allostery in Hsp70 molecular chaperones
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Supplemental Information on Methods
Computational methods
Sequence conservation and coevolution analyses: We evaluated the sequence conservation and co-evolution properties of the full-length DnaK, starting from a multiple sequence alignment (MSA) of 16,179 sequences (and N = 601 columns corresponding to DnaK residues 4-604) based on Pfam data for Hsp70 family members (Pfam id: PF00012, Pfam version 24.0[1]). The MSA was refined in three steps: (i) a reference sequence was identified by screening DnaK wild type sequence [2] against all in the Pfam MSA using the Smith-Waterman algorithm [3]; (ii) the MSA columns that correspond to the reference sequence residues were retained, and (iii) the resulting MSA was then subjected to further refinement, including removal of the redundant sequences using a threshold of 99%, and eliminating the sequences that had more than 20% gaps. This led to an ensemble of 2,608 sequences for evaluating two properties: (a) conservation profile based on Shannon entropies S(i) = -∑xi P(xi) ln P(xi) at each position i, where P(xi) represents the fraction of amino acid of type x at the sequence position i. The summation is performed from xi = 1 to 21, where insertion/gaps are considered as the 21st type (see resulting profile in Fig S4); and (b) coevolution propensities based on 4 different methods: Mutual Information with the APC correction (MIp)[4], the Observed-Minus-Expected-Squared (OMES) covariance algorithm[5], Direct Information (DI)[6,7], and PSICOV[8]. The latter two are particularly useful for removing indirect co-evolutionary effects.
Given the high sensitivity of co-evolution results to the choice of methods, as recently shown[9], we focus mostly on the residue pairs that are confirmed by several methods, in particular DI and PSICOV.


Perturbation Response Scanning: PRS[10], the method that allows the calculation of the influence/sensitivity that each residue has on/to every other residue, was used to identify the most influential and most sensitive residues of DnaK. It is based on linear response theory[10,11]. The protein is modeled as an anisotropic network model (ANM)[12] where the nodes refer to individual residues (N of them), and springs to inter-residue interactions within a cutoff distance (12 Å).  Node positions are identified with the coordinates of Cα-atoms.  The collective dynamics of the network is fully defined by the 3N × 3N Hessian matrix, H, whose elements (1 ≤ i, j ≤ N) are given by the second derivatives of the ANM potential[13]. The 3N-dimensional vector ΔR of node displacements in response to the application of a perturbation (a 3N-dimensional force vector F) obeys Hooke’s law . As summarized in Figure S1, the idea in PRS is to exert a force of a given magnitude on the network, one residue at a time, and observe the response of the overall network.  The force exerted on residue i is expressed as

	
,
	(3)


and the resulting response is 
	

	(4)



ΔR(i) is a 3N-dimensional vector that describes the deformation of all the residues (in N blocks of dimension 3, each) in response to . A metric for the response of residue k is the magnitude  of the kth block of ΔR(i) averaged over multiple F(i), expressed as the ikth element of the N×N PRS matrix, SPRS. The elements of SPRS refer to unit (or uniform) perturbing force. The response to unit deformation at each perturbation site is obtained by dividing each row by its diagonal value:
	

	(5)







Thus, the diagonal elements of  are all 1. The ith row of  is referred to as the influence profile generated upon perturbing residue i; its average (over all receivers, k) is designated as . Similarly, the kth column of  represents the sensitivity profile of residue k, in response to the perturbation of all residues; its average is denoted as .

Gaussian Network Model (GNM) is used for evaluating the mobility profile Mi(k) as a function of residue index i, for the normal mode k, following the protocol described in our previous work[14,15]. The homology model generated[16] for the ATP-bound conformer of DnaK, based on the structures resolved for an Hsp110 family member[17,18], is adopted to build conformer D (Figure 1). The network connectivity matrix Γ is evaluated using a cutoff distance of 7.3Å. The kth eigenvector, u(k), of Γ describes the kth collective mode shape, and the corresponding eigenvalue, λk, scales with the frequency of the mode and serves as a statistical weight. The low frequency modes (e.g. k ≤ 10), also called soft modes, usually dominate the global dynamics of the protein. The ith element, [u(k)]i, of u(k) describes the displacement of residue i along the kth mode; the plot of ([u(k)]i)2 as a function of residue index i defines the mobility profile Mi(k) in mode k. The mobility profile averaged over a set of m modes is
	

	(6)


Minima in the global modes usually refer to key mechanical sites (global hinges) that control the cooperative movements of subdomains, domains or subunits, whereas peaks indicate the most flexible or disordered regions, often involved in substrate recognition[19,20]. 

Experimental methods
Heat shock assay: The heat shock assay was performed as described previously[21]. Briefly, E. coli BB1553 cells (MC4100 ΔdnaK52::CmR sidB1, a gift from B. Bukau)[22] were transformed with either the empty pms119 vector or the pms119-dnaK vector containing the genes for the WT, L177A, or T417A variants. Overnight cultures (1 mL LB with 100 µg/mL ampicillin), which were inoculated from a single colony and incubated overnight at 30 °C, were diluted with LB to an optical density of 0.2 at 600 nm. The normalized growths were serially diluted five times (10-fold dilution factor) into sterile water pre-incubated at 43 °C, and plated onto LB plates containing 100 µg/mL ampicillin and pre-incubated at 43 °C. Plates were incubated at 43 °C for 16 hrs. 
ΔSecB assay: The ΔSecB assay was performed as previously describe[23]. Briefly, E. coli GP502 (ΔsecB, PBAD-dnaKdnaJ)[24] cells were transformed with either the empty pms119 vector or the pms119-dnaK vector containing the genes for the WT, L177A, or T417A variants. Overnight cultures (1 mL LB with 50 µg/mL ampicillin, 50 µg/mL kanamycin, 0.5% w/v arabinose), which were inoculated from a single colony and incubated overnight at 30°C, were diluted with LB to an optical density at 600 nm of 0.4. The dilutions were used to inoculate 1 mL cultures in either 0.5% arabinose, 0.5% glucose, or 0.5% glucose plus 50 μm IPTG. Cultures were incubated at 30°C for 20 hrs at which time the optical density at 600 nm of each culture was measured.
Purification of proteins: WT, L177A and T417A DnaK variants were expressed from the pms119-dnaK vector in BB1553 cells and were purified as previously described[25] using a DEAE anion exchange column and an ATP-agarose affinity column. Pure DnaK was concentrated, buffer exchanged to remove unbound nucleotide, unfolded in 8M urea to remove remaining bound nucleotide, refolded into a 10-fold volumetric excess of 10 mM KPO4 100 mM KCl 1mM EDTA pH 7.6 (PEK) buffer, buffer exchanged eight times into PEK to remove urea, and then buffer exchanged into 10 mM HEPES 100 mM KCl 5 mM MgCl2 pH 7.6 (HMK) buffer in a Centricon-30 concentrator (Amicon) prior to quick freezing with liquid nitrogen and storage at −80 °C. Protein concentrations were determined using an extinction coefficient of ε280=15.8 × 103 M−1cm−1 [26] for all the DnaK variants.
Fluorescence assay: Spectra of the ATP-induced blue shift of W102 fluorescence were collected in 20 mM HEPES 100 mM KCl 5 mM MgCl2 pH 7.6 using an Photon Technology International Alpha Scan Fluorometer (Birmingham, NJ) as described previously[25]for 10 µM DnaK wild type, DnaK L177A, and DnaK T417A in the absence and presence of 1 mM ATP. Excitation wavelength was set to 295 nm and the emission spectra were recorded from 320 to 360 nm. The excitation and emission slits were set to 3nm and 1 nm respectively.
ATPase measurements: ATPase rates for DnaK wild type, DnaK L177A, and DnaK T417A were measured using the enzyme-coupled assay previously described[16,25] using a Biotek Synergy2 microplate reader. One or 10 µM DnaK was used for the peptide stimulated and basal rate measurements (respectively) in 40 mM HEPES 50 mM KCl 11 mM Mg(OAc)2) pH 7.6. Samples were incubated with 0.3 mM ATP at 30°C. The absorption at 340 nm, which corresponds to the oxidation of NADH and is coupled to the rate of ATP hydrolysis, is recorded for 40 min and the slope of the line is used to calculate the rate of ATP hydrolysis. The peptide stimulated rates were measured in the presence of 0.1 mM p5 or NR peptides. The pyruvate kinase and lactate dehydrogenase enzymes, phosophoenolpyruvate (PEP), and NADH were all purchased from Sigma Aldrich (St. Louis, MO)

Supplemental Information on Results
Comparison of the global dynamics obtained for homology model and crystallographic structures resolved for ATP-bound DnaK.
The structure of the ATP-bound, open SBD conformation of the Hsp70 cochaperone has been recently determined by Kityik et al.[27] and by Qi et al.[28]–PDB codes 4B9Q and 4JNE, respectively—by X-ray crystallography. In order to compare the computational results obtained with those structures and the homology model (HM) from earlier work, we compared (i) the GNM global modes produced by them, and (ii) the corresponding PRS maps. These comparisons are presented in Figure S2. Panel A shows the first two GNM modes of the three structures; we see that the mode shapes are almost indistinguishable i.e., the location of maxima and minima—a fundamental indicator of the sub-domains’ motion in GNM—is unchanged. Panel B shows the PRS maps obtained for the three structures; here again, a very similar behavior is observed, with differences due mostly to a scaling factor, while the profiles are closely maintained. Residues T417, D481 and G506 are observed to have minimal mobilities in both modes (see ordinate values close to zero), consistent with their participation in the global hinge center. They were indeed observed in 8 modes, out of 10 slowest (the cumulative effect of which is displayed in Figure 2), to have minimal displacements.
Perturbation of the linker between the SBD and NBD of DnaK
Results from perturbation-response scanning analysis performed for the linker residue V389 are shown in Figure 4. Panel A shows the most influential residues, and panel B displays their location on the structure, with V389 shown in yellow space-filling representation. They appear clustered in three groups: (i) residues on subdomain IA core (red), partially overlapping with the effectors detected in Figure 3, (ii) distal residues on the SBD β-sandwich (V381, I418, F426, A435, I462, I472 and K491, colored purple) again overlapping with the effectors detected in Figure 3, and (iii) a few residues (V205, V210, T215) on subdomain IIA (green), occupying a central location between the interface and ATP-binding site, in addition to some sequential and spatial neighbors to the linker in the NBD (red and green) and the SBD (L390 and A480, purple. The linker, thus, communicates with both domains, and even with distal regions in these domains. The distal residues in region (ii), A435, I462, I472, F426 and K491, may potentially serve as recognition/binding-site for the substrate. 
Sequence conservation and co-evolution analyses: Results
Figure S5 shows the heat maps for all the co-evolution methods used in this work, for the Hsp70 family; the same information is shown in Figure 6A, for the case of PSICOV. Table S1 lists the amino acids that yield the top-ranking inter-domain values (measured by summing over each column/row of the co-evolution matrix), along with their sub-domain location and the methods that support these results. This is represented graphically in the Figure 6B.
Perturbation-Response Scanning Results for L177
Results from perturbation-response scanning analysis performed for the residue L177 are shown in Figure S6. 
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