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In this Text S1 document, we include the following supporting materials:

• Detailed description of parameter estimates for the distance drop-off models used (DD, DDG,
HDG).

• Description of correlations between network diagnostic values.
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Extracting Empirical Connection Probability Drop-off

In the distance drop-off (DD), distance drop-off growth (DDG), and hybrid distance growth (HDG)
models we used a connection density g that depends on the Euclidean distance r between a pair of
nodes. To tune our models, we estimated the empirical relationship between connection density and
distance, hereafter referred to as connection probability drop-off, from the brain data. We observed
that the probability drop-off of connections that lay within a single hemisphere displayed significantly
different behavior than the probability drop-off of connections that lay between hemispheres. We did
not observe systematic differences between the connection probability drop-off in the two hemispheres,
and therefore treat all within-hemispheric connections identically without distinguishing connections
that lay in the left hemisphere from connections that lay in the right hemisphere.

To estimate the connection probability drop-off function g(r) from the empirical data, we used
an adaptive binning algorithm that determines # connections

# possible connections for each bin width ∆r, where ∆r

is chosen to ensure that each bin contains on average 50 connections. To fit the data with sufficient
precision, we first define a truncated power-law function using the form

f(x) = cxα exp (−λx) (1)

where c is a constant, x is the minimum physical distance of connections in the bin, α is the power-law
exponent, and λ is the natural exponent. However, we observed that this single truncated power-law
fit was unable to adequately estimate the preponderance of long distance connections in the data. We
therefore used a piecewise function with two truncated power-law functions of the form

g(x) =

{
f(x) if x > x0
1
2f(x) + 1

2f(x0)
x
x0

−γ if x < x0
(2)

where f(x) is as defined in Equation 1, λ is the power-law exponent for all bins in which x < x0, x0
is the minimum physical distance at which the truncated power-law function begins to fit the data,
and γ is the power-law exponent for all bins in which x > x0. To minimize boundary and resolution
effects, we excluded the bin with the smallest minimum physical distance and the bin with the largest
minimum physical distance.

Algorithmically, we first fit a single truncated power-law function to the data to obtain estimates
for the parameters c, α, and λ (see dashed line in Figure S1). We then used these estimates as initial
parameters in the fit of Equation 2 to the data (see solid line in Figure S1). To obtain boundary values
for the function, we performed a linear interpolation from the bin with the smallest minimum physical
distance to the boundary value g(0) = 1 (see green line in Figure S1).

The results of this model, which contains 5 tunable parameters (c,α,λ,x0,γ), are shown in Figure
S1, where we observe a good agreement between the fit and the data. The estimated parameter values
are provided in Table S1.

Description of Correlations Between Network Diagnostic Values

In Figure S4, we show the Pearson correlation coefficient between all possible pairs of network diagnostic
values, estimated for the set of real and synthetic network models described in the main manuscript.
We observe two separate families of network diagnostics whose values are strongly positively correlated
over network models. The first family is composed of the Rentian scaling exponent p and the fractal
dimension (estimated by box counting) dB. The second family is composted of the hierarchy β, the
number of communities, the modularity index Q, the network diameter D, the path length P , and the
clustering coefficient C. The two families of network diagnostics are negatively correlated with one
another. The assortativity r appears to be the most independent of the network diagnostics, displaying
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values that do not correlate particularly well with either family, a finding that is consistent with prior
observations in physical networks [1].
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