
Paxtools Developers

Using Biological Pathway Data
with Paxtools

A User’s Guide

Copyright © 2013 Paxtools Developers

biopax.org/paxtools

This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License.

Based on the the tufte-latex template by Kevin Godby, Bil Kleb, and Bill Wood.

code.google.com/p/tufte-latex/ The template is distributed under Apache 2.0 License

Second Edition, May 2013

http://creativecommons.org/licenses/by-nd/3.0/deed.en_US
code.google.com/p/tufte-latex/

Contents

Getting Started 7

Paxtools Basics 13

Accessing and Manipulating Pathway Elements 17

Advanced Controls:Traversing, cloning and merging 21

Exporting BioPAX to and from other formats 27

Running Graph Queries 31

Resources and Non-Java Access 35

Putting it all together 39

Frequently Asked Questions 43

A few last words... 47

Introduction

Extraordinary advances in sequencing and other molecular technolo-
gies have led to a large increase in data about biological processes.
The total volume of pathway data mapped by biologists and stored
in databases has entered a rapid growth phase, with the number of
online resources for pathways and molecular interactions increasing
70%, from 190 in 2006 to 325 in 2010

1. Unfortunately, most of these 1 Bader, G. D., Cary, M. P., & Sander, C.
2006, Pathguide: a pathway resource
list., Nucleic acids research, 34, D504,
D504

databases were originally developed to use their own pathway repre-
sentation language, resulting in a heterogeneous set of resources that
are extremely difficult to combine and use. It is therefore imperative
to develop computational methods to cope with both the magnitude
and fragmented nature of this rapidly expanding and exceedingly
valuable pathway information.

A key component of this infrastructure is a common standard
language. BioPAX (Biological Pathway Exchange) 2 is an OWL(Web 2 Demir, E., Cary, M. P., Paley, S., et al.

2010, The BioPAX community stan-
dard for pathway data sharing, Nat
Biotechnol, 28, 935, 935

Ontology Language) based community developed language for rep-
resenting pathway data. Software developers can use BioPAX to
maximize their application’s access to pathway data from different
sources. Similarly pathway database providers can reach a greater
number of users through BioPAX exports.

BioPAX covers a large spectrum of pathway data, including sig-
naling and metabolic pathways as well as genetic and protein-protein
interactions. Developing software that produces or consumes BioPAX
can be a daunting task at first because of the large number of classes
and properties that BioPAX contains. Paxtools addresses this by of-
fering a Java API that maps OWL classes and properties to Java beans
and methods that can significantly reduce software development
time.

Paxtools can help scientists to quickly access, analyze and manip-
ulate pathway information. Developers of BioPAX exporters, visual-
ization tools, editors or algorithms can use Paxtools to significantly
reduce time spent on BioPAX. Developing applications with Paxtools
also offers future flexibility and extensibility.

Getting Started

Features of Paxtools

Historically, Paxtools was developed to provide an OWL3 -Java map- 3 http://www.w3.org/TR/

owl-overview/ping, but today it offers much more. There are utilities for quickly
traversing or manipulating objects, fixing common problems or con-
verting pathway models to different BioPAX levels or other stan-
dards and formats. There are also BioPAX JPA (Java Persistence API)
mappings for persisting large BioPAX models into a database and
advanced graph queries for finding biologically relevant paths be-
tween molecules. All of these are organized in a lightweight modular
structure to help you embed only the portions you need within your
application with minimum footprint. Here is a list of some features:

A complete and consistent implementation of BioPAX
specification: BioPAX elements in Paxtools are plain Java beans
which provide methods to access the properties described in BioPAX,
and a model, acting as a container for all BioPAX elements, provides
querying facilities for them. Users can either read a BioPAX model
from a file or create an empty one from scratch. Methods to add new
elements to a model and to remove elements from a model are also
provided.

Support for OWL properties and additional inverse links:
OWL properties can be symmetric, transitive or subtyped into other
properties. These semantics can not be represented directly in an
object oriented programming language. Paxtools implements these
additional semantics and automatically updates the fields of objects
as needed.

Syntactic validation: Each operation that modifies the model
is internally validated by Paxtools to comply with BioPAX syntax,
including RDF well-formedness, domain and range restrictions, bidi-
rectional links, and redundancies.

http://www.w3.org/TR/owl-overview/
http://www.w3.org/TR/owl-overview/

8 using biological pathway data with paxtools: a user’s guide

Seamless handling of different BioPAX levels: Recently
released BioPAX Level 3 introduced significant improvements to
the naming and structure of the BioPAX at some cost of backwards
compatibility. Paxtools supports all three BioPAX levels (1, 2 and 3)
and provides facilities for upgrading older BioPAX models to Level
3, reducing the burden of working with different BioPAX levels for
developers.

Converting to and from different formats: Paxtools can
convert PSI-MI4 models to BioPAX Level 3. In addition, BioPAX mod- 4 Kerrien, S., Orchard, S., Montecchi-

Palazzi, L., et al. 2007, Broadening the
horizon–level 2.5 of the HUPO-PSI
format for molecular interactions, BMC
Biol, 5, 44, 44

els can be exported back to OWL and several other useful formats,
including SBGN(Systems Biology Graph Notation)5, SIF (Simple

5 Le Novère, N., Hucka, M., Mi, H.,
et al. 2009, The Systems Biology Graph-
ical Notation, Nat Biotechnol, 27, 735,
735

Interaction Format) and GSEA (Gene Set Enrichment Analysis)6.

6 Subramanian, A., Tamayo, P., Mootha,
V. K., et al. 2005, Gene set enrichment
analysis: a knowledge-based approach
for interpreting genome-wide ex-
pression profiles., Proceedings of the
National Academy of Sciences of the
United States of America, 102, 15545,
15545

Efficient traversal and editing via reflection: Paxtools
allow tools to manipulate BioPAX models without actually hard cod-
ing property and class names. This pattern considerably simplifies
development of BioPAX exporters and other tools and makes it easier
to extend and update them to support future changes in the BioPAX
specification. PathAccessors allow XPath like querying and traversal
of the object graph.

Direct Access to PC: PC (Pathway Commons)7 is a convenient 7 Cerami, E. G., Gross, B. E., Demir, E.,
et al. 2011, Pathway Commons, a web
resource for biological pathway data,
Nucleic Acids Res, 39, D685, D685

point of access to biological pathways collected from public pathway
databases. Pathway Commons aggregates, validates and normalizes
pathway information significantly facilitating its use for biological
applications. Paxtools have a built in client that allows you to access
PC, run field and graph queries and obtain results as BioPAX models.

Advanced Graph Queries: Paxtools offers graph queries, such
as "paths-between" or "common up/downstream" that are specifi-
cally customized based on BioPAX semantics for answering common
biological questions.

Modular and lightweight structure: The Paxtools core mod-
ule, which provides a complete implementation of BioPAX and read
in/write out functionality, is a very compact library(400 kB) that can
be extended as required with additional modules. Paxtools is dis-
tributed as a Maven project which allows developers to easily select
just the parts of Paxtools they need in their application.

A platform for development of BioPAX software infras-
tructure: A growing BioPAX software infrastructure, available as
a part of the Pathway Commons project, is directly built on top of

getting started 9

Paxtools, including a state-of-the-art persistence system using Java
Persistence API integrated with the querying facilities, an advanced
validator that allows checking complex rules and best practices using
an extensible framework, and a pathway alignment tool. Paxtools is
also currently being used by several software tools including CellDe-
signer8, Cytoscape9 and ChiBE10. 8 Mi, H., Muruganujan, A., Demir,

E., et al. 2011, BioPAX support in
CellDesigner., Bioinformatics (Oxford,
England), 27, 3437, 3437

9 Cline, M. S., Smoot, M., Cerami, E.,
et al. 2007, Integration of biological
networks and gene expression data
using Cytoscape., Nature protocols, 2,
2366, 2366

10 Babur, O., Demir, E., Gönen, M.,
Sander, C., & Dogrusoz, U. 2010,
Discovering modulators of gene ex-
pression, Nucleic Acids Res, 38, 5648,
5648

Modules and Package Structure

Here is a quick overview of the modules and packages they contain:

• Core: Core module contains the model interfaces and their default
implementation as well as some utility classes. All other modules
depend on the core. Some important packages are:

– model: This package (and its subpackages) defines the model
interfaces that maps to BioPAX classes. All applications should
be written to these interfaces rather than the actual implementa-
tion classes.

– impl: Default implementation package.

– controller: This package contains classes that contain logic for
traversing, copying and merging BioPAX elements as well as
property editors.

• io: Simple IO package for reading/writing BioPAX files.

• converter: This is to convert (upgrade) BioPAX Level1, 2 to Level 3.

• jena IO: This module contains an alternative Jena based handler
for reading/writing BioPAX files.

• query: This module contains graph queries such as shortest-path.

• PSI-MI converter: This module converts PSI-MI 2.5 files to BioPAX
Level 2 or 3.

• Sif, GSEA and SBGN converters: These modules export BioPAX
models to SIF, GSEA and SBGN (work in progress) respectively.

Obtaining Paxtools

Release Bundles

You can download the "Fat" jars (with dependencies) from: http:
//sourceforge.net/projects/biopax/files/paxtools/

This is a good choice to get things working now and worry about
which modules to package with your application later.

http://sourceforge.net/projects/biopax/files/paxtools/
http://sourceforge.net/projects/biopax/files/paxtools/

10 using biological pathway data with paxtools: a user’s guide

Alternatively, individual modules (compiled JARs and POMs) can
be obtained from the BioPAX maven repositories:

http://biopax.sourceforge.net/m2repo/snapshots and
http://biopax.sourceforge.net/m2repo/releases for snapshots

and stable releases respectively.
Use modules to minimize the size of your application and use only

the parts of Paxtools that you need. The "Core" module offers a com-
plete implementation of BioPAX and read in/write out functionality
in a very compact 400 kB package The fat jar can be as large as 16 MB
most because of the Jena library and its dependencies.

Embedding Paxtools in a maven project

If you are already using Maven in your project, you can add Paxtools
as a dependency. Add the following lines into your pom.xml, within
the repositories section:

<repository>

<id>biopax.releases</id>

<name>BioPAX Repository at Sourceforge</name>

<url>http://biopax.sourceforge.net/m2repo/releases/</url>

<snapshots>

<enabled>false</enabled>

</snapshots>

</repository>

and, if you want to use the latest builds:

<repository>

<id>biopax.snapshots</id>

<name>BioPAX Snapshots Repository at Sourceforge</name>

<url>http://biopax.sourceforge.net/m2repo/snapshots/</url>

<releases>

<enabled>false</enabled>

</releases>

</repository>

Then, add the modules of your choice in the <dependencies>
element:

<dependency>

<groupId>org.biopax.paxtools</groupId>

<artifactId>paxtools-core</artifactId>

<version>4.1.5</version>

</dependency>

http://biopax.sourceforge.net/m2repo/snapshots
http://biopax.sourceforge.net/m2repo/releases

getting started 11

Downloading sources

Checkout (read-only) using the Mercurial client:

hg clone http://biopax.hg.sourceforge.net:8000/hgroot/biopax/paxtools

More information on how to access to the source code can be found
here:

http://biopax.sourceforge.net/paxtools/source-repository.

html

Documentation and Help

More information on Paxtools can be found at:
• Wiki: http://sourceforge.net/apps/mediawiki/biopax/index.php?title=Paxtools

• API: http://biopax.sourceforge.net/paxtools-<version>

• If you get stuck or have questions, use Paxtools support mailing list:

https://lists.sourceforge.net/lists/listinfo/biopax-paxtools

• For general questions related to BioPAX, use BioPAX discuss mailing list:

http://groups.google.com/group/biopax-discuss

http://biopax.sourceforge.net/paxtools/source-repository.html
http://biopax.sourceforge.net/paxtools/source-repository.html
http://sourceforge.net/apps/mediawiki/biopax/index.php?title=Paxtools
http://biopax.sourceforge.net/paxtools-<version>
https://lists.sourceforge.net/lists/listinfo/biopax-paxtools
http://groups.google.com/group/biopax-discuss

Paxtools Basics

First Model

In order to create paxtools objects, we will need a factory. For most
use cases, the default factory is a good choice. We can get a level 3

specific factory by11: 11 Paxtools supports all 3 levels of
BioPAX and can upgrade previous
levels to level 3. Default values are
always set to level 3. We will also use
level 3 for the code examples in this
guide.

BioPAXFactory factory = BioPAXLevel.L3.getDefaultFactory();

BioPAXLevel is an enum that contains multiple level specific fa-
cilities and fields. These can be very useful if you want to imple-
ment level agnostic facilities. You can find more information about
BioPAXLevel in the API documentation. A Paxtools model is a con-
tainer for your objects. When you read, write or pass around BioPAX
objects, these objects will be contained inside a model. This is useful
for validation and querying purposes. Let’s begin by creating a new
model:

Model model = factory.createModel();

Set xml:base 12: 12 OWL uses declared namespaces to
make the ontology files more readable
and avoid namespace clashes. Paxtools
always uses full (absolute) RDF Ids
for objects internally but will output
relative Ids where possible when
writing out BioPAX files if xml:base
(URI prefix) is declared. You can reach
a model’s xml base using getXmlBase,
setXmlBase and - namespaces using
getNameSpacePrefixMap methods.

model.setXmlBase("http://biopax.org/tutorial/");

Now we can create new BioPAX objects and insert them into the
model:

Protein protein1 = model.addNew(Protein.class,

"http://biopax.org/tutorial/test1");

This method will create a new instance of protein class and insert
it into the model. The second parameter is a unique identifier for the
protein state. 13 You can always access an object if you know their id 13 BioPAX uses RDF-IDs to uniquely

identify resources. IDs should be
valid URIs and globally unique. The
best practice accepted by the BioPAX
community is to use standard URI
spaces, such as identifiers.org, espe-
cially for objects that map one-to-one
to existing common bioinformatics
resources. For example, you can refer to
a uniprot ProteinReference with http:

//identifiers.org/uniprot/P04150.
If you are planning to distribute your
BioPAX models publicly consider ob-
taining your identifiers.org subspace
and use that for assigning ids to the
objects that you create, e.g. reactions or
protein complexes.

by the model’s getByID method:

Protein retrievedProtein = model.getByID(

"http://biopax.org/tutorial/test1");

http://identifiers.org/uniprot/P04150
http://identifiers.org/uniprot/P04150

14 using biological pathway data with paxtools: a user’s guide

Modifying Objects

In the model package you will find interfaces for each class in BioPAX.
All setter/getter methods for BioPAX properties in those interfaces
follow the default java bean pattern - for single cardinality property
TTT, there are two methods: setTTT/getTTT14. For multi-cardinality 14 Unlike Object Oriented languages like

Java, in OWL properties are first class
citizens that can have inheritance and
attributes like transitive and functional.
Paxtools implements these additional
semantics internally. For example,
since property "standardName" is a
subproperty of "name", updating the
standardName of a protein will also
update its list of names.

objects, Paxtools keeps a Set of objects. Two additional methods, ad-
dTTT and removeTTT are provided for manipulating the content of
these sets.

Let’s modify the fields of our newly minted protein :

protein1.addName("Tutorial Example Some Transporter 1");

protein1.setDisplayName("TEST1");

Let’s add a biochemical reaction and connect it to our protein:

BiochemicalReaction rxn1 = model.addNew(

BiochemicalReaction.class,

"http://biopax.org/tutorial/rxn1");

rxn1.addLeft(protein1);

You can keep adding different properties and classes to get a com-
plete pathway. 15. 15 In the BioPAX specification properties

are unidirectional for brevity. For ex-
ample, the "participant" property links
interactions to physical entities. You
should always add/removes properties
in that "forward’ direction. Paxtools
also provides additional "inverse" links
for key properties that allow efficient
bidirectional navigation. These inverse
links are also automatically updated
when you modify the forward direction

Reading and Writing BioPAX

Most of the time you, will not be creating your model from the
scratch but rather reading it from a file. For reading files, Paxtools
give you the BioPAXIOHandler interface and two alternative imple-
mentations, JenaIOHandler and SimpleIOHandler,

Jena IO

Jena is a full-fledged Java framework for semantic web applications.
Paxtools can read OWL files using Jena’s OWL API. This is a com-
plete solution that can read most OWL encodings. On the negative
side, it has a big footprint and can demand a significant amount of
memory for some large BioPAX files. Jena is a good choice if you
are already using it in your application or increasing the size of your
application is not a big problem, do not know the owl encoding of
the BioPAX files you need to read beforehand and you will only deal
with small BioPAX files. You can initialize a Jena based reader by:

BioPAXIOHandler handler = new JenaIOHandler();

or for level 3:

paxtools basics 15

BioPAXIOHandler handler = new JenaIOHandler(BioPAXLevel.L3);

Simple IO

Alternatively, you can use the SimpleIO class for a minimal footprint
and high performance. The Simple reader can only read BioPAX
encoded in RDF/XML and will not give you the flexibility of the Jena
based reader, but it may be the optimal solution for use cases where
you are processing large BioPAX files or do not want to increase the
size of your application.

// auto-detects Level

BioPAXIOHandler handler = new SimpleIOHandler();

Once you have the handler you can import an OWL file into a
model by simply:

Model model = handler.convertFromOWL(inputStreamFromFile);

Writing your model to a file is as easy as:

handler.convertToOWL(model, outputStream);

Exporting a sub-model to OWL

If you want to export only a set of BioPAX elements rather than the
whole model itself, you can use the following call to the convert-
ToOWL:

handler.convertToOWL(model, outputStream, id1, id2, id3);

ids is a vararg that you can use to declare the identifiers of ele-
ments you want to export from the model. This method will "auto-
complete" meaning that dependents of the given objects will also be
exported.

Accessing and Manipulating Pathway Elements

Basic Traversal

Once you have loaded a BioPAX file into a model, you are ready to
start traversing it. The simplest option to start exploring your model
is to call getObjects(). This will return a set of all BioPAX Elements in
your model. You can then inspect each one. For example:

// Load a sample test BioPAX File via Simple IO Handler

FileInputStream fin = new FileInputStream("test.owl");

BioPAXIOHandler handler = new SimpleIOHandler();

Model model = handler.convertFromOWL(fin);

// Iterate through all BioPAX Elements and print basic info

Set<BioPAXElement> elementSet = model.getObjects();

for (BioPAXElement currentElement : elementSet)

{

String rdfId = currentElement.getRDFId();

String className =

currentElement.getClass().getName();

System.out.println("Element: " + rdfId + ": " + className);

}

Alternatively, you can call getObjects() with a BioPAX class name
and extract only the matching elements. For example, the following
code extracts all proteins in your model, and outputs their name and
display name:

// Get Proteins Only

Set<Protein> proteinSet = model.getObjects(Protein.class);

for (Protein currentProtein : proteinSet)

{

System.out.println(currentProtein.getName() +

": " + currentProtein.getDisplayName());

}

18 using biological pathway data with paxtools: a user’s guide

Path Accessors

Path accessors provide you with XPath-like access to the model. This
allows you to explicitly state the paths you would like to access and
can significantly reduce boiler plate code, especially when you need
to traverse multiple cardinality properties. For example, consider the
simple case of extracting the UnificationXrefs that belongs to protein
references for each pathway in your model. To do that you need to
access the processes that belong to a particular pathway, then get
their participants that are Proteins, access their ProteinReferences
and then access unification XRefs of all entityReferences and then
test each XRef for whether it is a unification XRef. This is further
complicated by the fact that pathways can be nested. Without Path
accessors, this leads to some complicated code:

// Iterate through all pathways in the model

for (Pathway aPathway : model.getObjects(Pathway.class))

extractProteinUrefsFromPathway(aPathway);

The following method will dig into the Processes in the pathway:
16 16 Note that "Process" is not an offi-

cial BioPAX class. There are several
anonymous union classes in the OWL
specification of BioPAX. Paxtools cre-
ates special classes for these cases as
anonymous superclasses are not sup-
ported in Java. In this case a Pathway
might have "an Interaction or another
Pathway" as a component. This union
superclass maps to the Process interface
in Paxtools. For more details please
consult the API docs.

extractProteinUrefsFromPathway(Pathway aPathway)

{

for(Process aProcess: aPathway.getPathwayComponents())

{

if(aProcess instance of Pathway)

{ //Dig into the nested structure recursively

extractProteinUrefsFromPathway((Pathway)aProcess);

} else

{ //It must be an Interaction

extractAndPrintProteinUrefs((Interaction)aProcess));

}}}

Finally we have reached the Proteins:

public void extractAndPrintProteinUrefs(Interaction anInteraction)

{

for(Entity participant:anInteraction.getParticipants())

{

if(participant instanceof Protein)

{

ProteinReference entityReference=

((Protein)participant).getEntityReference();

accessing and manipulating pathway elements 19

if (entityReference != null)

{

Set<Xref> xrefSet = entityReference.getXref();

for (Xref currentRef : xrefSet)

{

if (currentRef instanceof UnificationXref)

{

System.out.println(

"Unification XRef: " + currentRef.getDb() + ": "

+ currentRef.getId());

}}}}

That’s a lot of coding for a relatively common and straightforward
task. The same code, rewritten with a Path Accessor:

// Set up the Path Accessor

PathAccessor pathAccessor = new PathAccessor(

"Pathway/participants*:Protein/entityReference/xref:UnificationXref");

// Iterate through all proteins in the model

for (Pathway currentPathway : model.getObjects(Pathway.class))

{

System.out.println("Pathway:"+currentPathway.getName());

Set<Xref> unificationXrefs = pathAccessor.getValueFromBean(currentPathway);

for (Xref currentRef : unificationXrefs)

{

System.out.println(

"Unification XRef: " + currentRef.getDb() + ": " + currentRef.getId());

}}

The format of the path query is in the form:
[Initial Class]/[property1]:[classRestriction(optional)]/[property2]...
A "*" sign after the property instructs path accessor to transitively

traverse that property. For example, the following path accessor will
traverse through all physical entity components within a complex:

PathAccessor accessor = new PathAccessor(

"Complex/component*/entityReference/xref:UnificationXref");

The optional classRestriction will allow you to restrict the returned
values of a property to a certain subclass of the range of the property.
In the example above, this is used to get only the Unification Xrefs.

20 using biological pathway data with paxtools: a user’s guide

Using property editors

There are many cases where you need to handle BioPAX classes
and properties, but don’t want to hard-code their names into your
code. For example you might be writing an "Inspector" for your
visualization tool –a tabled display of the selected object’s properties–
or you might be writing a tool that allows users to export BioPAX
into a customizable spreadsheet. If you find yourself hard-coding
lists of properties into your code, you can probably simplify it using
property editors. Let’s implement a simple "Inspector" that returns
the list of properties and values of a given BioPAX object.

public static String[][] listProperties(BioPAXElement bpe)

{

// In order to use properties we first need an EditorMap

EditorMap editorMap = SimpleEditorMap.L3;

// And then get all the editors for our biopax element

Set<PropertyEditor> editors = editorMap.getEditorsOf(bpe);

// Let's prepare a table to return values

String value[][] = new String[editors.size()][2];

int row = 0;

// For each property

for (PropertyEditor editor : editors)

{

// First column is the name of the property, e.g. "Name"

value[row][0] = editor.getProperty();

// Second column is the value e.g. "p53"

value[row][1] = editor.getValueFromBean(bpe).toString();

// increase the row index

row++;

}

return value;

}

That was easy! Editors also provide you with a generic way to
set a value to the property, access its cardinality and other useful
methods. They are also used extensively for traversing and cloning
which we will cover in the next part of the tutorial.

Advanced Controls:Traversing, cloning and merging

Traversing

Traversing is an efficient way to perform operations that affects multi-
ple connected entities using the visitor pattern. Given a model and a
starting element, Traverser will follow the dependency relations and
it will be calling the Visitor.visit() method for each triplet of a prop-
erty editor, its domain (a BioPAX Element) and its range (a BioPAX
Element, String, Float, and etc.) it traverses. A use case where a tra-
verser is extremely useful is getting dependents of an object. For
example, in order to extract a single reaction from a BioPAX model,
one may be tempted to write:

//read initial model

Model model1 = handler.convertFromOWL(inputStream);

//create an empty model with the same level

Model model2 =

model1.getLevel().getDefaultFactory().createModel();

//extract reaction

model2.add(model1.getByID("The_reaction_id"));

//write it out

handler.convertToOWL(model2, outputStream);

This is not a good solution though. The problem with this ap-
proach is that the add() method inserts only the reaction element (but
not the participants and etc.) to our new model. Hence, the exporter
will throw an error when trying to write this model out to a file. We
need a way where we can recursively get an element and its depen-
dencies, and then add all these elements into the new model17 . Here 17 The repair() method in the Model

class implements the functionality given
in the example. It will find and add
child elements that are not currently
contained in the model.

is a simple implementation using Traverser18:

18 You can also extend AbstractTraverser
instead and override its public abstract
visit method. See the Fetcher class for
an example implementation.

22 using biological pathway data with paxtools: a user’s guide

/**

* A controller that excises/extracts an element and all the elements it is

* dependent on from a model and adds them into a new model.

*/

class Excisor implements Visitor

{

private Traverser traverser;

private EditorMap editorMap;

private Model targetModel;

public Excisor(EditorMap editorMap)

{

this.editorMap = editorMap;

this.traverser = new Traverser(editorMap, this);

}

//The visitor will add all elements that are reached into the new model,

// and recursively traverse it

public void visit(BioPAXElement domain, Object range, Model model,

PropertyEditor editor)

{

// We are only interested in the BioPAXElements since

// primitive fields are always copied by value

if (range != null && range instanceof BioPAXElement)

{

BioPAXElement bpe = (BioPAXElement) range;

if (!targetModel.contains(bpe))

{

targetModel.add(bpe);

traverser.traverse(bpe, model);

}}}

The following method uses the traverser to "excise" the objects from the source model and adds them to
the target model.

advanced controls:traversing, cloning and merging 23

public Model excise(Model sourceModel, String... ids)

{

// Create a new model that will contain the element(s) of interest

this.targetModel = editorMap.getLevel().getDefaultFactory().createModel();

for (String id : ids)

{

// Get the BioPAX element

BioPAXElement bpe = sourceModel.getByID(id);

// Add it to the model

targetModel.add(bpe);

// Add the elements that bpe is dependent on

traverser.traverse(bpe, sourceModel);

}

return targetModel;

}

}

Optionally, Traverser uses property filters. It will not visit a property if the corresponding property edi-
tor fails to pass all the specified filters. One can define the filters by implementing org.biopax.paxtools.util.Filter
interface, and add them to the constructor.

public Excisor(EditorMap editorMap, boolean filtering)

{

this.editorMap = editorMap;

if (filtering)

//We will filter nextStep property, as Reactome pathways leads

//outside the current pathway. Step processes are listed in the

//pathwayComponent property as well so this does not affect the fetcher.

{

final Filter<PropertyEditor> nextStepFilter = new Filter<PropertyEditor>()

{

public boolean filter(PropertyEditor editor)

{

return !editor.getProperty().equals("nextStep");

}

};

this.traverser = new Traverser(editorMap, this, nextStepFilter);

}

else this.traverser = new Traverser(editorMap, this);

}

24 using biological pathway data with paxtools: a user’s guide

Merging

One of the major goals of BioPAX is to integrate pathway information
that were curated in a distributed fashion, similar to putting pieces
of a puzzle together. Integration can be very complicated due to
incomplete information, multiple levels of details and finally curation
differences and errors 19 19 We differentiate between 4 different

types of matching between objects:
Equality, RDF Equality, Equivalence
and External Equivalence. Paxtools
handles the first three, the fourth is
handled by integration data warehouses
such as Pathway Commons. There
are other object matching/alignment
relationships including Similarity,
Subsumption and Containment. These
are currently open problems.

Equality is based on Java object identity. Paxtools do not override
equals() and hashCode methods to avoid potential confusions with
Java frameworks such as Hibernate.

RDF Equality is based on the unique RDF-IDs of objects and its
semantics are relatively straightforward. If two different objects have
the same RDF-ID then: they can not be added to the same model at
the same time.

Equivalence is based on the BioPAX properties of the objects and
have much more complicated semantics.

In general two BioPAX elements are equivalent if they are equal OR
if they are defined to be semantically equivalent which considers
its properties.

In general, UtilityClasses that only have primitive properties are
equivalent if the values of these properties are all known AND
equal. Unknown/undefined values are considered unequal. For
example, two sequenceSites with undefined positions are not
considered equivalent.

EntityReferences equivalence is typically defined externally, e.g. by
UniProt or Entrez Gene xrefs. Paxtools do not define additional
equivalence semantics other than being equal for EntityReferences.

PhysicalEntities are defined to be equivalent iff their EntityRefer-
ence, CellularLocation, set of Features and set of NotFeatures are
all equivalent.

Complexes are defined to be equivalent iff their participant sets are
equivalent.

Interactions are defined to be equivalent iff their participant sets
are equivalent. For subclasses of interactions with different types
of participants e.g. catalysts each subset of participant should be
equivalent to the corresponding subset.

advanced controls:traversing, cloning and merging 25

Pathway definition has no strong semantic definition and is often
demarcated arbitrarily. Paxtools do not define additional semantic
equivalence for Pathways.

Features are equivalent iff their EntityReferences, FeatureTypes and
Locations are equivalent.

ControlledVocabularies are equivalent iff their CV source and terms
are equivalent.

Two stoichiometries are equivalent iff their PhysicalEntity and stoi-
chiometric number is equivalent.

If A is equivalent to B then: Both A.isEquivalent(B) and B.isEquivalent(A)
method returns true; they can be added to the same model and their
equivalenceCode() are the same.

Merging based on Equivalence

If you want to merge multiple BioPAX models into a single model,
the Merger class under the paxtools-core module can help you to do
so:

Merger merger = new Merger(editorMap);

merger.merge(targetModel, srcModel1, srcModel2);

The merger identifies equivalent elements and merges them20. The 20 If one element in the source model
is matched to a target element, then
for BioPAX properties with multiple
cardinality, the values of the source
element are added to the target. For
single cardinality properties, the source
value overwrites the target value.

method modifies the target model (but not the source models) so that
the target becomes the merged model. If you do not want to modify
the target model, then you might want to use a new model as the
target:

Model targetModel =

editorMap.getLevel().getDefaultFactory().createModel();

Merger merger = new Merger(editorMap);

//vararg method â�� accepts multiple models

merger.merge(targetModel, srcModel1, srcModel2);

Simple Merging

If you don’t want to infer equivalence for interactions and partic-
ipants and want to simply merge based on RDF-IDs, you can use
SimpleMerger. SimpleMerger will migrate elements from the source
model to the target, only if target does not contain another element
with the same id. While migrating objects, SimpleMerger updates
(re-wires) object property values of source elements to make sure
they now refer to objects in the target model. SimpleMerger is a good

26 using biological pathway data with paxtools: a user’s guide

choice if the models you would like to merge are coming from same
sources or are already normalized by some service, such as Path-
way Commons. An example use case might be "stitching" together
multiple query results from Pathway Commons. In a special case, to
merge a single source model to the target, you can use merge(source)
method of the Model class, which internally translates to the Simple-
Merger merge method call with two Model parameters.

Exporting BioPAX to and from other formats

Paxtools also provides several converters to other standards and
common formats.

Exporting to Simple Interaction Format (SIF)

Simple Interaction Format (SIF) was originally created for use with
Cytoscape, the open source bioinformatics software platform for
visualizing molecular interaction networks. SIF is simple to parse,
and easy to load into Cytoscape and other third-party applications.

Relations in a SIF file are formatted as:

source relationship type target

where source and target are a valid primary id and relationship
type is one of the interaction inference rules specified in 1.

As its name suggests SIF, is a substantially simpler format com-
pared to BioPAX. A BioPAX formatted network is capable of storing
rich biological semantics, including multi-participant relationships,
states and locations of entities, complexes and complex control re-
lationships. A SIF network, on the other hand, is only capable of
storing pairwise interactions between entity references.

Inference Rules

Paxtools reduces BioPAX to pairwise SIF relationships using a set of
rules. Although this translation is lossy, SIF network remains useful
for certain types of bioinformatics applications that require pairwise
interaction input. The table below outlines these rules. To export a
BioPAX model to SIF, use the SimpleInteractionConverter class:

SimpleInteractionConverter converter =

new SimpleInteractionConverter(new ControlRule());

converter.writeInteractionsInSIF(level2, out);

Note the ControlRule object passed to the constructor. The con-
structor accepts a comma separated list of inference rules that are

28 using biological pathway data with paxtools: a user’s guide

applied when binary interactions are requested. If not specified, all
default binary interaction rules will be applied. You can also write
your own rules by implementing the InteractionRule interface.

SIFNX Format

SIFNX is an extensible SIF-based format that allows users to cus-
tomize the information extracted from the BioPAX model while keep-
ing the simple binary network structure of SIF. You can use the same
SimpleInteractionConverter class to export to SIFNX. For example, if
you want to get the name of entities, their class, their external refer-
ences and publications associated with interactions you can use:

converter.writeInteractionsInSIFNX(model,

out, out, Arrays.asList("Entity/name","Entity/xref"),

Arrays.asList("Entity/xref:PublicationXref"), true);

Parameters in this method represents the flexibility of SIFNX ex-
porter. Model is the source model, and the two output streams are
for writing out nodes and edges respectively. In this case, we opted
to write both of them to the same stream. Next, two lists of strings
define the path accessors to extract information for nodes and edges
of the SIF. Finally, the last boolean parameter instructs converter to
write the class of entity nodes to the export.

PSI-MI (Proteomics Standards Initiative - Molecular Interaction)

The PSI-MI format is a data exchange format for molecular inter-
actions. With help from the PSI-MI Developer Tools Library, the
PSI-MI converter has the ability to create a BioPAX-L2 or BioPAX-L3

model from a PSI-MI Level 2.5 file. For each EntrySet in the PSI-MI
file, a BioPAX model is created. For each Entry in the EntrySet, the
converter creates a physicalInteraction (BioPAX-L2) or a Molecular-
Interaction (BioPAX-L3) for each interaction in the Entry. Currently,
genetic interactions are ignored. For each Participant in the Interac-
tion, the converter will create a sequenceParticipant (BioPAX-L2) or
a SimplePhysicalEntity (BioPAX-L3). The ParticipantâĂŹ Interactor
determines the physical entity underlying the sequenceParticipant or
SimplePhysicalEntity. The converter will create a smallMolecule, dna,
rna or protein class (BioPAX-L2) or SmallMolecule, Dna, Rna, or Pro-
tein class (BioPAX-L3) based on the type of Interactor. This converter
is also available using Paxtools from the command line.

exporting biopax to and from other formats 29

Gene Set Enrichment Analysis(GSEA)

Paxtools can create a Gene Matrix Transposed (*.gmt) file from a
BioPAX-L3 model. For each Pathway object in the model, the GSEA
converter traverses all Protein objects in the Pathway and adds
the RDF ID belonging to the first Xref returned by a call to Pro-
tein.getXref() to the gene set. An optional external database name
can be supplied to the converter, which would limit gene set mem-
bership to only those Protein objects that have an Xref to the external
database. The GSEA converter also has the ability to limit gene set
membership to only those Protein objects that belong to the same
species as the Pathway. This converter is also available using Paxtools
from the command line.

Systems Biology Graph Notation - Process Description(SBGN-PD)

Paxtools use libSBGN library to create SBGN -PD exports in SBGN-
ML for BioPAX-L3 models. BioPAX-L3 to SBGN-PD conversion is
an approximation because BioPAX-L3 is not always fully convertible
to SBGN-PD. The main point of conflict is PhysicalEntity objects in
BioPAX-L3 can define overlapping sets of pool of molecules, while
EntityPoolNode (EPN) of SBGN-PD have to be disjoint. Paxtools
creates an EPN for each PhysicalEntity as if they represent disjoint
pools. The following table is a summary of the conversion process.

BioPAX L3 component Corresponding SBGN-PD glyph

SimplePhysicalEntity Glyph types "macromolecule", "simple chemical", "nucleic acid feature", and
"unspecified entity" are used according to the type of the PhysicalEntity.

Conversion A "process" glyph is created for each direction of the Conversion, i.e. two
glyphs are created if the Conversion is reversible. "consumption" and "pro-
duction" arcs are used to associate left and right participants, according to the
direction.

Control Controllers are linked with "catalysis", "stimulation", and "inhibition" arcs to
the related process. When there are multiple Controller of the Control, they are
connected with a logical "and" glyph. When the control has another control on
itself, controls are connected with "and" glyph, and a "not" glyph is used after
the second controller if the second control is negative. So the Control tree in
BioPAX-L3 is represented with an "and" and "not" tree in SBGN-PD.

TemplateReaction Similar to Conversion, a "process" glyph is created, but without the consumed
participants. Instead, a "source and sink" glyph is created and linked with a
"consumption" arc.

The SBGN creation facility is implemented under the package
org.biopax.paxtools.io.sbgn, and used as following:

//Create SBGN-PD and write to the given file

L3ToSBGNPDConverter.writeSBGN(level3Model, "filename.sbgn");

30 using biological pathway data with paxtools: a user’s guide

p53

MDM2 ARF

ARF

p53

MDM2

COMPONENT_OF: The first entity is a
component of the second entity, which
is a complex. This interaction is
transient in the sense that A component
_of B and B component_of C implies A
component_of C. This interaction is
directed.

p53

MDM2 ARF

ARF

p53

MDM2

Complex1

IN_SAME_COMPONENT: Two entities
belong to the same molecular complex.
This does not necessarily mean they
interact directly. In a complex with n
molecules, this rule will create a clique
composed of n(n-1)/2 interactions.
This interaction is undirected.

p53 p53

p@392

p38

p53p38

STATE_CHANGE: The first entity controls
 a reaction that changes the state of
the second entity, e.g. by
phosphorylation or other
posttranslational modification, or by a
change in subcellular location. This
interaction is directed.

α-D-glucose
1-P

PGM1

α-D-glucose
6-P

α-D-glucose

1-P
PGM1

α-D-glucose

6-P

METABOLIC_CATALYSIS: The first entity
catalyzes a reaction that either
consumes or produces the second
entity. This interaction is directed.

ESCRT-I

Cargo
Complex

ESCRT-I

ESCRT-II

ESCRT-II

Cargo
Complex

ESCRT-I ESCRT-II

REACTS_WITH: The entities participate
in a conversion as substrates or
products. Controllers are not included.
This interaction is undirected.

RPE RPIA

D-Xylulose
5-P

D-Ribulose
5-P

D-Ribose
5-P

RPIARPE
SEQUENTIAL_CATALYSIS: The entities
catalyze two conversions that are
connected via a common molecule, e.g.
the first entity produces a substrate
that is consumed by the second entity.
This interaction is directed.

RPE RPIA RPIARPE

INTERACTS_WITH: The entities
participate in an interaction. Controllers
are not included.
This interaction is undirected.

WNT1

WNT

WNT2

WNT WNT1

WNT2

GENERIC_OF: The first entity is a generic
form of the second entity.
This interaction is directed

Figure 1: SIF rules: The left column is
the recognized BioPAX pattern drawn
in SBGN-PD, the right column is the
resulting inferred SIF relationship(s).

Running Graph Queries

Paxtools provides several graph queries such as neighborhood, short-
est + k paths, paths-in-between, common upstream, and common
downstream, in the package org.biopax.paxtools.query. The algo-
rithms used in the these queries are based on Dogrusoz et al.21. Each 21 Dogrusoz, U., Cetintas, A., Demir,

E., & Babur, O. 2009, Algorithms
for effective querying of compound
graph-based pathway databases, BMC
Bioinformatics, 10, 376, 376

query takes a source set (and sometimes also a target set) of BioPAX
objects, the model, and several query parameters as input in their
constructor. The run() method returns the result set of BioPAX ob-
jects. To run graph queries, you can use the static methods of the
class QueryExecuter:

Set<BioPAXElement> source = new HashSet<BioPAXElement>();

// Add the related source PhysicalEntity

//(or children) objects to the source set

Collections.addAll(source, entity1, entity2, entity3);

int limit = 2;

// Direction can be upstream, downstream, or bothstream.

Set<BioPAXElement> result = QueryExecuter.runNeighborhood(

sourceSet, model,limit, Direction.BOTHSTREAM);

The query result will contain only the objects on the resulting
paths. It will be a subgraph of the model, but it may not be a seman-
tically consistent subgraph. For instance, consider the model : A,
B, X are instances of PhysicalEntity, C is a Conversion, A is at the
left of C, B is at the right of C, direction of C is left-to-right, and X
is the positive Controller of C. A neighborhood query with source
X, limit 1, and towards downstream will retrieve the path X->C->B;
however, this subgraph is not semantically complete. It contains a
Conversion with a missing "left1" (in this case, an input). When the
query result is detached from the model, for example if the query is
being performed in a server, and the resulting graph is being sent to
a visualization client, omitting A in the view will lead semantically
incomplete view. In that case the user needs to use the Completer
class to complete query result:

32 using biological pathway data with paxtools: a user’s guide

Completer c = new Completer(

SimpleEditorMap.get(BioPAXLevel.L3));

result = c.complete(result, model);

Now, the result set contains A because of C. This set can be safely
cloned to get a valid BioPAX model.

QueryExecuter provides several methods for common graph
queries:

• Neighborhood

Searches directed paths from and/or to the given source set of
entities, in the specified search limit.

Parameters

– sourceSet: Set of source physical entities

– model: Current model

– limit: Search limit

– direction: Enum for search direction. Can be upstream, down-
stream, or bothstream.

• GOI

GOI stands for graph-of-interest. This query retrieves the directed
paths between the objects in the given source set. User gives a
set of PhysicalEntity object and this query retrieves the graph
connecting these entities.

Parameters

– sourceSet: Set of source physical entities

– model: Current model

– limit: Path length limit for the search

• POI

POI stands for paths-of-interest. Similar to GOI, but paths are
searched from a source set, towards a target set. There are two
types of search limit in this case. The first one is the normal limit,
where you limit the length of the search paths by a value. The
second is a shortest + k type limit, where the user specifies the
value of k, and the actual limit becomes the length of the shortest
path between sets plus k. The latter is useful when the user wants
minimal connections between sets but does not know the length of
the shortest path.

Parameters

running graph queries 33

– sourceSet: Source set of physical entities to start search

– targetSet: Target set of objects to reach during the search

– model: Current model

– limitType: Whether to use a constant path length limit or a
shortest+k limit

– limit: Value of the limit. If limit type is shortest+k, then this
represents k

• PathsBetween

This query is similar to GOI âĂŞ it finds paths between a given
source set of objects. The source set may contain Xref, EntityRef-
erence, and/or PhysicalEntity objects. They are automatically
converted to sets of related PhysicalEntitiy objects to use as source
in the query. The major difference here is that it avoids finding
paths between PhysicalEntity objects that are associated with the
same EntityReference, unless the user provides them explicitly
in the source set. For instance, when the source set contains En-
tityReference of P53 protein, the query automatically finds all
different modified versions of P53 in the model to use as seed in
the query, but does not return paths between them. However, if
a user provides different modification states of P53 in the source
set, the query finds paths between them. The major use case of this
query is the user has a set of entity references and wants to find
paths connecting them.

Parameters

– sourceSet: Source set of xrefs, entity references, or physical
entities

– model: Current model

– limit: Search limit

• CommonStream

This query searches for the common upstream (common regu-
lators) or common downstream (common targets) objects of the
given source set. The source set should contain at least 2 elements.

Parameters

– sourceSet: Source set of physical entities

– model: Current model

– direction: Upstream or downstream

– limit: Search limit

34 using biological pathway data with paxtools: a user’s guide

• CommonStreamWithPOI

Common-stream query returns only the objects in the common
upstream or downstream, but it does not include the paths leading
to them. If a connected graph that contains both common objects
and source objects is desired, then a POI query should be run
between common objects and source objects. This method does it
automatically.

Parameters

– sourceSet: Source set of physical entities

– model: Current model

– direction: Upstream or downstream

– limit: Search limit

Resources and Non-Java Access

Accessing Pathway Commons

Pathway Commons (PC) is a convenient point of access to biologi-
cal pathway information collected from BioPAX supporting public
pathway databases. You can programmatically access PC using the
pathwaycommons-client module. Currently there are two separate
Pathway Commons clients implemented as part of the Paxtools under
the org.biopax.paxtools.io.pathwayCommons package: Pathway-
CommonsIOHandler which interacts with the older PC WEB API
and supports BioPAX Level 2; and PathwayCommons2Client which
makes use of the newer PC WEB API and supports BioPAX Level 3.

Using Pathway Commons Client you can search Pathway Com-
mons, run graph queries in a bigger and more complete BioPAX
graph or normalize your custom pathway using Pathway Commons
services.

For example, here is a code snipplet which searches Pathway Com-
mons 2 for the term "BRC*" restricting the results only to the BioPAX
type Control and to the organism Homo sapiens; and then obtains
these control reactions as a Paxtools model:

PathwayCommons2Client pc2 = new PathwayCommons2Client();

pc2.setOrganisms(Collections.singleton("homo sapiens"));

pc2.setType("Control");

//Let's search for anything that starts with BRC

SearchResponseType result = pc2.find("BRC*");

HashSet<String> uris = new HashSet<String>();

// For each search hit we got, get the uri for the

// resource at PC and add it to the set

for (SearchHitType hit : result.getSearchHit())

{

uris.add(hit.getUri());

}

//Create a model from this set of resources

Model model = pc2.get(uris);

36 using biological pathway data with paxtools: a user’s guide

Using Paxtools from the command line

Paxtools can be run as command line application. Command line options are summarized below:

merge file1 file2 output

toSif file1 output

toSifnx file1 outEdges outNodes prop1,prop2,...

validate path out [xml|html|biopax] [auto-fix] [normalize] [only-errors] [maxerrors=n]

integrate file1 file2 output

toLevel3 file1 output

fromPsimi level file1 output

toGSEA file1 output database crossSpeciesCheck

fetch file1 id1,id2,.. output

getNeighbors file1 id1,id2,.. output

If you have obtained Paxtools as a ("fat") JAR archive (e.g., a paxtools-YYYYMMDD.jar), then you can
use the command line interface as the following:

java -jar paxtools.jar --merge file1.owl file2.owl output.owl

For very large files you might want to increase jvm’s memory:

java -Xmx2048M -jar paxtools.jar --merge file1.owl file2.owl output.owl

You can also directly call the PaxtoolsMain class by:

java -cp paxtools.jar org.biopax.paxtools.PaxtoolsMain --validate file.owl

Using Paxtools from Python

You can use JPype to control Paxtools from Python. You can down-
load and install JPype from http://jpype.sourceforge.net/. Following
example demonstrates how you can create a simple BioPAX model
and write it out to a file using Python.

resources and non-java access 37

from jpype import *

#call this to initialize use of Java

startJVM(getDefaultJVMPath(), "-ea", "-Xmx1g", "-Djava.class.path=paxtools.jar")

#get the paxtools root package as a shortcut

paxPkg = JPackage("org.biopax.paxtools")

#create a new BioPAX L3 factory

l3Factory = paxPkg.model.BioPAXLevel.L3.getDefaultFactory()

#create a new empty BioPAX model

model = l3Factory.createModel()

#define and set the xml base (URI prefix for elements we create)

xmlBase = "http://biopax.org/examples/pythonPaxtools#"

model.setXmlBase(xmlBase)

#get BioPAX classes (model interfaces); in this example:

#Protein, CellularLocationVocabulary, UnificationXref:

proteinClass = java.lang.Class.forName(

"org.biopax.paxtools.model.level3.Protein",

True, java.lang.ClassLoader.getSystemClassLoader())

cellularLocationCvClass = java.lang.Class.forName(

"org.biopax.paxtools.model.level3.CellularLocationVocabulary",

True, java.lang.ClassLoader.getSystemClassLoader())

unificationXrefClass = java.lang.Class.forName(

"org.biopax.paxtools.model.level3.UnificationXref",

True, java.lang.ClassLoader.getSystemClassLoader())

#create/add a couple of elements to the model

#Let's create a simple protein state using the factory method and unique identifier (URI)

protein = l3Factory.create(proteinClass, xmlBase + "protein1")

protein.addComment("python: created " + protein.getRDFId())

#And add it to the model

model.add(protein)

#step 3: set properties

protein.addAvailability("availability text")

cellLoc = l3Factory.create(

cellularLocationCvClass, "http://identifiers.org/obo.go/GO:0005737")

model.add(cellLoc)

cellLoc.addComment("python: created " + cellLoc.getRDFId())

cellLoc.addTerm("cytoplasm")

protein.setCellularLocation(cellLoc)

#alternatively, one can create, set the id (URI), and add the element in one step

protein2 = model.addNew(proteinClass, xmlBase + "protein2")

protein2.addComment("created " + protein2.getRDFId())

38 using biological pathway data with paxtools: a user’s guide

let's add a unification xref to the CV

ux = model.addNew(unificationXrefClass, xmlBase + "XREF_GO_0005737")

ux.setDb("GO")

ux.setId("GO:0005737")

cellLoc.addXref(ux)

#export the model to a BioPAX OWL file

javaIO = JPackage("java.io")

io = paxPkg.io.SimpleIOHandler(paxPkg.model.BioPAXLevel.L3)

fileOS = javaIO.FileOutputStream("test.owl")

io.convertToOWL(model, fileOS)

fileOS.close()

#import a BioPAX model from the file

fileIS = javaIO.FileInputStream("test.owl")

model2 = io.convertFromOWL(fileIS)

fileIS.close()

#output to console

io.convertToOWL(model, java.lang.System.out)

#end use of jpype - docs say you can only do this once,

so all java must be run before calling this

shutdownJVM()

Putting it all together

Here is an example application that takes two or more protein names
and queries/saves the neighborhood of each protein from Pathway
Commons. It also queries the paths between these proteins, converts
the resulting model to SIF and lists the publications that support the
each interaction in the final model.

public class ProteinAnalyzer

{

protected final static String outputPath = "files/";

public static void main(String[] arg) throws IOException

{

/* Expects two or more protein names */

if (arg.length < 2)

{

System.err.println(

"Usage: ProteinAnalyzer protein1 protein2 [protein3 [protein4 [...]]]");

System.exit(-1);

}

// This IO Handler will be used to export pathways in BioPAX format

SimpleIOHandler ioHandler = new SimpleIOHandler();

// Create the Pathway Commons client and configure it

PathwayCommons2Client pc2 = new PathwayCommons2Client();

// Search only for Proteins

pc2.setType("Protein");

// Restrict results to H. sapiens

pc2.getOrganisms().add("homo sapiens");

// Expand the graph query limit to get more results

pc2.setGraphQueryLimit(2);

// General set to collect ids of all matching protein

Set<String> allProteinIds = new HashSet<String>();

40 using biological pathway data with paxtools: a user’s guide

for (String protein : arg)

{

// Search PC2 for the given protein name

SearchResponseType searchResponse = pc2.find(protein);

if (searchResponse.getTotalNumHits() < 1)

{

System.err.println("No results for protein:" + protein);

System.exit(-1);

}

// Collect all ids associated to this search

Set<String> ids = new HashSet<String>();

for (SearchHitType searchHit : searchResponse.getSearchHit())

{

ids.add(searchHit.getUri());

}

// Also add all these ids to overall set

allProteinIds.addAll(ids);

// Query the neighborhood of this protein

Model proteinNeighborhood = pc2.getNeighborhood(ids);

// And export the resultant network in BioPAX format

FileOutputStream fileStream = new FileOutputStream(

outputPath + protein + ".owl");

ioHandler.convertToOWL(proteinNeighborhood, fileStream);

fileStream.close();

}

// Query the paths between all given proteins

Model pathsBtwModel = pc2.getPathsBetween(allProteinIds);

// Save the model in BioPAX format

FileOutputStream pathsBtwFile = new FileOutputStream(

outputPath + "pathBetween.owl");

ioHandler.convertToOWL(pathsBtwModel, pathsBtwFile);

pathsBtwFile.close();

// Also save the model in Simple Interaction Format with all default rules

SimpleInteractionConverter sifConverter = new SimpleInteractionConverter();

FileOutputStream pathsBtwSIFFile = new FileOutputStream(

outputPath + "pathBetween.sif");

sifConverter.writeInteractionsInSIF(pathsBtwModel, pathsBtwSIFFile);

pathsBtwSIFFile.close();

// Now, get all interactions in the models to extract publication information

for (Interaction interaction : pathsBtwModel.getObjects(Interaction.class))

{

// Print the name of the interaction

System.out.println("* " + interaction.getDisplayName());

putting it all together 41

// Get all external references

for (Xref xref : interaction.getXref())

{

String db = xref.getDb(),

id = xref.getId(),

url = "";

// Convert PubMed ids to URLs for easy access

if (db.equalsIgnoreCase("PubMed"))

url = " (http://www.ncbi.nlm.nih.gov/pubmed/" + id + ")";

// Print the external reference information

System.out.println("\t" + xref.getDb() + ":" + xref.getId() + url);

}}}}

Frequently Asked Questions

Q. When I convert BioPAX to simple interaction format file many relations
contains unresolvable ids starting with http://biopax.org/generated/group/....
How do I map this generated link to a known ID such as protein name or
entrezID?

A. Unresolvable URIs like this are used to represent groups that
are either complexes, generics or generic complexes. Generics are
typically families of proteins (think WNT) that pathway databases
captured as a group. A generic complex would be WNT-FRZ com-
plex that maps to combinatorially many instances. Since in a SIF
conversion nodes are entityReferences and complexes and some
generics in BioPAX do not have entity references, without groups SIF
conversion would be lossy or inaccurate.

You can try toSifnx command to get external references as:

java -Xmx1g -jar paxtools.jar toSifnx your_biopax_level3.owl

edges.txt nodes.txt "EntityReference/xref:UnificationXref,

EntityReference/xref:RelationshipXref,Entity/xref:UnificationXref,

Entity/xref:RelationshipXref"

"Interaction/dataSource/name,Interaction/xref:PublicationXref"

Q. I have encountered a conflict between jars and I get the following
exception when I am reading BioPAX

Exception in thread "main" org.biopax.paxtools.util.BioPaxIOException:

Unexpected element at start: 6

at org.biopax.paxtools.io.SimpleIOHandler.readNameSpaces

A. This is a known problem caused by the StaX factory auto-
discovery in JDK. You probably have two different stax implemen-
tations in your classpath. This problem also might happen under
certain resource frameworks such as OSGi. For some discussion on
this issue please see: http://code.cytoscape.org/redmine/issues/829.
Paxtools, in the future might allow different discovery solutions for
different needs. As a temporary solution you can use the Jena based
IO-handler.

44 using biological pathway data with paxtools: a user’s guide

Q. While reading a new BioPAX Level 3 model I am getting an error

INFO Detected biopax namespace for level 2

INFO Using level: 2

ERROR org.biopax.paxtools.util.IllegalBioPAXArgumentException

: No creation methods for name: SmallMolecule

A. This sometimes happens with BioPAX files that contains both L2

and L3 namespaces confusing the auto level detection of the reader.
Initialize your reader with the level explicitly:

JenaIOHandler jenaIOHandler =

new JenaIOHandler(

new Level3FactoryImpl(), BioPAXLevel.L3);

Q. I am getting a lot of errors from the reader while reading BioPAX in
the form of: ERROR org.biopax.paxtools.controller.PropertyEditor - Failed
to set value:.

A. This can happen either due to non-standard usage or exten-
sions of the BioPAX that is not in the specification. We constantly
work with data providers to reduce such cases but you might still
encounter them with an unvalidated BioPAX file. Examine the prop-
erties reported in the error log to determine what kind of information
is being lost. In some cases these are not important for your usecase
and you can ignore them. Otherwise try contacting the data provider
to fix them. Paxtools will provide support for extensions in the future
releases.

Q. Is it possible –probably with loss of information– to convert Level 3
files into Level 2?

A. L3 contains significant changes compared to L2 and such a
conversion would be quite lossy and problematic. Unfortunately,
Paxtools can only convert L2 to L3.

Q. I am executing a paths-between query but the result is a BioPAX
graph. I want to access the result paths separately. Where are the paths?

A. All graph queries return a graph which is the union of the
queried paths, but they do not create the resultgraph by iterating
over each result path. In most cases, there would be combinatorially
many paths that are infeasible to enumerate.

Q. Why does Paxtools SBGN converter generates two process nodes
for a reversible Conversion in the model when SBGN-PD can represent a
reversible reaction with a single process node.

A. This is due to a subtle semantic mismatch between SBGN-PD
and BioPAX. In BioPAX a reversible BiochemicalReaction (subclass
of Conversion) can have a directed Catalysis (left-to-right or right-
to-left) based on the physiological context. If we use a single process
node for the reversible reaction, we cannot show the direction of the

frequently asked questions 45

Catalysis. If we use two process nodes, one for each direction, then
we can associate the Catalysis only with the related process node.
However, creation of two process nodes is only the default behavior
and can be changed to single node using the "setUseTwoGlyphsFor-
ReversibleConversion" method if this is the user preference.

Q. I want to write an application that can handle both Level 2 and Level
3. Do I need to handle them separately?

A. This is a side effect of lack of backward compatibility between
BioPAX Level 2 and 3 specification and it is not something we could
directly address at the Paxtools level.. BioPAX Level 3 was a major
refactoring of the specification and it was impossible to maintain a
common class hierarchy between 2 and 3. We have indeed a single
class-base for Level 1 and Level 2 which are mostly backward com-
patible.,

To partially amend that situation we suggest all tool developers to
upgrade the Level 2 models to Level 3 using the LevelUpgrader class
and program to the Level 3 interfaces.

The other option is to use the PropertyEditors and EditorMaps
extensively. For example both BioPAX readers can read both level
2 and level 3. This requires a little bit more programming than the
previous option but arguably offers a more robust solution.

Q. I am confused by the statement "This syntactic validation does not
include more detailed checking of semantics that is performed by the BioPAX
validator." Which validation does what? Why is there a difference? Is the
BioPAX validator not using Paxtools?

A. The validator is built on Paxtools but is a separate project that
includes a sophisticated rule defining and reporting system. Paxtools
limits itself to so-called invariants of the BioPAX specification, namely,
RDF well-formedness, domain and range restrictions, bidirectional
links, and redundancies. When these constraints are violated Pax-
tools fails-fast by throwing an exception. Checking additional seman-
tics and best practices such as using proper controlled vocabularies
or ensuring that a transport reaction has at least one substrate that
changes its subcellular location as result of the reaction is left to the
validator. There are no technical reasons for not including validation
rules within Paxtools - in fact historically some of the current val-
idator rules were a part of Paxtools. We quickly found out however
that this was severely restricting our user base as they were using
Paxtools and BioPAX in ways that we have not imagined. As a result
we moved all of these optional constraints to the validator and built
a system where users can activate and deactivate which rules are to
be checked and how they are going to be reported(e.g. warnings vs.
errors).

Q. Why are level2 model interfaces are not in CamelCase?

46 using biological pathway data with paxtools: a user’s guide

A.Class names of model interfaces strictly mirrors BioPAX speci-
fication and level 2 was specified using the LISP syntax. We decided
to copy the case directly from the specification to avoid any confu-
sion. In Level 3, BioPAX specification was migrated to CamelCase to
amend that based on our input. All other classes in Paxtools strictly
follow CamelCase and Java naming conventions.

Q. What happens to the additional properties that are not a part of
BioPAX specification? If I define new properties or classes, can Paxtools
read and write them?

A. The short answer is no - they are lost when you read them with
Paxtools. The long answer is this is an important feature that we
wanted to add but it turns out to be surprisingly difficult. Adding
a simple custom property can be done relatively easily by adding a
HashMap<key,Set> to every object but things get complicated when
trying to implement more advanced OWL properties such as sub-
properties, symmetric and transitive properties. We felt that it would
be inconsistent to offer a facility to read arbitrary extensions of the
BioPAX specification in the OWL file but limit ourselves to only sim-
ple properties. We have an early alpha implementation that did not
make the cut for the latest release. We will include this facility in the
future releases.

On the other hand, we believe that extending the library in the
traditional sense by extending the classes is in fact very easy. In fact
Paxtools were designed right from the start to enable such an ex-
tension by implementing a factory pattern for object creation and
PropertyEditors for reading/writing properties.

Q. While exporting to SBGN-ML, I wonder why two process glyphs
are created when a Conversion is reversible as it can be presented with one
process glyph only as illustrated in http: // www. sbgn. org/ Symbols/

consumption_ production_ reversible ?
A. This choice is made because of the BioPAX structure. In BioPAX,

a reversible BiochemicalReaction can have a Catalysis with a specific
direction. If we draw one process glyph for the reversible Biochem-
icalReaction, then we cannot show the direction of the Catalysis. In
the two process glyphs case, the Catalysis will point to the related
process glyph only. However, we realize that some users may opt
for a reversible process glyph even though they can not visualize the
Catalysis direction, and we this is now an option in the exporter.

http://www.sbgn.org/Symbols/consumption_production_reversible
http://www.sbgn.org/Symbols/consumption_production_reversible

A few last words...

Acknowledgements

We would like to thank Ethan Cerami, Istemi Bahceci, Nadia An-
war,Ugur Dogrusoz, Ruth Isserlin, Guanming Wu, Suzanne Mer-
cer Paley, Sasha Tkachev, Carl Schaefer, Takeshi Yoneki ,Anushya
Muruganujan, Sarala Wimalaratne, Nick Juty, Oliver Ruebenacker,
Andrea Splendiani, Allan Ruttenberg, Martijn Van Iersel, Akira Funa-
hashi, Logan Webb, Ranjani Ramakrishnan, Rebecca Tang,Rex Dwyer,
Adem Bilican, Afshin Sadeghi, Alejandra Lopez Fuentes, Allyson
Lister, Anatoly Sorokin, Anatoly Ulyanov, Anna Bauer-Mehren,
Ashok Reddy Dinasarapu, Augustin Luna, Micheal Blinov, Brian
Saunders, Brian Turner, Bruno Aranda, Jeff Buchoff, David Dunkley,
Peter D’Eustachio, Esat Belviranli, Farzana Kazi, Francois Le Fevre,
Fong Chun Chan, Hester Stekelenburg, Irma Martinez-Flores,Jean-
Baptiste Pettit, Jing Wang, Julie Sullivan, Karin Brauer, Josh Stuart,
Julio Saez-Rodriguez, Olivier Gevaert, Paul Shannon, Peter Karp,
Pradeep Kumar Sreenivasaiah,Ricardo Usbeck, Sai Lakshmi Subra-
manian, Stan Dong, Samer Hanoudi, Sarah Boyd, Ufuk Kirik, Zhihua
Li, Zhenjun Hu and other members of the BioPAX community for
their contributions and feedback.

Get Involved

Paxtools is open source software and we welcome all contributions. Get involved!

• Use Paxtools and report issues and feature requests. See: http://biopax.sourceforge.net/paxtools/
issue-tracking.html

• Respond to questions by other users at biopax-paxtools

• Try your hand at fixing bugs and implementing requests

• Improve this documentation.

• Spread the word. Let other people know about BioPAX and Paxtools.

http://biopax.sourceforge.net/paxtools/issue-tracking.html
http://biopax.sourceforge.net/paxtools/issue-tracking.html

	Getting Started
	Features of Paxtools
	Modules and Package Structure
	Obtaining Paxtools

	Paxtools Basics
	First Model
	Modifying Objects
	Reading and Writing BioPAX

	Accessing and Manipulating Pathway Elements
	Basic Traversal
	Path Accessors
	Using property editors

	Advanced Controls:Traversing, cloning and merging
	Traversing
	Merging

	Exporting BioPAX to and from other formats
	Exporting to Simple Interaction Format (SIF)

	Running Graph Queries
	Resources and Non-Java Access
	Accessing Pathway Commons
	Using Paxtools from the command line
	Using Paxtools from Python

	Putting it all together
	Frequently Asked Questions
	A few last words...
	Acknowledgements
	Get Involved

