
Getting started with

SigNetTrainer

Part 1: SigNetTrainer for MATLAB/CPLEX

and MATLAB/GLPK

Part 2: SigNetTrainer for GUROBI

Download: http://www.mpi-magdeburg.mpg.de/projects/cna/etcdownloads.html

http://www.mpi-magdeburg.mpg.de/projects/cna/etcdownloads.html


Part 1: SigNetTrainer for MATLAB/CPLEX and
MATLAB/GLPK

1 Introduction

This first part of the present document is the manual of SigNetTrainer for MAT-
LAB/CPLEX and MATLAB/GLPK. SigNetTrainer is a toolbox dedicated for inter-
rogating and training signaling networks (represented as interaction graphs) with ex-
perimental data from stimulus-response experiments. SigNetTrainer uses Integer Linear
Programming (ILP) and is based on the methods described in the main text of this pub-
lication. The MATLAB-based version of the toolbox (presented herein) was developed
by S. Klamt; it runs under MATLAB and uses either the IBM ILOG CPLEX Optimizer
or GLPK/GLPKMEX for solving the ILP problems. An alternative implementation of
SigNetTrainer based on C-files and GURBOI was developed by I.N. Melas (see second
part of this document). All versions of SigNetTrainer are freely available at the web-site:
http://www.mpi-magdeburg.mpg.de/projects/cna/etcdownloads.html.

The basic functionality of SigNetTrainer can be briefly described as follows. Given an
interaction graph topology (stored in a file netfile) and a set of experiments in each of
which some nodes were perturbed (defined in a file pertfile) and the resulting qualitative
response (up, down, unchanged) of some nodes were measured (defined in a file measfile),
four basic problems can be addressed by SigNetTrainer :

(1) SCEN FIT: Determine a causal explanation for the measured activation changes
of readout nodes for a given perturbation experiment. If the measurements are
inconsistent with the network topology, find the closest consistent sign pattern for
the nodes.

(2) Minimal Correction Sets (MCoS): In case of an inconsistent scenario, what is a
minimal set of nodes that need to be corrected (by artificial external perturbations)
to make the inconsistent scenario consistent.

(3) OPT SUBGRAPH: Determine an optimal subgraph of the given network topology
that can fit the measurements for a set of scenarios the best.

(4) OPT GRAPH: Identify edge candidate(s) whose insertion (in combination with
removal of existing edges) would improve the consistency of the graph with respect
to a set of experimental scenarios the most.

The first two optimization problems seek to match the network topology with measure-
ments from a single stimulus-response experiment. In contrast, (3) and (4) operate on
a set of scenarios and seek to optimize (train) the network structure over all scenarios,
either by removing or/and by adding edges. For the first three problems SigNetTrainer
also provides enumeration algorithms to find multiple or all solutions that solve the opti-

2

http://www.mpi-magdeburg.mpg.de/projects/cna/etcdownloads.html


mization problem equally well (e.g., for problem (3), all optimal subgraphs that minimize
the number of inconsistencies between measurements and predictions).

SigNetTrainer for MATLAB/CPLEX and MATLAB/GLPK provides to each of the four
problems above a MATLAB function which can be used for both finding a single optimal
solution or enumerating all of them. When calling these functions the user can define the
solver to be used (either CPLEX via its MATLAB connector or GLPK via GLPKMEX)
which needs to be installed beforehand. We tested our implementation with CPLEX
12.4 and the latest GLPKMEX 2.11 (both on a 64-bit LINUX system).

GLPKMEX is freely available at: http://sourceforge.net/projects/glpkmex/
Academic users can also obtain a free academic version of CPLEX, see:
http://www-03.ibm.com/ibm/university/academic/pub/page/membership.

Generally, both solvers work well (ensure that you use the latest GLPKMEX version!).
However, for large-scale problems we observed that CPLEX may perform much faster and
more stable than GLPKMEX (in one example, CPLEX finished after seconds whereas
GLPKMEX did not finish after 24 hours). So if you have the choice then we strongly
recommend CPLEX.

SigNetTrainer also includes a MATLAB routine for network compression and a function
for loading the files related to a project. In addition, example files for the EGF study
discussed in the main text are provided with the package.

Note that the present manual will describe usage of the available algorithms rather than
re-describing the theory behind the methods.

If you encounter any technical problems please contact S. Klamt:
klamt@mpi-magdeburg.mpg.de.

2 Files

SigNetTrainer for MATLAB/CPLEX and MATLAB/GLPK comes with the following
files:

MATLAB functions:

• scenfit.m: for solving SCEN FIT problems.

• mcos.m: for computing Minimal Correction Sets.

• optsubgraph.m: for solving OPT SUBGRAPH problems.

• optgraph.m: for solving OPT GRAPH problems.

• compressIG.m: for compressing the network (as an optional preprocessing step).

3

http://sourceforge.net/projects/glpkmex/
http://www-03.ibm.com/ibm/university/academic/pub/page/membership
mailto:klamt@mpi-magdeburg.mpg.de


• loadSigProject.m: function for reading the network file (netfile) and for import-
ing the signaling data (pertfile and measfile) resulting in a SigProject variable.

• CNASFNetwork2sif.m: function required by loadSigProject.m

• CNAsif2SFNetwork.m: function for saving a compressed network (as obtained
by compressIG) as netfile in SIF format that can later be read by loadSigProject.

manual.pdf: This manual.

EGFexample: A directory containing the files for the EGFR/ErbB example studied in
the Results section of the main text. You may recompute the results presented therein
by using these files as input for SigNetTrainer (usage is explained in section 4).

MinExample: A directory containing netfile, pertfile and measfile of the simple network
example discussed in the Introduction section of the main text (just for playing and
testing).

3 Installation

3.1 System Requirements and Initialization

To use SigNetTrainer for MATLAB/CPLEX or MATLAB/GLPK you need to install

(1) MATLAB;

(2) an ILP solver:

(2a) either IBM ILOG CPLEX Optimizer (to be called via its MATLAB connector;
the (only) used CPLEX function is cplexmilp

(2b) or GLPK to be called via GLPKMEX (SigNetTrainer calls glpk.m which itself
calls the MEX file glpkcc);

(3) the MATLAB toolbox CellNetAnalyzer which is needed by compressIG.m, load-
SigProject.m, optgraph.m, CNASFNetwork2sif.m, and CNAsif2SFNetwork.m.

CPLEX Optimizer is freely available for acedemic research institutes via:
http://www-03.ibm.com/ibm/university/academic/pub/page/membership.
and GLPKMEX is available under the GNU license via
http://sourceforge.net/projects/glpkmex/

CellNetAnalyzer can be downloaded for academic use from:
http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html.

4

http://www-03.ibm.com/ibm/university/academic/pub/page/membership
http://sourceforge.net/projects/glpkmex/
http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html


Once you have downloaded/installed all packages on your PC, start MATLAB. You first
need to set the paths to the CPLEX library or/and to GLPKMEX (possibly also in the
startup.m script). On my LINUX system I set the path to CPLEX by entering:

addpath(’/usr/local/cplex/CPLEX Studio124/cplex/matlab/’)

For initializing CellNetAnalyzer (CNA) you need to change to CNA’s main directory.
Then enter:

startcna(1)

Change then back to the main directory of SigNetTrainer. You can now start working
with the toolbox.

4 Creating and loading a Signaling Project

The function loadSigProject builds a signaling project variable (denoted herein by Sig-
Project) which can subsequently be used by SigNetTrainer ’s optimization routines. The
syntax is:

SigProject = loadSigProject(netfile,pertfile,measfile)

netfile, pertfile and measfile are strings (character arrays) defining the names of three
files that together specify a signaling project. These files must be created by the user
(regarding the format see below). Here is an example call loading the EGF network
and associated data studied in the Results section of the main text and provided in the
’EGFexample’ folder:

SigProject=loadSigProject(’EGFexample/EGFNetworkCompressed.txt’,...
’EGFexample/EGFinputs.txt’,’EGFexample/EGFmeasurements.txt’)

The SigProject struct variable returned by the function resembles a CellNetAnalyzer
project variable. In particular, it contains the field SigProject.specID and SigPro-
ject.reacID storing the names of the species (nodes) and edges, respectively.

In the following we describe the format of the three input files:

netfile: defines the interaction graph in SIF file format (the file may have extension .sif
but also .txt etc). With the SIF format, the interaction graph is defined as follows:

• Tab-delimited file

• The edges (reactions) of the interaction graph are given row-wise.

• First column contains the start nodes of the respective edge.

• Second column describes the edge sign which is either positive (indicated by “1”)
or negative (indicated by “-1”).

5



• Third column contains the end node of the respective edge.

• No special characters (except “underscore”) are allowed in the node names.

• The names of signaling molecules must correspond to names used as stimuli/inputs
in pertfile and for measured signals in measfile.

An example of a netfile is shown in Figure 2. Importantly, it is recommended that
the network does not contain positive feedback loops (positive cycles) in the network to
avoid ’self-explaining’ measurements (a future version will tackle positive cycles more
appropriately).

Figure 1: Example of a netfile.

pertfile: defines the perturbations (e.g., inhibitors or ligands) used in the respective
experimental scenarios. The format is as follows:

• Tab-delimited file

• First row contains the names of the corresponding input (=perturbed) nodes in
the columns. Not all network nodes have to be given here (since normally not all
nodes will be perturbed).

• Each subsequent row corresponds to a specific experimental scenario, where the
columns give the (imposed) values of the perturbed nodes: “1” corresponds to
up-regulation of the respective node, “−1” corresponds to down-regulation of the
respective node, “0” corresponds to set the respective node to unchanged, and
“nan” implies the respective node was not fixed (and thus free) in that scenario.

• No special characters are allowed in the names of the input nodes.

• The names of the perturbed nodes must be consistent with the corresponding node
names in the netfile.

6



The pertfile of the (compressed) EGF network studied in the Results section of the main
text is shown in Figure 3.

Figure 2: Example of a pertfile.

measfile: specifies the measured node changes (up, down, neutral) in the experiments
(upon the perturbations specified in the pertfile). Note that the i-th row in the measfile
gives the measurements to the i-th perturbation defined in the pertfile.

• Tab-delimited file

• First row contains the names of the measured signals (in the columns). Not all
network nodes must be given (as not all nodes might be measurable).

• Subsequent rows correspond to different experimental scenarios, columns spec-
ify the measured signals: “1” corresponds to up-regulation, “−1” corresponds to
down-regulation, “0” corresponds to unchanged signal, and “nan” implies the re-
spective signal was not measured in that scenario.

• The names of the measured signals must be consistent with the corresponding
signaling species in the netfile and pertfile.

The measfile of the (compressed) EGF network studied in the Results section of the
main text is shown in Figure 4.

7



Figure 3: Example of a measfile.

5 Compressing a network

For compressing a network (using the compression rules described in the Methods section
of the main text) do the following:

(1) Load the network from a netfile by running:

cnap=CNAsif2SFNetwork(netfile)

Here, netfile is the name of the file describing the initial (uncompressed) graph.
The network in netfile must be specified in SIF format as described in the previous
section.

(2) Use MATLAB cell variables to specifiy the names of the perturbed nodes and of
the (measured) readout nodes, for example

readouts={’erk12’,’stat3’}

perturb={’tgfa’,’p38’}

(3) Call the actual network compression routine by

cnapnew=compressIG(cnap,readouts,perturb)

(4) Write the new network file (which can then later be used, e.g., by loadSigProject
when loading a signaling network project:)

CNASFNetwork2sif(cnapnew,netfile)

Here, netfile is the name of the new file in which the compressed network file is
stored.

8



6 Running the optimizations

Once a signaling project has been created and loaded by loadSigProject as described
in section 4, we may now apply the four basic optimization routines to check/train the
network topology against the experimental data.

6.1 SCEN FIT

The SCEN FIT procedure can be applied to single experiments (scenarios) is called as
follows:

[solutions,optval]=scenfit(SigProject,scenario,numsol,solver)

Input arguments:

• SigProject : a SigProject variable as obtained from loadSigProject (described in
section 4).

• scenario: specifies the number of the experiment (scenario) to be considered by
SCEN FIT. For example, if scenario=4 then the 4-th experiment from the pert-
file/measfile is taken.

• numsol : How many optimal solutions are to be computed (default: 1).

• solver : Which solver shall be used. solver=1→ CPLEX, solver=2→ GLPK. If no
solver is specified, CPLEX will be used as default. (For installation of the solvers
see section 3).

The scenfit function delivers numsol many optimal solutions to the SCEN FIT problem.
The solutions are stored in the columns of the returned array solutions. Hence, this
variable has dimension n x numsol (n = number of species). Each of these solutions
provides a sign-consistent node pattern that has minimal distance to the measurements
(the i-th row of solutions corresponds to the i-th node in the network; the name of
the i-th node is stored in SigProject.specID(i,:)). The optimal (minimal) mismatch to
the measurements is stored in the output argument optval. Note that it may happen
that less then numsol many optimal solutions exist, in this case the array solutions will
obviously contain less columns.

6.2 Minimal Correction Sets

Minimal Correction Sets (MCoS) can be computed for single experiments (scenarios)
and the asscociated routine is called as follows:

[solutions,optval]=mcos(SigProject,scenario,numsol,solver)

Input arguments:

9



• SigProject : a SigProject variable as obtained from loadSigProject (described in
section 4).

• scenario: specifies the number of the experiment (scenario) to be considered for
MCoS calculation. For example, if scenario=4 then the 4-th experiment from the
pertfile/measfile is taken.

• numsol : How many optimal solutions are to be computed (default: 1).

• solver : Which solver shall be used. solver=1 → CPLEX, solver=2 → GLPK. If
no solver was specified, CPLEX will be used as default. (For installation of the
solvers see section 3).

The mcos function delivers numsol many optimal MCoSs in the columns of array so-
lutions. The latter variable has thus dimension n x numsol (n = number of species).
Each of these solutions provides a minimal number of (artficial/unknown) perturbations
in certain species that will lead to a sign-consistent node pattern for the given inputs
and measurements of the considered scenario. The value of the external perturbation
(MCoS) value for a node can be 1 (positive input), -1 (negative input) or 0 (no addi-
tional input). The i-th row of solutions corresponds to the i-th node in the network, the
name of this ndoe is stored in SigProject.specID(i,:)). The optimal (minimal) number
of external corrections required in the optimal MCoS is stored in optval. Note that it
may happen that less then numsol many optimal MCoSs exist, in this case the array
solutions will obviously contain less columns.
The found MCoSs are also displayed during the computation.

6.3 OPT SUBGRAPH

An OPT SUBGRAPH problem usually relates to a network and a set of experiments
(scenarios) and the goal is to find edge removals that minimize the mismatch between
network topology and measurements. SigNetTrainer ’s routine for computing solutions
to the OPT SUBGRAPH problem has to be called as follows:

[solutions,optval]=optsubgraph(SigProject,scenarios,numsol,solver)

Input arguments:

• SigProject : a SigProject variable as obtained from loadSigProject (described in
section 4).

• scenarios: specifies the set of experiments (scenarios) to be considered for network
optimization. In the standard case you will consider all experiments, you can then
set scenarios=1:SigProject.numexp (this is also the default case if scenarios was
not defined).

• numsol : How many optimal solutions are to be computed (default:1).

10



• solver : Which solver shall be used. solver=1 → CPLEX, solver=2 → GLPK. If
no solver was specified, CPLEX will be assumed as default. (For installation of
the solvers see section 3).

The function delivers numsol many optimal solutions to the OPT SUBGRAPH problem
which are stored in the columns of the returned array solutions. The latter variable has
thus dimension q x numsol (q = number of network edges). Each of these solutions
provides a subgraph of the network which minimizes the mismatch between measured
and predicted node states in the perturbation experiments. Each solution contains 1’s
and 0’s. All 1’s indicate edges that are REMOVED from the network, hence, the zeros
indicate the remaining edges. The i-th row of solutions corresponds to the i-th edge
in the network (the name of this edge is stored in SigProject.reacID(i,:)). The optimal
(minimal) mismatch achieved by the found optimal solutions is stored in optval. Note
that it may happen that less then numsol many optimal MCoS exist, in this case the
array solutions will obviously contain less columns.

6.4 OPT GRAPH

An OPT GRAPH problem usually relates to a given network topology and a set of exper-
iments (scenarios). SigNetTrainer ’s routine for computing solutions to the OPT GRAPH
problem has to be called as follows:

[addededges]=optgraph(SigProject,scenarios,solver)

Input arguments:

• SigProject : a SigProject variable as obtained from loadSigProject (described in
section 4).

• scenarios: specifies the set of experiments (scenarios) to be considered for network
optimization. In the standard case you will consider all experiments, you can then
set scenarios=1:SigProject.numexp (this is also the default case if scenarios was
not defined).

• solver : Which solver shall be used. solver=1 → CPLEX, solver=2 → GLPK. If
no solver was specified, CPLEX will be assumed as default. (For installation of
the solvers see section 3).

The function checks for each addable edge (i.e., an edge which (i) is not contained yet
in the graph and (ii) which induces no positive feedback loop) how much the addition of
this single edge to the network would improve (reduce) the mismatch with the specified
set of scenarios when we apply OPT SUBGRAPH to this extended network. optgraph
delivers an array addededges specifying in the rows the tested added edges and the
resulting optimal values for OPT SUBGRAPH. addededges has four columns: the first
column defines the start node of the edge, the second the end node, the third the edge
sign and the fourth the value of OPT SUBGRAPH when the latter routine is applied

11



to the network with the respective edge added. The array is sorted with respect to the
mismatch value in the fourth column (hence, the edges with the best fit come first.)
If you would like to know the resulting optimal network(s) of the OPT SUBGRAPH
routine for a particular added edge, then add the edge in the netfile, reload the network
project via loadSigProject and start the function optsubgraph as explained above.
In addition to the returned array addededges, a file ’addable edges.txt’ is generated (in
the current directory) listing the results for each added edge in the same way as in
addededges, but here by giving directly the names of the nodes instead of their indices.

12



Part 2: SigNetTrainer for GUROBI

1 Introduction

This second part of the present document serves as a getting started guide for SigNetTrainer
for GUROBI, a toolbox for interrogating and training signaling networks (represented
as interaction graphs) based on experimental data from stimulus-response experiments.
The GUROBI version of the toolbox was implemented by I.N. Melas and uses the Integer
Linear Programming (ILP) framework presented in the main text of this publication.
SigNetTrainer is also available as a MATLAB/CPLEX and as a MATLAB/GLPK ver-
sion (see first part of this document).

Given an interaction graph topology (stored in a file “Network.sif”) and a set of pertur-
bation experiments (defined in “inputs.txt”) with associated measurements (defined in
“measurements.txt”), basically four different problems can be addressed by SigNetTrainer :

• (1) SCEN FIT: Determine a causal explanation for the measured activation changes
of readout nodes for one given perturbation scenario. If the measurements are in-
consistent with the network topology, find the closest feasible scenario.

• (2) Minimal Correction Sets (MCoS): In case of an inconsistent scenario, what is
a minimal set of nodes that need to be corrected to make a single inconsistent
scenario consistent.

• (3) OPT SUBGRAPH: Determine an optimal subgraph of the given network topol-
ogy that can fit the measurements for a set of scenarios at best.

• (4) OPT GRAPH: Identify edge candidate(s) whose insertion (in combination with
removal of existing edges) would improve the consistency of the graph with respect
to a set of experimental scenarios at most.

The first two optimization problems seek to match the network topology with measure-
ments from a single stimulus-response experiment. In contrast, (3) and (4) operate on
a set of scenarios and seek to optimize (train) the network structure over all scenarios,
either by removing or by adding edges. For the first three problems SigNetTrainer also
provides enumeration algorithms to find multiple or all solutions that solve the optimiza-
tion problem equally well (e.g., for problem (3), all optimal subgraphs that minimize the
number of inconsistencies between measurements and predictions).

The SigNetTrainer package also includes some MATLAB files for network compression
and preprocessing purposes (see below). In addition, example files for the EGF study
discussed in the Results section of the main text are also provided.

Note that the manual will describe usage of the available algorithms rather than re-
describing the theory behind the methods.

13



If you encounter any technical problems please contact I.N. Melas:
giannis.melas@gmail.com.

2 Files

SigNetTrainer comes with the following files:

C source code:

• “SigNetTrainer.c”: C source code; it includes the main() function of the tool-
box and implements the ILP formulations as presented in the Methods section of
the main text.

• “optimize.c”: C source code; it implements the ILP formulation and employs it
to solve problems (1)–(3). It is the function that calls GUROBI optimizer.

• “import data.h”: h file; it includes functions for importing the signaling data
(inputs.txt and measurements.txt files).

• “data preprocessor.h”: h file; it includes functions for generating the inputs.txt
and measurements.txt files from a tab delimited file, similar to that exported by
the Luminex xMAP 200 system.

• “import pathway.h”: h file; it parses the Network.sif file containing the inter-
action graph.

• “observable controllable.h”: h file; includes files for preprocessing the inter-
action graph by removing non-observable and non-controllable parts of it. Non-
observable are defined all nodes downstream of which there are no measured sig-
nals, thus their activation state cannot be inferred. Non-controllable are defined
all nodes upstream of which there are no stimuli, thus their activation state cannot
be controlled.

• “warshall.h”: h file; implements the Floyd-Warshall algorithm for transitive clo-
sure. It is used by “observable controllable.h” to identify the non-observable and
non-controllable parts of the pathway.

• “Makefile”: The Makefile for compiling the C code (as included in the GUROBI
installation). The user should edit it to include the proper path of the GUROBI
installation and C libraries. We provide two (exemplary) versions as used on our
system: MakefileMac and MakefileLinux (to use them you would need to rename
them to ’Makefile’).

A file specifying type and parameters of the optimization problem:

14

mailto:giannis.melas@gmail.com


• “ilp options.txt”: see section 4.

MATLAB files: These files are required for (optional) network compression and for de-
termining addable edges needed for the OPT GRAPH problem (see Installation section
for how to use):

• CNASFNetwork2sif.m

• CNAsif2SFNetwork.m

• addableEdges.m

• compressIG.m

EGFexample: A directory containing the files for the EGFR/ErbB example studied in
the Results section of the main text. You may recompute the results presented therein
by using these files as input for SigNetTrainer (usage is explained in section 4).

MANUAL: A directory containing this manual.

3 Installation

3.1 System Requirements

Requirements: You definitely need to install GUROBI on your computer and to set the
path to this library (we used version 4.6.1). We precompiled executable versions for
Mac OS X (SigNetTrainerMac) and Linux (SigNetTrainerLinux) and distribute it with
the package (but note that GUROBI needs nevertheless to be installed on your system
when using these versions).
If you have a different platform or if these versions do not run on your system, you need
to recompile it as explained in the next section.

3.2 Compiling the C code

For recompiling the code you proceed as follows:

• You need a working C compiler. We compiled the ILP code using gcc version 4.2
(under Mac OS X).

• You need a working GUROBI installation; we used version 4.6.1 (under Mac OS X).

15



• In file optimize.c, line 5, add absolute path to “gurobi c.h” file (file installed
to your system by GUROBI installer). For Mac OS X default path is “/Li-
brary/gurobi461/mac64/include/gurobi c.h”.

• In file optimize.c, lines 34–38 add absolute path to “observable controllable.h”,
“import data.h”, “data preprocessor.h”, “warshall.h” and “import pathway.h” files.

• In a terminal, navigate to the folder where the ILP code is located and run “make
SigNetTrainer”. Before doing that, please update the “Makefile” regarding the
paths / variables for GUROBI and the C compiler (if required).

3.3 MATLAB files

Network compression (optionally) and the generation of a list of addable edges (re-
quired for the OPT GRAPH problem) needs to be done via the two MATLAB script
files “compressIG.m” and “addableEdges.m”, respectively. These files, together with
two further m-files for reading/writing “.sif” files (see below), are also distributed with
SigNetTrainer. For using them, you first, have to install CellNetAnalyzer which can be
downloaded (free for academic use) from
http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html
After installation of CellNetAnalyzer, go to its main directory, start MATLAB and enter
“startcna(1)”. Change then into the directory of SigNetTrainer.

For network compression do the following:

• (1) Load the network from a “.sif” file (regarding sif format see section ??) by run-
ning: “cnap=CNAsif2SFNetwork(’FullNetwork.sif’)”. Here, “FullNetwork.sif”
is the name of the file describing the initial (uncompressed) graph.

• (2) Use MATLAB cell variables to specifiy the names of the (measured) readout
nodes and of the nodes that are perturbed, for example “readouts={’node1’,’node4’}”
and “perturb={’node2’,’node4’}”.

• (3) Call the actual network compression routine by
“cnapnew=compressIG(cnap,readouts,perturb)”.

• (4) Write the new network file which can then be used by SigNetTrainer :
“CNASFNetwork2sif(cnapnew,’Networknew.sif’)”
Here, “Networknew.sif” is the name of the compressed file later to be used by
SigNetTrainer.

For computing the list of addable edges you need to run “addableEdges(’Network.sif’)”.
“Network.sif” is the name of the file describing the interaction graph. After running this
command, a new file will be written (“addable reactions.txt”) containing all edges that
can be considered for OPT GRAPH (these edges do not induce a positive feedback
loop).

16



4 Running the ILP code

The SigNetTrainer code may be used either for preprocessing the signaling dataset, or
for executing the optimization procedure, depending on the user’s input.

4.1 The file ilp options.txt

To use the different functions of SigNetTrainer the user has to provide/edit four different
files:

The file “ilp options.txt” specifies the parameters and options for the different opti-
mization functions of SigNetTrainer :

• Tab-delimited file

• data preprocessig: If set to 1, then the ILP code receives as input a data file
(e.g. “data.txt”) containing the experimental dataset and prints two files named
“measurements.txt” and “inputs.txt”, specially formatted to be parsed by the
optimizer. Set to 1 only if you want to preprocess raw experimenetal data (see
later section for howto), else set to 0.

• significant increase (required only for data preprocessing): Corresponds to the
threshold above which the fold increase of the signal, after versus before stimula-
tion, is considered to be significant.

• significant decrease (required only for data preprocessing): Corresponds to the
threshold below which the fold decrease of the signal, after versus before stimula-
tion, is considered to be significant.

• noise threshold (required only for data preprocessing): An absolute value below
which the signal is considered to be insignificant.

• mipgap: The relative optimality GAP for the ILP solver (default value is 1E-06,
smallest value is 1E-09).

• timelimit: Maximum time after which the ILP solver is stopped.

• number solutions: The maximum number of solutions to be identified by the
ILP algorithm. The enumeration version of the respective optimization algorithm
is used whenever number solutions ≥ 2.

• minimum corrections: If set to 1, then the Minimum Corrections Sets (MCoS)
are identified.

• best scenario fit: If set to 1, then optimal sign-consistent solutions are computed
(SCEN FIT procedure). If number solutions = 1, a single solution is computed
for all experimental scenarios. If number solutions ≥ 2, only one scenario may be

17



defined in “inputs.txt” and “measurements.txt”, and all SCEN FIT solutions will
then be enumerated for this scenario.

• add new reactions: If set to 1, then SigNetTrainer parses a list of addable
edges provided in file “addable edges.txt” and scores them based on how much
they improve the goodness of fit to the data if added to the interaction graph
(OPT GRAPH problem).

• subgraphs: If set to 1, then the total fitting error over all scenarios is minimized
by removing edges from the network structure (OPT SUBGRAPH problem).

Figure 1: Sample “ilp options.txt” file

Table 1 summarizes how to set the parameters for the respective optimization problems
(single solution and enumeration (enum.) variants).

SCEN FIT MCoS OPT SUBGRAPH OPT GRAPH

single sol. enum. single sol. enum. single sol. enum. single sol.

number solutions 1 ≥ 2 1 ≥ 2 1 ≥ 2 1

subgraphs 0 0 0 0 1 1 0

minimum corrections 0 0 1 1 0 0 0

best scenario fit 1 1 0 0 0 0 0

data preprocessing 0 0 0 0 0 0 0

add new reactions 0 0 0 0 0 0 1

number of scenarios ≥ 1 1 1 1 ≥ 1 ≥ 1 ≥ 1

Table 1: User-defined options and parameters to be set in ilp options.txt for the different
optimization problems (single and enumeration (enum.) variants). The last row shows
the number of scenarios that may be defined (in the measurements.txt and inputs.txt
files) for the respective problems.

18



4.2 Other files to be provided/edited by the user

“Network.sif” (defines the interaction graph)

• Tab-delimited file

• Lists the edges (reactions) of the interaction graph row-wise.

• First column contains the start nodes of the respective edge.

• Second column described the edge sign: either it is positive (“activation”) or
negative (“inhibition”). Setting a “1” defines a positive, setting a “−1” a negative
edge. If set to “2” (or “−2”) , then an activation (inhibition) is assumed, and the
edge cannot be removed by the algorithm (useful when the user is certain about
the edge).

• Third column contains the end node of the respective edge.

• No special characters (except “underscore”) are allowed in the names of the reac-
tants or products.

• The names of signaling molecules must correspond to names used as stimuli, in-
hibitors, or signals in the “data.txt”, “inputs.txt”, and “measurements.txt” files.

19



Figure 2: Sample “Network.sif” file

“inputs.txt” (defines the perturbations of the experimental scenarios)

• Tab-delimited file

• First row contains the names of the corresponding input (=perturbed) nodes in
the columns.

• Subsequent rows correspond to different experimental scenarios, where the columns
give the (imposed) values of the perturbed nodes: “1” corresponds to up-regulation
of the respective node, “−1” corresponds to down-regulation of the respective node,
“0” corresponds to set the respective node to unchanged, and “nan” implies the
respective node is not fixed (and thus free) in that scenario.

• No special characters are allowed in the names of the input nodes.

• The names of the input nodes must be consistent wit the corresponding signaling
molecules in the “Network.sif” file.

20



Figure 3: Sample “inputs.txt” file

“measurements.txt” (specifies the resulting node changes (up, down, neutral) in the
experiments)

• Tab-delimited file

• First row contains the names of the measured signals (in the columns).

• Subsequent rows correspond to different experimental scenarios, columns spec-
ify the measured signals: “1” corresponds to up-regulation, “−1” corresponds to
down-regulation, “0” corresponds to unchanged signal, and “nan” implies the re-
spective signal is not measured in that scenario.

• No special characters are allowed in the names of the measured signals.

• The names of the measured signals must be consistent with the corresponding
signaling molecules in the “Network.sif” file.

21



Figure 4: Sample “measurements.txt” file

4.3 Data preprocessing

We implemented an optional data preprocessing which delivers the files “inputs.txt” and
“measurements.txt”(described above) in an automatic way from raw data sets. This
preprocessing is tailored to the type of data we are normally using (Luminex). Of
course, the user may put together these two files on its own if this is more convenient
(see previous section 4.2 how to format “measurements.txt” and “inputs.txt”).

In order to use the data preprocessing feature of SigNetTrainer, you must provide a file
“data.txt” with the following structure:

Figure 5: Sample “data.txt” file

22



“data.txt”

• Tab-delimited file

• Rows correspond to different experimental scenarios, columns correspond to mea-
sured signals.

• First column contains a description for the corresponding scenarios in the following
format: “stimuli inhibitor”. Where, “stimuli” is the stimuli introduced in the cur-
rent scenario, “inhibitor” is the inhibitor (or knock out) introduced in the current
scenario.

• First row contains the names of the corresponding signals.

• No special characters are allowed in the labels of the scenarios or the signals.

• Names of the signals, stimuli or inhibitors must be the same with the ones included
in the interaction graph.

• The remaining entries are floating point numbers that correspond to activation
values.

After having compiled the C code, one may then run: “./SigNetTrainer data.txt”.
“SigNetTrainer.c” will read the “ilp options.txt” file, containing user-defined options
for data preprocessing (see above), and the data file itself (“data.txt”) containing the
experimental dataset as described above. The two files named “measurements.txt” and
“inputs.txt” will then be generated.

4.4 Running the optimization procedure

In a terminal, after having compiled the C code run:

“./SigNetTrainer Network.sif inputs.txt measurements.txt”.

“SigNetTrainer.c” will read the user-defined options from “ilp options.txt”. Afterwards,
it reads (i) a file containing the interaction graph (e.g. “Network.sif”, see example file in
figure ??), (ii) a file containing the experimental design (e.g. “inputs.txt”, see example
in figure ??), (iii) a file containing the measured data (e.g. “measurements.txt”, see
example in figure ??), and then returns the optimization results “objective value.txt”,
“reactions out.txt” (or “interventions out.txt”), “network out.txt”, predicted values for
the signaling molecules “predictions out.txt” and auxiliary files “species indices.txt”,
“solutions history.txt”, “reactions indices.txt”.
Importantly, for the OPT GRAPH procedure you need to give in addition a fourth file
(“addable edges.txt”) specifying the edges that can potentially be added, thus you need
to call:

“./SigNetTrainer Network.sif inputs.txt measurements.txt addable edges.txt”.

23



Output files

• “objective value.txt”: The fitting error of the interaction graph w.r.t. the mea-
sured data.

• “reactions out.txt”: A list containing all edges in the interaction graph and an
identifier showing whether the edge was removed during the optimization proce-
dure or not. Tab delimited file. The first column contains the edge IDs. The
third column, and every column after that, contains two numbers separated by a
comma character. The first number in each column is used if the corresponding
edge is an activation, the second number is used if the corresponding edge is an
inhibition. An entry of 1.0 denotes the corresponding edge was removed by the
ILP, an entry of 0.0 denotes the edge was conserved in the solution. Every column
corresponds to a different solution in the solution pool (if “number solutions” ≥ 2
in the “ilp options.txt” file).

• “network out.txt”: The network structure in .dot format ready to be parsed by
graphviz.

• “predictions out.txt”: A table containing the activation states of measured sig-
nals as predicted by the ILP algorithm. Rows correspond to different experimental
scenarios, columns correspond to measured signals. First row contains the names
of the measured signals. The rest of the entries correspond to the predicted activa-
tion values of the signals. “1” corresponds to up-regulation of the respective signal,
“−1” corresponds to down-regulation of the respective signal, “0” corresponds to
predicting the respective signal as inactive.

• “species indices.txt”: A list containing all signaling nodes (i.e. species) of the
interaction graph and their corresponding ID.

• “reactions indices.txt”: A list containing all edges of the interaction graph and
their corresponding ID.

• “solutions history.txt”: Includes the same information as “network out.txt”
formatted differently. Includes a list of the yi,s variables (see Methods section
of the main text), where every column corresponds to a different solution in the
solution pool. Every column numbers 2N rows, where N = Number of reactions.
The first N rows correspond to the y+i,s variables, the last N rows correspond to

the y−i,s variables.

• “interventions out.txt”: Is generated if “minimum corrections” = 1 in the
“ilp options.txt” file. A list containing all species (i.e. signaling nodes) and ex-
perimental scenarios in the interaction graph and an identifier showing whether
each species was perturbed (and how) for that given experiment. Tab delimited
file. The first column contains the scenario ID. The second column contains the
species ID. The third column, and every column after that, contains two numbers
separated by a comma character. The first number in each column corresponds to

24



positive perturbation (up-regulation) of the respective node, the second number
corresponds to negative perturbation (down-regulation) of the respective node. An
entry of 1.0 denotes the corresponding node was perturbed by the ILP, an entry
of 0.0 denotes the node was not perturbed. Every column corresponds to a different
solution in the solution pool (if “number solutions” ≥ 2 in the “ilp options.txt”
file).

• “edges scored.txt”: Is generated if “add new reactions” = 1 in the “ilp options”
file. A list containing all edges specified in “addable edges.txt” and the fitting error
that results from OPT SUBGRAPH if this (single) edge was added.

As not all output files are relevant for each of the four different problems, Table 2 gives
an overview which files should be considered for the respective problem.

SCEN FIT MCoS OPT SUBGRAPH OPT GRAPH

objective value × × ×
reactions out ×
network out ×

predictions out × ×
species indices × ×

reactions indices ×
solutions history ×
interventions out ×

edges scored ×

Table 2: Output files to be considered for the four different problems.

25


	Introduction
	Files
	Installation
	System Requirements and Initialization
	Creating and loading a Signaling Project
	Compressing a network
	Running the optimizations
	SCEN_FIT
	Minimal Correction Sets
	OPT_SUBGRAPH
	OPT_GRAPH

	Introduction
	Files

	Installation
	System Requirements
	Compiling the C code
	MATLAB files
	Running the ILP code
	The file ilp_options.txt
	Other files to be provided/edited by the user
	Data preprocessing
	Running the optimization procedure




