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1 Analysis of the E. coli ¢ PET and SET ChIP-
Seq Data from Aerobic and Anaerobic Condi-
tions by MACS and MOSAiCS

Using MACS (version 1.3.4) and MOSAICS (version 1.4.0), we performed two sample
analysis of the E.coli 0™ PET and SET ChIP-Seq data (Table [S1). For PET
ChIP-Seq data, MACS first finds the best pairs of 5’ and 3’ reads from multiple
alignment results. Then, only the 5" read position is kept for every pair and shifted
to its 3’ direction by 100bp without estimation of the shift parameter. Then, the



standard MACS analysis [I] is applied to the processed data. In MOSAICS, when
bin-level data are constructed, each read pair is connected and this connected read
pair contributes to all the bins it overlaps. The standard MOSAICS analysis [2] is
applied to this bin-level data. Detailed comparison of the MACS and MOSAiCS
peaks reveals that each MACS peak on average has 1.54 to 2.23 MOSAICS peaks
(Table [S2)).

Experiment PET SET
MACS MOSAIiCS MACS MOSAiCS
+0s 270/3202/22 950/450/11.3 | 534/2550/34 1023/450/11.3
—04 132/4327/14 993/450/11.8 | 469/2890/34 1014/450/11.4

Table S1:  Analysis of the PET and SET data with MACS and MOSAIiCS. Reported
numbers a/b/c refer to a: number of peaks; b: median peak width; c¢: percent
genome coverage.

Experiment | Mean (SD)
PET, +0, | 1.82 (0.93)
PET, —0, | 2.23 (1.10)
SET, +0, | 1.54 (0.80)
SET, 0, | 1.65 (0.93)

Table S2: Mean number of MOSAICS peaks overlapping each MACS peak.
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Figure S1: Coverage plots of simulated read data generated based on cydA pro-
moter parameters estimated by dPeak: (A) single binding event; (B, C) three bind-
ing events. dPeak analysis of PET data under aerobic conditions generated three
binding event predictions for the cydA promoter region. Consecutive distances be-
tween these binding events are 110bp and 120bp, respectively. The numbers of DNA
fragments corresponding to each event are 180, 1035, and 180 (total of 1395), re-
spectively. (A) One simulated binding event (depicted with the black vertical line)
with 1395 reads. (B) Three simulated binging events at locations 250, 510, and 750,
and with numbers of reads 180, 1035, and 180. (C) Three simulated binding events
at locations 400, 510, and 630, and with numbers of reads 180, 1035, and 180.



2 The dPeak Model

Consider a peak region with n reads (DNA fragments) and let 1 and m denote the
start and end positions of the peak region, respectively. Let ¢g* denote the number
of binding events within the region and p, be the position of g-th binding event,
g=1,2,---,g". Without loss of generality, assume that 1 < pi; < pig < --- < pg« <
m for identifiability. In both PET and SET data, a fraction of reads will denote
background noise. We assume that background reads are uniformly distributed over
the whole candidate region and denote the background component as g = 0.

Let m, denote the strength of g-th binding event, g = 1,2,--- ,¢*. m indicates
degree of non-specific binding in the candidate region. Let Z; be the group index
of i-th DNA fragment and Z; € {0,1,2,---,¢*}. For notational convenience, we
denote Z;, = 1{Z; = g}, where 1{A} is an indicator function of event A. We
assume that P(Z;, = g) = P(Z;;, =1) =7m,, g =0,1,2,--- ,¢" and ZZ*:O Ty = 1.
Note that the dPeak model allows each DNA fragment to overlap with multiple
binding events. The unobserved Z; variable ensures that each fragment that is not
part of the background overlaps with at least one binding event.

2.1 Generative model for paired-end tag (PET) data

Let S; and L; be the start position and length of i-th DNA fragment, respectively. If
we denote end position of i-th fragment as Fj;, then F; = S;+ L; — 1 by definition. In
the PET data, we directly observe S; and E; (equivalently, S; and L;) for each DNA
fragment. Moreover, distribution of library size, P(L), can be empirically estimated
from the PET data and hence, we treat P(L) as known. We denote the whole
candidate region as C' = {1 — L; +1 < S; < m} and the region corresponding to
g-th binding event as By, = {uy, — L; +1 < S; < py}. If i-th fragment is generated
from g-th binding event (Z; = g), then for given L;, we assume that S; is generated
from the following Uniform-like distribution:

(1 . ’}/) 1{s€By} v 1{seC\By}
P(s[l; g, ) = {T p——] ;

where v denotes the weight assigned to the area outside of the region corresponding
to g-th binding event.

The main purpose to using P(s|l; i14,7) is to make it easier to escape from local
maxima during the early iterations of EM algorithm, by making boundaries of B,
“softer” than Uniform distribution. Asshown in Section [3.1] y estimate is essentially
obtained as the proportion of DNA fragments that belong to one of the binding
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events (i.e., not correspond to background) but do not overlap positions of binding
events (p,). As iterations progress in the EM algorithm, estimates of p, improve
and number of such DNA fragments decreases. As a result, in the later iterations
of EM algorithm, v estimate becomes close to zero and P(s|l; j14,7y) converges to
Uniform distribution.

We summarize the fragment generating process as follows:

1. Draw group index of the DNA fragment, (Ziy, Zi1, Zia, - - , Zig+), from
Multinomial(1, (7o, 71, w2, - -+ , Ty=)).

2. Draw library size, L;, from known distribution P(L).

3. Draw start position of the DNA fragment, S;, conditional on Z; and L;:

(a) If the DNA fragment belongs to g-th binding event (Z;; = 1,1 < g < ¢*),
draw start position of the fragment, S;, from P(S|L; g, 7).

(b) If the DNA fragment is from background (Z;y = 1), draw .S; from Uniform(1—
Li + 1, m)

2.2 Generative model for single-end tag (SET) data

In the SET data, one of two ends of each DNA fragment is randomly selected and
sequenced. Hence, L; for each fragment is not observable; however, positions and
strands of the reads corresponding to the sequenced ends are known (denoted by R;
and D;, respectively). We assume that D; follows Bernoulli distribution with known
parameter pp.

Exploratory analysis indicates that these read distributions can be well approx-
imated with Normal distribution. Specifically, we assume that

(R|Z =g,D = 1;u,,68,0°) ~ N(uy — 6,0°),
and
(R|Z = g,D = 0; uy,0,0%) ~ N(py + 6,0%).

Note that ¢ corresponds to the half of the distance between modes of the bind-
ing event reads in forward and backward strands. We summarize the SET read
generating process as follows:

1. Draw group index of the read, (Zyo, Zi1, Ziz, - - - , Zig+), from
Multinomial(1, (mg, 1, T, - - -, Tyx)).
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2. Draw strand of the read, D;, from Bernoulli(pp).

3. Draw position of the read, R;, conditional on Z; and D;:

(a) If the read belongs to g-th binding event (Z;, = 1,1 < g < ¢*) and it
is in the forward strand (D; = 1), draw position of the read, R;, from
Normal(u, — d,0?).

(b) If the read belongs to g-th binding event (Z;, = 1,1 < ¢g < ¢*) and it
is in the reverse strand (D; = 0), draw position of the read, R;, from
Normal(pg + 6, 02).

(c) If the read is from background (Z;p = 1) and it is in the forward strand
(D; = 1), draw position of the read, R;, from Uniform(1 — 5+ 1,m).

(d) If the read is from background (Z;y = 1) and it is in the reverse strand
(D; = 0), draw position of the read, R;, from Uniform(1,m + 5 — 1).



3 The dPeak Algorithm

We estimate parameters of the models for PET and SET data using the Expectation-
Maximization (EM) algorithm [3]. We do not have explicit solutions in the M-step
for the PET model. Maximization with respect to (1, g2, - - - , f14+) requires search-
ing over g*-dimensional space and O(m? ) operations, which is computationally
prohibitive. In order to boost up computation and stabilize estimation, we em-
ploy the Expectation-Conditional-Maximization (ECM) algorithm [4]. The ECM
algorithm requires only searching over one-dimensional space, [1,m], for the max-
imization with respect to each p, while keeping the other parameters fixed. This
reduces the computation time to O(mg*) operations. Our simulation studies show
that this approach is computationally efficient and provides fast convergence with
accurate and stable estimation (data not shown). We have explicit solutions in the
M-step for the SET model.

Although the EM algorithm has desirable convergence properties, it does not
guarantee convergence to the global maximum when there are multiple maxima. As
a result, the final estimates depend upon the initial values [, [6]. In order to address
this issue, we consider the stochastic EM algorithm [7], which is a special case of
Monte Carlo EM [5, [6], for the first half of iterations. The stochastic EM algorithm
allows a chance of escaping from a current path of convergence to a local maximizer
to other paths [5]. After certain number of iterations, we switch to the ordinary
version of our EM algorithm because the stochastic EM is not desirable when the
process is near to convergence to a suitable local maximizer [3].

In the EM implementation, non-identifiability due to overfitting (fitting too many
components in the model) is problematic and should be avoided [5, [§]. We address
this issue during the EM iterations as follows. If the distance between two binding
events is shorter than the size of the binding site (defined by the length of the known
or predicted consensus motif), we combine these two components and consider it as
one component during the remaining iterations. For the o™ application, we set this
parameter to 20bp since ¢’ binds to —35bp and —10bp from transcription start site.
Moreover, if the strength of a binding event is too weak (7, < 0.01), this component
is also removed from further consideration in the remaining iterations.



3.1 The dPeak algorithm for PET data

Given the generative model for PET data described in Section [2.1, we have the
following complete likelihood:

. 1{1—L;+1<8;<m})?
Hi:lP(Li) {770 { }}

g 1{5:€By} {SieC\B,}Y P
1— g g
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where A is an appropriate normalizing constant.

M-step:
For g=1,2,---, g, we obtain
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This algorithm has the following intuitive interpretation. In the E step, each frag-
ment is allocated to a binding event or background component based on whether or
not the fragment overlaps the actual binding events. When the fragment overlaps
with more than one binding events, it is assigned to each of these events in a frac-
tional manner. The fractions are proportional to relative strengths of the binding
events (m,). In the M step, location of each binding event (1) is essentially up-
dated to the position with the largest number of aligning fragments. In this step,
fragments with shorter library size (L;) have more voting power. This is intuitive
from the experimental procedure point of view because it is easier to identify the
actual position of a binding event with shorter fragments.

3.2 The dPeak algorithm for SET data

Given the generative model for SET data described in Section [2.2] we have the
following complete likelihood:
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where A is an appropriate normalizing constant.

M-step:
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and
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This algorithm has the following intuitive interpretation. In the E step, each
read is allocated to a binding event or background component based on the distance
between the binding events and the read shifted by § towards its 3’ direction. Both
the peak shape (pp, d, and 0?) and the relative strengths of the binding events
(my) are considered in this allocation. In the M step, location of each binding
event (i ) is updated to the averaged position of reads corresponding to the binding
event, after reads are shifted by d towards their 3’ direction. One peak shape is
estimated for each candidate region through ¢ and o?. Optimal shift of reads from
their corresponding binding events, 9, is updated to the averaged distance between
the location of each binding event and the positions of reads corresponding to this
binding event, averaged over binding events in the region. Dispersion of the reads
around their corresponding binding events, o2, is updated to the variance of the
position of reads corresponding to the binding event around location of each binding
event (fi,), after reads are shifted by ¢ to their 3" direction, averaged over binding
events in the region.

3.3 Model selection

In practice, determining the optimal number of binding events, ¢g*, in each candidate
region can be cast as a model selection problem. Model selection based on the
Bayesian Information Criterion (BIC) [9] is a popular choice in mixture modeling
and has shown superior performance in diverse applications [I0, 11I]. Therefore,
for pre-specified g™, we fit models for each of ¢* = 1,2,---,¢™*" binding event
components and choose the model with the BIC value corresponding to the first
local minimum, as the final model.

Choice of ¢™** is an important issue in model selection. ¢"™** should be large
enough so that all binding events in each candidate region can be considered. On
the other hand, setting ¢"* larger than necessary should also be avoided in order
to prevent choosing a model due to ill-conditioning rather than a genuine indication
of a better model [10], TT]. For appropriate choice of ¢ in the current application,
we checked the number of known binding events in each candidate region of ¢™° data
from the RegulonDB database [12] (http://regulondb.ccg.unam.mx) and found

T
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http://regulondb.ccg.unam.mx

that 92% of the peaks have either one or two binding sites within the peak region.
Based on this exploratory analysis, we set ¢"* = 5 as the default value and use it
for all the analysis described in the manuscript. For other applications, appropriate
choice of g™* might depend on the protein type and experimental conditions.
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4 Estimation of the Optimal Shift in the dPeak
Algorithm

Figure displays the density of library size in the 0™ PET ChIP-Seq data. The
corresponding mean and standard deviation are 192.01bp and 26.90bp, respectively.
Figure shows the estimated density of 28 in the ¢ quasi-SET ChIP-Seq data,
where ¢ is the half of the distance between modes of forward and reverse strand
reads belonging to each binding event in the candidate region. Mean and standard
deviation of 20 are 187.36bp and 9.04bp, respectively. Figure depicts the scatter
plot of library size vs. estimated 20 and it indicates that, overall, we have larger
20 estimates for the candidate regions with larger average library sizes. We observe
the same pattern in Figure [S2ID, which displays a similar plot for PET and SET
simulation data.
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Figure S2: (A) Empirical density of the library size in the ¢”® PET ChIP-Seq data.
(B) Density of estimated 2§ in the 0™ quasi-SET ChIP-Seq data. (C) Scatter plot
of library size vs. estimated 26 in the ¢™ PET and quasi-SET ChIP-Seq data. (D)
Scatter plot of library size vs. estimated 20 in PET and SET simulation data. In
(C) and (D), the solid line and shades indicate a robust linear model (RLM) fit and
the corresponding confidence intervals, respectively.

14



5 Diagnostics of the dPeak Model

Figures [S3A, B display the goodness of fit (GOF) plots of the analysis displayed
in Figure 4C for the PET and quasi-SET ChIP-Seq data, respectively. GOF plots
compare the empirical distribution of the read positions with that obtained by sim-
ulating from estimated model parameters. These GOF plots are representative of
the GOF plots for other candidate regions and they indicate that the dPeak models
fit the data well.
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Figure S3: Goodness of fit (GOF) plot of the analysis displayed in Figure 4C, for
the PET (A) and the quasi-SET (B) ChIP-Seq data, respectively.
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6 Comparison of Deconvolution Algorithms
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7 Effects of the Merging Step in PICS for Closely
Spaced Binding Events

PICS [13] generates initial predictions for locations of protein binding events and
then merges initial predictions that have overlapping “binding event neighborhoods”.
A binding event neighborhood is defined as the predicted location of a binding event
extended by three standard errors of the shift parameter estimate to both sides. In
order to evaluate the effect of merging on PICS binding event predictions, we re-
generated results in Figures 2A, B without the merging step for PICS. Figures[S4A,
B show that PICS without merging step performs comparable to dPeak for SET
ChIP-Seq data and the merging step of PICS results in loss of resolution for closely
spaced binding events. Although it might be possible to tune the merging step,
PICS currently does not provide this functionality.
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Figure S4: Sensitivity (A) and positive predictive value (B) comparisons of high res-
olution binding site identification methods in computational experiments designed
for the GPS algorithm. In these evaluations, the merging step is skipped in PICS as
opposed to the evaluations obtained by default parameters of PICS in Figures 2A,
B of the main text.
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8 Peak Shape Estimation of GPS for Closely Spaced
Binding Events

Figure displays the peak shape estimated by the GPS algorithm [14] for syn-
thetic ChIP-Seq data when there is only one binding event in each candidate region.
It depicts density of forward strand reads with respect to the distance from the lo-
cation of binding event (corresponding to zero in the = axis). This same peak shape
is used genome-wide for modeling of reads in both forward and reverse strands.
When there is single binding event, peak shape is correctly estimated as uni-modal.
Figure displays the peak shape when the distance between two binding sites in
each candidate region is set to 450bp. The peak shape is still correctly estimated as
uni-modal and it looks similar to the peak shape estimated for single binding events.
Moreover, in these two cases, the estimated peak shapes are similar to their initial
shapes. Figure shows the estimated peak shape when the distance between two
binding sites in each candidate region is set to 140bp. In this case, both of the two
closely spaced binding events affect peak shape estimation of the GPS algorithm. As
a result, the peak shape is estimated as bi-modal, which in turn leads to predicting
the two binding events as a single event after a few rounds of the GPS iterations.
We note that this problem typically occurs for nonparametric mixture models when

the distances between mixture components are relatively short compared to the
bandwidth.
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Figure S5: Peak shapes estimated by the GPS algorithm for synthetic ChIP-Seq
data: (A) when there is a single binding event; (B, C) when the distance between
joint binding events is set to 450bp (B) and 140bp (C). "Round” denotes the iteration
number in the algorithm and ”Round 0” depicts the initiation.
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9 Evaluations on Synthetic Data from [14] with a
Single Binding Event

# of predicted events | 0 1 > 1 | Average # of events
dPeak 0% |86 % | 14% | 1.16 (0.42)
PICS 1% | 97% | 2% | 1.02 (0.16)
GPS 82% | 6% 12% | 2.72 (1.69)

Table S4:  Prediction accuracy for 20,000 candidate regions with single binding
event. Columns 2-4 report percentages of candidate regions with various numbers
of predicted binding events. Column 5 reports the average number of binding events
across regions with at least one predicted binding event.
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10 Evaluations on Simulation Data with a Single
Binding Event
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Figure S6: Resolution of predictions as a function of number of DNA fragments in
PET and SET simulated data with a single binding event. Resolution is defined as
the absolute distance between the predicted and true binding event positions. Black
solid and red dotted curves indicate averaged resolutions for each number of DNA
fragments in PET and SET data, respectively. Gray and pink shades indicate their
confidence intervals in PET and SET data, respectively.
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11 Ewvaluations on Simulation Data based on Dif-
ferent Data Generation Process

When comparing PET and SET data with simulations (Figures 2C, D and Figure
S6), we first generated PET data and then obtained corresponding SET data by
randomly sampling one of two ends of each resulting DNA fragment. Although
such a data generation process closely mimics the process for generating real SET
ChIP-Seq data, dPeak model for SET ChIP-Seq data capitulates this process by a
Normal approximation of the density of each of forward and reverse strand reads.
In order to assure that our evaluation using random sampling does not give unwar-
ranted advantages to PET data, we generated SET data with read positions directly
originating from Normal distribution and repeated the analysis in Figures 2C, D.
Figures[STA, B, C confirm that the comparisons between PET and SET data remain
the same regardless of how SET data is simulated.
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12 Analytical Calculations for Invasion and Trun-
cation

Consider a region with two closely located binding events. Processing of DNA
fragments generated from this region will lead to classification of the fragments in
one of the following four categories:

Category I: Fragments overlapping a single true binding event.
Category II: Fragments overlapping both binding events.
Category III: Fragments overlapping only the false binding event.
Category IV: Fragments not overlapping any binding events.

Only fragments in category I are truly informative. Fragments in category II are
less informative than fragments in category I. They could potentially contribute
to both binding events, possibly through proportional allocation based on relative
distances from each binding event. However, ambiguity in prediction increases as the
number of fragments in category II increases. Fragments in category III introduce
noise to binding event estimation since they are associated with the wrong binding
event. Fragments in category IV are uninformative. In summary, invasion refers to
increased number of category II fragments in SET data compared to PET data and
truncation refers to increased number of category III and IV fragments in SET data
compared to PET data.

Table [SH| displays the number of fragments in each category from one simulated
dataset where we set the distance between the two binding events as 50bp. Average
library size is 1390p in the PET data. The estimated library size used with SET
analysis are reported in parentheses in the first column. In the corresponding SET
data, even when extension is relatively accurate (extension = 150bp), numbers of
fragments in categories II to IV increase significantly compared to PET data. When
the library size is under-estimated as 100bp, we have significantly more fragments in
categories IIT and IV (truncation; Figure[S8B). In contrast, when it is over-estimated
as 200bp, we have significantly more fragments in category II (invasion; Figure )

We used the dPeak generative model and calculated the probability of invasion
and truncation (Figure as follows. As in the previous sections, let S and L
be start position of DNA fragment and its length, respectively, in PET ChIP-Seq
data. Let [* denote the fixed library size used in the analysis of SET ChIP-Seq data.
Z indicates group index of the DNA fragment where Z = 1 and Z = 2 indicates
correspondence to the first and second binding events, respectively. Let p; and ps be
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Category |1 II 11 v
Informative Less informative
Overlapping Overlapping Overlapping | Not
only true both only false overlapping any
binding events | binding events binding event | binding event
PET 225 375 0 0
SET (150) | 174 391 19 16
SET (100) | 232 215 89 64
SET (200) | 133 461 3 3
Table S5: Classification of 600 DNA fragments from one simulated dataset with

two binding events separated by 50bp.

positions of first and second binding events, respectively, and assume that p; < ps.

Probability of invasion (Figure [S§A) is obtained as:

P(Invasion) =

:ZP = )P

:ZP

Dmin {1, pe —

:ulyl*

— 11— (s

Er[P(S<p <S+L<pu<S+I0"7Z=1,L)]
(S<muy <SH+l<pu<S+UZ=1,L=1)

— )}/l

As illustrated in Figure [S§B, for truncation, we consider the case that the original
DNA fragment covers both binding events in PET data. The corresponding prob-
ability can be calculated by defining the truncation event with the use of the Z

variable:

P(Truncation) =

:Zp
:ZP

[ (S+l*<M2,S<M1<M2<S+L|Z:2 L)]

PS+1I"<ps,S<p <pe<S+IUZ=2L=1)

Dmin {l —1",1 — (ug —
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Figure S8: Concepts of invasion (A) and truncation (B). In each diagram, the first
and second lines indicate PET and SET ChIP-Seq data, respectively. Red horizontal
line depicts estimated library size in the SET data. Red circles denote the protein
binding event that the read corresponds to.
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13 Evaluations on ¢ PET and SET ChIP-Seq
Data Using RegulonDB and Experimentally
Validated Sites as a Gold Standard

We compared performances of deconvolution algorithms dPeak, PICS, GPS, and
GEM using ¢ PET and quasi-SET ChIP-Seq data by considering RegulonDB
annotated binding sites as a gold standard. We assessed sensitivity of each algorithm
using the set of candidate regions with at least two annotated binding sites and
evaluated resolution using the candidate regions with exactly one annotated binding
site.

Table[S6)and Figures[S9A, B show that dPeak using PET ChIP-Seq data provides
significantly higher sensitivity and resolution than SET ChIP-Seq data regardless of
the deconvolution algorithm used. GPS performs the worst and its poor performance
had recently motivated the development of GEM [I5]. Overall, dPeak and GEM
perform similarly and both are slightly better than PICS with SET data in terms
of sensitivity.

We also compared deconvolution algorithms using our small set of experimentally
validated binding sites as a gold standard. This comparison (Figure ) further
confirmed our conclusions from the RegulonDB-based comparisons. The differences
in resolution between dPeak using PET ChIP-Seq data and each of the deconvolution
algorithms using SET ChIP-Seq data are statistically significant with p-values <
0.01.

dPeak (PET) | dPeak (SET) | PICS | GPS | GEM
10, 0.66 0.47 0.39 | 0.20 | 0.43
~0, 0.64 0.43 0.41 | 0.10 | 0.47

Table S6: Sensitivity comparisons across regions with at least two annotated bind-
ing events for ¢ PET and quasi-SET ChIP-Seq data in aerobic and anaerobic
conditions. RegulonDB annotated binding sites are used as a gold standard. A gold
standard binding event is marked as identified if the distance between the prediction
and the RegulonDB reported location is less than 30bp (overall conclusions remained
the same with other distances).
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14 Experimental Validation of dPeak Predictions
from ¢ PET ChIP-Seq Data

Name DNA sequence

yejGP1 | GGACGATTGAGAGTTGTAATG
yejGP2 | CCTCTATGGCTCTGATTTAAG
sprP1 GTTTGTTTTCCCTTGAAGTCC
sprP2 CCAAATCTGTGGACTAACGCA
dcuAP1 | GCATATTAGCCTTCCTTGTT
dcuAP2 | CCCTGTACGATTACTGTTCG
serCP1 | TTGAAGATTTGAGCCATTTCC
aroLP1 | AAAGAGGTTGTGTCATCGTG
aroLP2 | GCGATCATACCATCAAACTAG
hybOP1 | CAATAATGCGATCGATGCGCC
ybgIlP1 | CGTTAATCAGTTGTTCCAGT
ptsGP1 | TCCTGAGTATGGGTGCTTT

Table S7: Primers.
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15 Differential Occupancy of Closely Located Bind-
ing Sites between Aerobic and Anaerobic Con-
ditions in E. coli ¢ PET ChIP-Seq Data

Figure 5C elucidates the merit of high resolution analysis in the studies of differ-
ential occupancy. However, if there is no occupancy in one condition at all, such
differential binding could still be identified in the peak-level analysis and high res-
olution analysis might be considered less interesting. High resolution analysis is
perhaps most interesting when the same region is identified as a peak in both condi-
tions but different numbers of binding events are identified between conditions. We
further decomposed the predicted binding events based on the number of predicted
events in the region in each condition. Table [58 shows that although many regions
are occupied in both conditions, the number of predicted binding events can dif-
fer significantly. Figure depicts an example of differential occupancy of closely
located binding sites in the promoter region of gltA gene. Specifically, two bind-
ing sites are predicted by dPeak in anaerobic condition while only one of them are
identified in aerobic condition. In contrast, MOSAICS identified the region covering
both binding sites as a single peak in both aerobic and anaerobic conditions.

Anaerobic condition
Aerobic condition 0 1 2 >3
0[N/A 60 19 1
1 63 198 74 7
2 16 48 235 34
>3 1 3 24 30

Table S8: Cross tabulation of number of binding events for each peak of ¢ PET
ChIP-Seq data between aerobic and anaerobic conditions.
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16 Evaluations of the Algorithms for PET ChIP-
Seq Data

To the best of our knowledge, SIPeS is currently the only algorithm specifically de-
signed for supporting PET ChIP-Seq data and has been shown to attain better res-
olution than a version of MACS that can analyze PET data [17]. We used C imple-
mentation version 2.0 of SIPeS from http://gmdd.shgmo.org/Computational-Biology/
ChIP-Seq/download/SIPeS. In our computational experiments and data analysis,
we both used its default parameters and also considered alternative values for the
parameters that define the range of the dynamic baseline to construct the signal
map. SIPeS constructs signal map by piling up the aligned paired-end reads. [17]
observed that SIPeS was able to attain high resolution for binding event identifi-
cation when used with a wide range of dynamic baseline. Therefore, we investi-
gated the performance of SIPeS when the DNA fragment pileups corresponding to
two binding events are above (Figures , B) and within the range of dynamic
baseline (Figure ) in our computational experiments as described in the main
manuscript. We observed that tuning the range of the dynamic baseline is far from
trivial. Furthermore, a global value across the whole genome is not likely to perform
well. There are also no guidelines or objective ways of configuring such a range.

Figure shows that SIPeS has low sensitivity when two binding events are
closely spaced. In this case, the value of the DNA fragment pileups between these
two binding events did not belong to the range of dynamic baseline and, as a result,
SIPeS identified the whole region as a single peak. Hence, although two binding
events reside within this peak, SIPeS reported only a single summit. In contrast,
Figure shows that, on average, SIPeS identified more than 10 binding events
when the distance between two binding events is larger than average library size.
For these settings, there were some regions with low DNA fragment pileup within
the range of the dynamic baseline between the two binding events. As a result,
SIPeS essentially identified all local maxima as binding events and this resulted in
low positive predictive value of SIPeS.

When the values of the DNA fragment pileups corresponding to the binding
events are within the range of dynamic baseline, SIPeS is able to identify the two
binding events (Figure [S15C). However, SIPeS also identified all other local maxima
as binding events and exhibited significant loss of positive predictive value. We also
note that the SIPeS predictions corresponding to true binding events could not be
distinguished from others, using the other summary statistics such as p-value or
maximum fragment pileup value provided by SIPeS.

Finally, we evaluated SIPeS predictions for the 8 experimentally validated re-
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gions of 0™ PET ChIP-Seq data. As discussed in the manuscript, these regions
harbor a total of 14 experimentally validated ¢™ binding sites. Figure illus-
trates that dPeak attains significantly higher resolution compared to SIPeS in these
regions (p-value of the paired t-test between dPeak and SIPeS < 0.01). Further-
more, although these regions harbor at most two validated ¢™ binding sites, SIPeS
predicted 2 to 18 binding sites. In summary, SIPeS does not sufficiently leverage
PET ChIP-Seq data to provide high resolution for studying protein-DNA interac-
tions. Furthermore, it is also highly sensitive to background noise in ChIP-Seq data
and requires parameter tuning. We also note that the analysis of high depth PET
ChIP-Seq data, such as that of 0™, using SIPeS requires considering wider ranges
of dynamic baseline. This, in turn, increases the computation time significantly.
Overall, it seems computationally prohibitive to implement a genome-wide analysis
of such data using SIPeS, i.e., analysis of 0’ required more than 72 hours on a
standard 64 bit machine with Intel Xeon 3.0GHz processor.
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Figure S15: Evaluation of the SIPeS algorithm on PET ChIP-Seq data. Sensitivity
and positive predictive value comparisons of SIPeS and dPeak for the computational
experiments of PET ChIP-Seq data when DNA fragment pileup corresponding to
two binding events is not (A, B) and is (C) within the range of dynamic baseline of
SIPeS. (D) Resolutions of predictions for 6™ PET and quasi-SET ChIP-Seq data
using experimentally validated binding sites as a gold standard.
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17 Application of dPeak to a GATA1 SET ChIP-
Seq Peak

In this section, we discuss an application of dPeak in eukaryotic genomes using the
GATA1 SET ChIP-Seq data from [I8]. This dataset has 106,381,508 reads and
measures GATA1 occupancy in G1E-ER4 cells after estradiol treatment. GATA1
is known to bind to short consensus sequence WGATAR (W = A or T, R = A or
G) [19]. A typical GATA1 ChIP-Seq peak on average harbors 2.32 WGATAR sites
in this dataset. Being able to identify which of these are occupied is important
for refining consensus sequences and deriving functional roles of about 7 million
WGATAR sites in the mouse genome. Figure displays coverage plot of the
GATA switch site of the GATA2 locus (-2.8 kb). This region contains four WGATAR
motifs separated by 20bp to 109bp. dPeak predicts that GATAT1 factor binds to the
second consensus site.
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Figure S16: Coverage plot and dPeak prediction for the GATA switch site of the
GATA2 locus. Blue curve and blue dotted vertical line indicate the GATA1 SET
ChIP-Seq data from [I8] and the prediction using the dPeak algorithm, respec-
tively. Black solid vertical lines indicate positions of the GATA1 consensus se-

quences, [AT]|GATA[AG].
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18 Evaluations on Human SET ChIP-Seq Data

We evaluated the performance of dPeak on human SET ChIP-Seq data that GPS and
PICS were optimized for. We considered GABPA SET ChIP-Seq data in GM12878
cell line from the ENCODE database. We identified 2,469 candidate regions using
MOSAICS (FDR = 1e-20) and these candidate regions were explicitly provided to
the GPS and GEM algorithms as candidate regions. Candidate regions for PICS
were identified using the function segmentReads () in the PICS R package (default
parameters). Default tuning parameters were used during model fitting for all the
methods.

In the case of a sequence-specific factor with well-conserved motif such as the
GABPA factor, we observed that dPeak prediction can be further improved in a
straightforward way by incorporating sequence information. Specifically, after iden-
tifying initial dPeak predictions, we identified a de novo motif using MEME [20]
and detected positions of these consensus sequences using FIMO [21]. Then, we up-
dated the dPeak predictions if the GABPA consensus sequences were found within
the 50bp window around initial dPeak predictions. We call these dPeak predictions
that integrate sequence information as ‘dPeak?2’.

Figure shows resolution comparison on the GABPA-GM12878 dataset. The
resolution is defined as the absolute distance to the nearest predicted consensus site,
where the prediction utilizes the independent position weight matrix from JASPAR
[22]. The results indicate that dPeak performs comparable to GPS (median resolu-
tion = 18bp and 19bp for dPeak and GPS, respectively) and they both significantly
outperform PICS (median resolution = 30bp). Moreover, dPeak2 performs compa-
rable to GEM and identifies the GABPA binding sites with high accuracy.
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19 Comparison of dPeak using SET ChIP-Seq with
ChIP-exo

ChIP-exo [23] is a modified ChIP-Seq protocol that aims to experimentally identify
binding sites at high resolution by employing exonuclease. ChIP-exo protocol is
more laborious compared to ChIP-Seq and there are not many available ChIP-exo
datasets yet. Despite these limitations, we investigated how ChIP-Seq analysis with
dPeak compared to ChIP-exo analysis for identifying binding sites in high resolution.
We evaluated ChIP-exo data measuring binding of CTCF factor in human HeLa-S3
cell line (downloaded from SRA with accession number SRA044886). Although [23]
did not generate ChIP-Seq data in parallel to this ChIP-exo data, we were able
to utilize SET ChIP-Seq data for CTCF factor in human HeLa-S3 cell line from
the ENCODE project (Crawford Lab, Duke University). For both ChIP-exo and
ChIP-Seq data, all the available replicates were combined.

In order to evaluate the performance of ChIP-exo data, we utilized predictions
provided in [23]. These predictions were generated using a combination of an au-
tomated tool for analyzing ChIP-exo data in a strand-specific manner and a set of
manually curated rules by inspection of the data. For comparison, we also generated
predictions of dPeak, GPS, and GEM for CTCF ChIP-exo and SET ChIP-Seq data.
We did not consider PICS because it is not tailored for the ChIP-exo data analysis.
We also generated dPeak2 predictions by utilizing sequence information using the
same procedure as described in Section [I8] We utilizes the CTCF position weight
matrix from JASPAR [22], as a gold standard.

Figure shows proportion of CTCF consensus sequences identified by each
method at given spatial resolution. The results indicate that dPeak and dPeak?2
using ChIP-exo data shows spatial resolution comparable to or better than predic-
tions of [23], GPS, and GEM, which implies that dPeak can readily be utilized in
ChIP-exo data analysis. It also shows that predictions using CTCF ChIP-Seq data
provide significantly higher spatial resolution compared to predictions using CTCF
ChIP-exo data.
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