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1 Principal component analysis

To aid in the biological interpretation of the cohorts identified by hierarchical clustering,
the variation and correlation among the gene expression measurements were characterized
using principal component analysis (PCA). PCA is a multivariate statistical technique that
allows for the discovery of variables that form coherent subsets and that vary independently
from other subsets of variables. All of the variables in a particular subset are combined into
components. PCA enables creating a lower-dimensional linear description of the population.
The linear relationship is shown in Equation 1, where v’s are gene expression values for the
p patient and C’s are the scoring coefficients for the ith principal component (PC) and nth

gene expression variable.

PCi,p = C1i · v1p + C2i · v2p + . . . + Cni · vnp (1)

The scoring coefficients for each of the top 10 principal components are listed in Supplemental
Table 1. The scoring coefficient quantify the relative weight of a variable in a principal
component such that a value for the GATA3 scoring coefficient of 0.4214 in PC3 means
that 17.8% (100 × 0.42142) of the variance in GATA3 expression is captured in Principal
Component 3.

2 External validation of the TCGA gene expression

signature

While retrospective analysis of the TCGA study aimed to validate the in vitro results that
identified WISP1 as a paracrine inhibitor of IL-12 bioactivity, we also compared the im-
mune signature observed in the TCGA data against other microarray-based gene expression
studies in invasive breast cancer. We selected three recent studies on invasive breast can-
cer that also included normal tissue samples ([GEO:GSE9014][1], [GEO:GSE22358][2], and
[GEO:GSE8977][3]). However, comparing gene expression values across studies presents
challenges. Subtle differences in sample processing, batch effects during microarray fab-
rication, or design of probe sequences introduce systematic biases in the gene expression
profiles. While many algorithms have been developed to identify and remove such batch ef-
fects [4, 5, 6], the underlying assumption in applying these algorithms to merge different gene
expression values is that the microarray results represent samples of the same distribution in
biological states [7]. The number and diversity of the samples contained within the invasive
breast cancer TCGA data set presents a challenge for identifying a comparable validation
study. To compare the gene expression signatures among these four studies, we performed
principal component analysis on the collective data set (see Figure S3). Significant principal
components - that is the data set contains information to inform a principal component -
were identified as those that had eigenvalues above a non-informed threshold. The threshold
values were estimated by bootstrapping (nboot = 500) - that is PCA was performed on a
synthetic data set (nsample = 250) that was obtained by random sampling with replacement
from the set of all observed gene expression values. The first four principal components were
above the non-informed threshold and captured 58% of the variance in the collective data
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set. As shown in Panels A and B in Figure S3, projections of the invasive breast cancer
and normal breast tissue samples stratified by study along these four principal components
graphically summarized the differences among these studies.

In comparing results obtained from invasive breast cancer versus the normal breast tissue
samples, gene expression values from Gluck et al. exhibited the most similarity to the TCGA
results. The other two studies reported gene expression values derived from stromal cells
isolated using laser capture microdissection in Finak et al. or using antibody-based cell
sorting in Karnoub et al. from primary breast tumors and normal breast tissue. In contrast,
Gluck and coworkers performed gene expression analysis on core biopsy specimens obtained
prior to treatment, similar to the TCGA study design. While the gene expression data
reported by Gluck et al. were used for subsequent analysis, the distribution in patient
population characteristics and low number of normal breast tissue samples (4) preclude a
direct validation of an immune signature correlate of overall survival. Instead, we determined
the similarity in the immune gene signatures between these two studies.

Principal component analysis can be applied to the patient samples to identify patient
samples that express similar unique patterns of gene expression, as described in the main
text. Each unique pattern is associated with a single independent principal component.
Alternatively, PCA can be applied to identify genes that co-vary, as shown in Figure S3
Panels C-E and referred to as principal coordinate analysis. We used bootstrap resampling
(nboot = 500) to establish a threshold below which gene covariation may be due to random
chance - that is a noise threshold, as indicated by the colored ovals in Figure S3 Panels C
and D. Collectively, the distribution in covariation of gene expression relative to the noise
threshold provides an estimate of the information contained within the gene expression study.
As principal coordinates are independent, the projection of gene along the corresponding axis
indicates the degree to which the expression of two genes are related and the distance from
the origin indicates the strength of the covariation within the data set. For instance, IFNG,
FASLG, CD3G, CD2, GZMB, TBX21, CD8A, PRF1, and EOMES are all aligned along the
negative PC1 direction. Biologically, the similar location of these genes is expected as these
genes are all associated with type 1 cell-mediated immunity. In contrast, IL6, LYVE1, and
PPARG are all aligned along the negative PC2 direction. This suggests that the strength
of covariation among these genes is high and that these genes vary independently from the
genes associated with type 1 cell-mediated immunity. As the biplot projections of more genes
in the Gluck study are located within the noise threshold relative to the TCGA study (49
genes in the Gluck study versus 25 genes in the TCGA study are located within 7 standard
deviations from the origin, as indicated by the violet oval), the biplot projections imply
that there is more information about the covariation of gene expression contained within the
TCGA study.

We assessed the differences in gene covariation inferred from each study by comparing the
biplot projections. As shown in Figure S3E, the covariation in gene expression was similar
between the two studies as the line segments mainly extend in the radial direction and
exhibited a greater magnitude in the TCGA study as the corresponding points were located
farther from the origin. The top ten genes with the greatest difference between the Gluck
and TCGA data sets were, in order of difference, WISP1, FASLG, LYVE1, IL6, PPARG,
GATA3, IL12RB2, MYB, RORC, and IDO1. The differences along principal coordinate axis
2 are mainly attributed to the additional normal breast tissue samples included in the TCGA
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study. Collectively, the results suggest that GATA3 expression varies both inversely with
the genes associated with type 1 cell-mediated immunity and directly with the expression of
genes associated with oncogenesis, namely WISP1.
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