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1 Outline

Regarding the statistical model introduced in the main paper, this document provides additional
details on the probability of observed patterns of detection and confirmation over four studies. It
also describes our computational approach to likelihood-based inference via numerical optimization
and Markov chain Monte Carlo (MCMC).

The assessment of agreements and disagreements among studies has long been a focus of model-
based statistical analysis, from seminal work by R.A. Fisher and colleagues on species abundance
estimation in ecology (Fisher et al. 1943) to more recent and relevant precursors to our own
calculations, including Raftery (1988), Craig et al. (1997), and Basu and Ebrahimi (2001). The
rationale for this general approach is that the specific findings of any study are affected by numerous
factors, some of which are systematic and shared in some predictable way among studies, and some
of which are idiosyncratic. To capture the systematic effects we treat them as parameters in a
stochastic process presumed to have generated the observed data, and we infer the parameter
values by calculating the probability of observed data (the likelihood). The design and structure
of RNAi experiments forces us to go beyond previously described probability models and propose
a specification for multi-study, two-stage (detection/confirmation), genome-wide RNAi data.

2 Model specification and pattern probabilities

In their essential form, data consist of binary indicators

Dg,s = 1 [gene g is detected by the primary screen of study s ] ,

Cg,s = 1 [gene g is confirmed by the secondary screen of study s ]

for genes g = 1, 2, ..., G and studies s = 1, 2, 3, 4. We consider the genome to be the union of
genes that are covered by the siRNA libraries used in the four studies, and assume the genome
size G = 22000. We observe detection indicators {Dg,s} for all g and s. We observe confirmation
indicators {Cg,s} only for cases g and s where Dg,s = 1. That is, the primary screen of each study
is viewed as scanning the full genome; the secondary screen aims to confirm those primary findings.
It is technically convenient to allow Cg,s to be defined even when Dg,s = 0, though by the study
designs such Cg,s is unobserved and does not enter our computations. The four studies differ in
details of their secondary screens. To simplify our analysis we model studies similarly, in terms of
results Cg,s,k from further assays k = 1, 2, 3, 4, wherein the kth assay entails the application of the
kth siRNA from the pool of (typically) 4 siRNAs that targets gene g. Then we have confirmation
Cg,s = 1 if (and only if) at least two of these assays indicates a phenotype; i.e. if

∑
k Cg,s,k ≥ 2.

Several studies (e.g., U2OS) have this precise structure, although we have not used any assay-level
data Cg,k,s in subsequent computations (these data are not complete; we use the summary calls
Cg,s). Not all studies have this structure (e.g., DL-1); the key consequence of modeling this way is
that the secondary validation is more stringent for filtering non-involved genes.
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There are three observable states of (Dg,s, Cg,s) for a given gene g in a given study s:

{(0, 0), (1, 0), (1, 1)}.

The proposed model entails gene-specific latent random effects, and thus marginally the (Dg,s, Cg,s)
is not independent from (Dg,s′ , Cg,s′) for any two studies s and s′. Our model does entail indepen-
dence among genes, and therefore the likelihood (probability of observed data) can be expressed
as the probability of the multinomial count vector {Nπ} over the 34 = 81 possible multi-study
observation states, or patterns, {π} (see Table 3), where

Nπ =

G∑
g=1

1 [{(Dg,s, Cg,s)} has pattern π ] .

(On the independence among genes assumption, this is conditional on involvement (see below) and
expresses the fact that separate cells and assays are used for different genes within a given study.)
In these terms, the log-likelihood is

L = log Prob(data) =
∑
π

Nπ logPπ, (1)

where pattern probabilities {Pπ} are defined by a smaller number of parameters through a stochastic
model of genome-wide RNAi. The model is hierarchical, and is specified using latent random effects:

Ig = 1[g is involved in influenza virus replication]

Ag,s = 1[g is accessible in study s ]

Tg = number of involved off-targets for gene g, relative to a pool of siRNAs

that might be used to target gene g

Tg,s = size of the accessible subset of Tg in study s

Vg,s,k = size of the accessible subset of Tg,s in assay k of secondary screen in study s .

One could alternatively classify the {Ig} as a high-dimensional parameter, but in doing Bayesian
inference we would immediately cover it with a prior, so we treat it as a vector of latent factors in
the notation.

A number system-level parameters are used to specify the probability structure of latent vari-
ables and observed data; they describe the basic system in terms of rates governing the latent
variables as well as quantities affecting false-positive and false-negative detections and confirma-
tions:

θ = proportion of genome involved in influenza virus replication

α = false positive measurement error

βs = false negative measurement error of study s

γs = rate at which genes are accessible in study s

ω = expression threshold in knockdown model

ν = average number of off-target genes per siRNA .

The log-likelihood L in (1) is a function of these 12 parameters, which we collect in a vector
ψ = (θ, α, β, γ, ω, ν), where β = {βs}4s=1, γ = {γs}4s=1. Thus L = L(ψ). The stochastic model itself
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is:

Ig ∼ Bernoulli(θ) (2)

Ag,s ∼ Bernoulli(γs)

Tg ∼ Poisson(Kθν)

Tg,s |[Tg = t] ∼ Binomial

(
t,

4γs
K

)
Vg,s,k |[Tg,s = u] ∼ Binomial

(
u,

1

4

)
Dg,s |[Ig = i, Ag,s = a, Tg,s = t] ∼ Bernoulli

[
1− βs + (α+ βs − 1) [G4,1(− logω)]ai (1− ω)t

]
Cg,s,k |[Ig = i, Ag,s = a, Vg,s,k = v] ∼ Bernoulli

[
1− βs + (α+ βs − 1)(1− ω)ai+v

]
.

G4,1(.) is the c.d.f. of a gamma distribution with shape parameter 4 and scale parameter 1. Another
system-level parameter we fix a priori and do not estimate from the data is

K = number of siRNAs that target a gene, in total over studies.

We’re modeling a typical gene targeted by 4 siRNA’s in the detection screen of each study. If all
studies happen to use the same siRNA library, then there would be only K = 4 siRNA’s used
alltogether for this gene across the studies. On the other hand, increasing K corresponds to a
wider diversity of siRNA’s targeting a given gene and ultimately to different siRNA’s per study.
K controls the correlation in numbers of off-targets between studies, i.e. cor(Tg,s,Tg,s′) → 0, as
K → ∞. In our case, we fix K = 12 since the 4 studies of interest use 3 different libraries.
Diagnostic computations showed little sensitivity to this setting.

A full specification of conditional independence assumptions is in Figure 2. The various mod-
eling elements have been introduced to address known features of genome-wide siRNA screening.
For example, every additional siRNA applied to an involved gene increases the chance that the
harboring cells exhibit a phenotype. The higher the rate of involved genes, the higher the rate of
an off-target phenotype. There is heterogeneity among genes, owing to whether or not they are
involved, and owing to varying amounts of off-targets associated with their targeting pools of siR-
NAs, but there is among-gene independence in terms of siRNA detection/confirmation. The studies
are heterogeneous, because they may entail different sets of accessible genes and these accessibility
rates (γs) are study specific, and also there may be different false negative measurement errors (βs)
involved in each study due to individual experimental environment. (We had considered a single
parameter γ and β, but saw substantial improvements when we allow the extra flexibility.) From
study to study the data are not independent, owing to gene specific factors Ig and Tg, which get
marginalized in our likelihood computation.

To further explain the model structure, the curious G4,1 term and related terms enter because
of our knockdown model. We suppose that each targeting or off-targeting event is associated with
a uniformly distributed variable on (0, 1). For on-targets, we suppose that four hits reduce the
expression of the target such that the amount left over equals the product of the four uniforms,
and if this amount is less than ω, we would see an effect, in the absence of measurement error.
This happens with probability G4,1(− logω). We further assume that off-target events hit separate
genes, and act in a parallel fashion, so that a phenotype effect occurs if any of the mRNA levels is
reduced below ω; this happens with probability 1−(1−ω)t when there are t off-targeting events. By
modeling this way we allow that multiple on-target hits are more effective than the same number
of dispersed off-target hits (Figure S1).
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The 81 multi-study pattern probabilities {Pπ} (and thus the log-likelihood L(ψ)) in (1) are
obtained as a function of the 12 system-level parameters ψ by summing out the discrete-valued
latent variables. Considering among-gene independence, we focus on a single gene, and sum out
values of the involvement indicator Ig, the four accessibility indicators Ag,s, and the off-target
counts Tg, the four Tg,s, and the {Vg,s,k}4k=1 for each study. (We model Tg,s’s as subsets of a
common Tg to reflect the possibility that different studies share siRNAs.) All but the target counts
are binary sums; more complicated is the elimination of the off-target counts. To investigate this
calculation, write the vector a = {as} and the conditional probability of data pattern π as,

Pπ(i, a) = P (π| Ig = i, {Ag,s}4s=1 = a
)
.

Each multi-study pattern probability Pπ is computed as a summation of these Pπ(i, a) over the 25

values of its arguments. The trickier computation is the evaluation of each Pπ(i, a), which requires
marginalization of the off-target counts.

To marginalize the off-target counts, first recognize that each pattern π is an intersection of
four study-specific patterns π =

⋂
s πs. For example π = 3111 indicates that the gene is confirmed

and detected in the first study and neither detected nor confirmed in any of the remaining three
studies. The modeling assumptions give

Pπ(i, a) =

∞∑
t=0

P (Tg = t) P
(
π|Ig = i, {Ag,s}4s=1 = a, Tg = t

)
=

∞∑
t=0

Pois(t)

4∏
s=1

P (πs|Ig = i, Ag,s = as, Tg = t)

=

∞∑
t=0

Pois(t)

4∏
s=1

t∑
u=0

Bs(t, u) P (πs|Ig = i, Ag,s = as, Tg,s = u)

=
∞∑
t=0

Pois(t)
4∏
s=1

t∑
u=0

Bs(t, u) Qs,i,as,u (3)

where Pois(t) = P (Tg = t) = exp{−Kθν}(Kθν)t/t! by the Poisson assumption, Bs(t, u) is the
Binomial mass function at u with t trials and success probability 4γs

K , and where each contribution
Qs,i,as,u = P (πs|Ig = i, Ag,s = as, Tg,s = u) is computed from the stochastic model (2). Coming
back to pattern π = 3111 for example, the four sub-pattern probabilities are:

Q1,i,a1,u = P (Dg,1 = 1|Ig = i, Ag,1 = a1, Tg,1 = u) P (Cg,1 = 1|Ig = i, Ag,1 = a1, Tg,1 = u)

Q2,i,a2,u = P (Dg,2 = 0|Ig = i, Ag,2 = a2, Tg,2 = u) P (Cg,2 = 0|Ig = i, Ag,2 = a2, Tg,2 = u)

Q3,i,a3,u = P (Dg,3 = 0|Ig = i, Ag,3 = a3, Tg,3 = u) P (Cg,3 = 0|Ig = i, Ag,3 = a3, Tg,3 = u)

Q4,i,a4,u = P (Dg,4 = 0|Ig = i, Ag,4 = a4, Tg,4 = u) P (Cg,4 = 0|Ig = i, Ag,4 = a4, Tg,4 = u) .

where

P (Cg,s = 1|Ig = i, Ag,s = as, Tg,s = u) = P

(
4∑

k=1

Cg,s,k ≥ 2

∣∣∣∣∣ Ig = i, Ag,s = as, Tg,s = u

)

We make the simplifying approximation that Cg,s,k are conditionally independent (and thus Cg,s is
governed by Binomial masses), though in fact they have some negative dependence attributable to
the divvying up the off-target count Tg,s among the four separate assays.
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A key to simplifying the computation further is to recognize that with respect to the count
variable u, each P (Dg,s|Ig, Ag,s, Tg,s) is a polynomial of ξ1 = 1− ω, and each P (Cg,s|Ig, Ag,s, Tg,s)
is a polynomial of ξ2 = 1− ω

4 . Thus, each Qs,i,as,u is a bivariate polynomial in ξ1 and ξ2, of degree
at most u and 4u respectively. By careful book-keeping, we identify coefficients {bs,p,q} (depending
on system parameters ψ and the pattern π) such that

Qs,i,as,u =

1∑
p=0

4∑
q=0

bs,p,q (ξp1 ξ
q
2)
u

Thus the inner factor of (3)

t∑
u=0

Bs(t, u) Qs,i,as,u =
t∑

u=0

Bs(t, u)
8∑
j=0

bs,j ξ
uj

=

1∑
p=0

4∑
q=0

bs,p,q

t∑
u=0

(ξp1 ξ
q
2)
u
Bs(t, u)

=
1∑
p=0

4∑
q=0

bs,p,q

(
1− 4γs

K
+

4γs
K
ξp1 ξ

q
2

)t

=
1∑
p=0

4∑
q=0

bs,p,qes,p,q
t,

with the second-last line obtained from the moment generating function of a Binomial variable,
and with es,p,q = 1− 4γs

K + 4γs
K ξp1 ξ

q
2. Incorporating this back into (3), we obtain for the conditional

probability of a pattern given accessibility and involvement:

Pπ(i, a) =
∞∑
t=0

Pois(t)
4∏
s=1

1∑
p=0

4∑
q=0

bs,p,qes,p,q
t

=
∞∑
t=0

Pois(t)
1∑

p1=0

1∑
p2=0

1∑
p3=0

1∑
p4=0

4∑
q1=0

4∑
q2=0

4∑
q3=0

4∑
q4=0

(
4∏
s=1

bs,ps,qs

)(
4∏
s=1

es,ps,qs

)t

=

1∑
p1=0

1∑
p2=0

1∑
p3=0

1∑
p4=0

4∑
q1=0

4∑
q2=0

4∑
q3=0

4∑
q4=0

(
4∏
s=1

bs,ps,qs

) ∞∑
t=0

Pois(t)

(
4∏
s=1

es,ps,qs

)t

=
1∑

p1=0

1∑
p2=0

1∑
p3=0

1∑
p4=0

4∑
q1=0

4∑
q2=0

4∑
q3=0

4∑
q4=0

(
4∏
s=1

bs,ps,qs

)
exp

{
Kθν

[(
4∏
s=1

es,ps,qs

)
− 1

]}
.

s where the last line comes from the moment generating function of a Poisson distribution. Finally,
the pattern probability Pπ is obtained by summing over the 25 states of i and a, as indicated
previously. This provides a route to computing all 81 multi-study pattern probabilities required for
likelihood evaluation.

3 Inference computations

3.1 Likelihood evaluation and maximization

Based on formulas for pattern probabilities {Pπ} the log-likelihood (1) was available numerically.
We used some convenient facilities in the R system, including the polynom package, to organize the
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rather complex sums (R Core Development Team, 2011, version 2.13.1; Venables et al., 2009). To
maximize the log-likelihood, we used the R function nlminb. We wrote a project specific R package,
metaflu, to contain the data and main likelihood-based computations.

3.2 Posterior computation

The Metropolis-Hastings method was used to construct a Markov chain to simulate the joint pos-
terior density

P (ψ|data) ∝ expL(ψ).

Thus, the posterior is proportional to the likelihood times a flat prior. Importantly, we did not run
MCMC over the high-dimensional space including latent variables, because we were able to solve
these analytically. Our sampler produced a sequence ψ1, ψ2, . . . , ψB of parameter vectors according
to standard Metropolis-Hastings updating rules (e.g., Robert and Cassella, 1999, page 231.)

We systematically scanned the 12 parameter values, and used a base set of local move types
that modified one parameter at a time. We call this sampler local. The base proposal distribution
for ν was exponential, with mean at the fixed value 1/50. All other parameters resided in (0, 1),
and for each we used a uniform window proposal; window length 0.025 gave acceptance rates in the
range 28% to 70%. Concerned about possible poor mixing caused by posterior correlation between
θ and ν, we included a joint update involving (θ, ν)→ (θc, ν/c) for a Gamma-distributed multiplier
c (shape, rate both 50, so mean 1).

Extensive numerical experiments indicated that from random starting points local would con-
verge to one of two distinct modes. One of these modes was degenerate from the biological and
technical perspective, corresponding to implausible parameter settings: involvement θ and error
rates α and βs all very close to unity. To address the lack of mixing between the degenerate and
main modes, we modified the MCMC by adding to the local move types a global move type using
an ‘indpendence’ sampler, wherein the proposed state does not depend on the current state. Specif-
ically the proposal was an equal mixture of two 12-dimensional Gaussian distributions, with means
and covariance matrices designed to match the structure of the evident posterior modes. Repeated
runs of this enhanced sampler (called global) from random starts (uniform for rate parameters,
standard exponential for ν) showed very good mixing properties (Results in Supplementary Text
S2).

To address the implausibility of the degenerate posterior mode (in which θ and the error rates
α and βs were all near unity), we post-processed the MCMC output through a prior constraint:
namely, we retained sampled parameters only if all θ, α, and all βs were less than 0.8. Thus,
posterior inference was based upon a flat prior, but subject to a plausibility constraint. We used
marginal posterior means to estimate the parameters and the equi-tail percentile method to obtain
confidence (equivalently credible) intervals.

3.3 Posterior distribution of N

The total number of influenza-involved genes is N =
∑
Ig. By our approach we have marginalized

the involvement indicators, and so the posterior of N needs to be obtained through further post-
processing of the MCMC output. We estimate N by G · θ̂ where θ̂ is the mean of posterior
distribution of θ from MCMC. The posterior distribution of N is approximated as follows. For
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n = 0, 1, . . . , G,

P (N = n|data) =

∫
P (N = n|ψ,data)p(ψ|data) dψ

≈ 1

B

B∑
b=1

P (N = n|ψb,data) (4)

where {ψb} constitute the MCMC output. A priori, N given ψ is distributed Binomial(G, θ), but in
conditioning on the data we have a different distribution for N , even with ψ in hand. Being a sum
of independent but differently-distributed Bernoulli trials, N has a Poisson Binomial distribution
Thomas and Taub, 1982). For example, the one gene that is confirmed by all 4 studies is more
likely to be truly involved than a gene confirmed just once. Thomas and Taub’s recursion method
is applied to evaluate the probability mass of N at each sampled parameter setting ψb.

3.4 Error rate inference

Depending on the reference set of genes, there are different ways to measure false positive and false
negative error rate. In any case, we are thinking of errors in a single study, s, and define four rates

FDR(ψ) = P (Ig = 0|Dg,s = Cg,s = 1)

FNDR(ψ) = P (Ig = 1|Dg,s × Cg,s = 0)

FP(ψ) = P (Dg,s = Cg,s = 1| Ig = 0)

FN(ψ) = P (Dg,s × Cg,s = 0| Ig = 1) .

Respectively, these are rates of false discovery (FDR), false nondiscovery (FDNR), false positive
(FP), and false negative (FN), and they all depend on the vector of system-level parameters ψ.
These rates depend on probabilities in the proposed models, and are marginal to latent variables
recording accessibility and off-target counts. Specifically, P (Cg,s = c,Dg,1 = d|Ig = i) is a sum-
mation of Qs,i,as,u over values of Ag,s and Tg,s, as presented in Section 2 of this supplement. That
covers FP and FN; for FDR and FNDR, observe that

FDR(ψ) =
P (Dg,s = Cg,s = 1|Ig = 0)P (Ig = 0)

P (Dg,s = Cg,s = 1|Ig = 0)P (Ig = 0) + P (Dg,s = Cg,s = 1|Ig = 1)P (Ig = 1)

=
FP(ψ) (1− θ)

FP(ψ) (1− θ) + (1− FN(ψ)) θ

FNDR(ψ) =
[1− P (Dg,s = Cg,s = 1|Ig = 1)]P (Ig = 1)

[1− P (Dg,s = Cg,s = 1|Ig = 1)]P (Ig = 1) + [1− P (Dg,s = Cg,s = 1|Ig = 0)]P (Ig = 0)

=
FN(ψ) θ

FN(ψ) θ + (1− FP(ψ)) (1− θ)
.

Point estimates of error rates were obtained by plugging in an estimate ψ̂ of system parameters,
using the DL-1 study as a reference. Bayesian confidence sets were obtained by percentiling error
rate values computed across MCMC samples {ψb}.

4 Code

The metaflu package and associated R source code is available at
http://www.stat.wisc.edu/~newton/metaflu.
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Figure S1: Knockdown model properties. Four on target hits are more effective at producing an
observed effect than four off-target hits. Shown is the case of no measurement error, as a function
of the threshold for an effect.
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