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1 Sensitivity analysis for the Prism-based algorithm

By itself, the Prism II algorithm returns a tree of nested drug groupings. To make interaction

predictions, we need to: (i) set the free parameter T ; (ii) cut the tree at a certain level to get

a single partition of the drugs into groups (a process that needs to be unsupervised); and (iii)

given those groups, determine the probability of each type of interaction.

In the simulations reported in the main text, we set T = 10 to get results consistent with

those reported in Ref. [1]. In Fig. (S1), we show that the results do not improve using other

values of T .

2 Drug groups and drug mechanisms

As discussed above, stochastic block models only assume that: (i) there are groups of drugs; (ii)

all drugs within a group interact similarly with others. Importantly, the “correct” drug groups

are unknown a priori, and all that is available to the algorithms is the network of known drug

interactions. Our Bayesian approach deals with this uncertainty by assigning a weight to each

possible partition of the drugs into groups (Methods). Using these weights, we can estimate the
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probability that any two drugs belong to the same group (without having to select any particular

partition of the drugs).

Although block models do not make any assumption in this respect, it is reasonable to

expect that drug groups are correlated with drug function and action mechanism. In fact, as

discussed above, there is evidence from small exhaustive datasets that drugs can be functionally

classified from their pairwise interactions [1, 2, 3]. Here, we investigate whether this functional

classification can be inferred from our stochastic block model approach, and whether one can

do this, not only with small exhaustive datasets, but also with large, non-exhaustive datasets.

In particular, we consider the co-classification probability of pairs of drugs, that is, the

probability that two drugs belong to the same group (see Section 2). First, we study the Cokol

et al. and the Yeh et al. datasets (Fig. 5A and C). In both cases, most drugs are consistently

classified with a few others indicating that well-defined groups do exist. Moreover, these groups

correspond to mechanisms of action. For the Yeh dataset, drugs are consistently grouped with

other drugs with the same mechanism of action, with the only exceptions of CHL (which is

classified with drugs that target the 50S ribosomal subunit, instead of the 30S subunit) and NAL

(which targets DNA gyrase and is not classified with the other two drugs that have the same

mechanism of action). A close inspection of the interaction matrix shown in Fig. 5D reveals

that CHL and NAL actually have an interaction pattern different to that shown by the other drugs

in their putative groups (30S ribosomal subunit and DNA gyrase, respectively) which explain

these discrepancies in group assignment. Specifically, we observe that interaction between

drugs within the 30S ribosomal are either synergistic or additive, while CHL has antagonistic

interactions with drugs in this group. Similarly, interactions between drugs within the DNA

gyrase group are synergistic, while NAL has additive interactions with drugs in this group.

Most drugs in the Cokol dataset were selected precisely because each of them acts on a

different target, so the analysis is not as straightforward in this case. Still, the only drugs that
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share to some extent a mechanism of action (four drugs that act on ergosterol metabolism and

two drugs that act on serine/threonine) are again consistently in the same drug groups.

Once drugs are ordered according to their co-classification probabilities in either the Cokol

and Yeh datasets (Fig. 4B and D), drug interactions show clear patterns. For example in the Yeh

dataset, most interactions between the group {AMK, STR,TOB} and the group {TMP, SLF,NIT,CPR,LOM

are synergistic.

In large and incomplete datasets like DrugBank, an exhaustive co-classification analysis in

not feasible. However, DrugBank contains information about drug function and behavior, and

we use this information to establish if the co-classification probability of two drugs is correlated

with their pharmacological similarity. In particular, we focus on drug targets, drug substructures

and drug category [4], and measure drug functional similarity in each of these respects using

what we call drug overlap (see Section 3).

As we show in Fig. 5E, drug pairs with higher co-classification probability (especially those

with co-classification probability above 0.7) are significantly more likely to share targets, sub-

structures and categories. This indicates that, even for large incomplete datasets, our Bayesian

approach is indeed identifying sensible groups of drugs. Interestingly, this also indicates that

stochastic block models can be used to infer the function of drugs whose mechanisms are not

well understood from the pattern of interaction with other drugs.

3 Estimation of the co-classification probability using stochas-

tic block models

Following arguments analogous to those we use to estimate the probability of an interaction

type, the probability p(σi = σj|N
O) that drugs i and j belong to the same group (or co-
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classification probability) is

p(σi = σj|N
O) =

1

Z

∑

P

δ(σi, σj) exp(−H(P )) , (1)

where δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise, and H(P ) is the same as in Eq. (6) in

the main text. As before, this sum can be estimated using the Metropolis algorithm [5, 6, 7].

4 Drug similarity for drugs in the DrugBank

Each drug in the DrugBank database is labeled with terms that identify, among others, its ther-

apeutic categories (category), its targets (target), and its substructures and functional groups

(substructure). For example, hydrocodone is labeled with categories narcotics, analgesics and

antitussives, among others; targets MOR-1 and DOR-1; and substructures morphians, benzofu-

rans, and naphtalenes, among others.

For a given classification C ∈ {category, target, substructure}, we define the overlap (or

functional similarity) oij between two drugs i and j as the Jaccard index of the corresponding

labels

oCij =
|LC

i ∩ LC
j |

|LC
i ∪ LC

j |
, (2)

where LC
i is the set of labels of drug i in classification C. For example, if drug A has category la-

bels Lcategory

A = {narcotics, analgesics} and drug B has Lcategory

B = {antitussives, analgesics},

then ocategoryAB = 1/3.

References and Notes

[1] Yeh P, Tschumi AI, Kishony R (2006) Functional classification of drugs by properties of

their pairwise interactions. Nat Genet 38: 489–494.

[2] Lehár J, Zimmermann GR, Krueger AS, Molnar RA, Ledell JT, et al. (2007) Chemical

combination effects predict connectivity in biological systems. Mol Syst Biol 3: 80.

4



[3] Yeh P, Kishony R (2007) Networks from drug-drug surfaces. Mol Syst Biol 3: 85.

[4] Knox C, Law V, Jewison T, Liu P, Ly S, et al. (2011) Drugbank 3.0: A comprehensive

resource for ’omics’ research on drugs. Nucleic Acids Res 39: D1035–D1041.

[5] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of

state calculations by fast computing machines. J Chem Phys 21: 1087–1092.

[6] Guimerà R, Sales-Pardo M (2009) Missing and spurious interactions and the reconstruction

of complex networks. Proc Natl Acad Sci U S A 106: 22073–22078.
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