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1 Training data

The component contribution method is based on a machine learning algorithm, and completely relies on
empirical data in order to infer the parameters needed for later estimation. This empirical data is called
the training data, and the inference of parameters is called the training stage.

Nearly all Gibbs energy measurements, for compounds and reactions in aqueous solutions at near-room
temperature, are derived from the equilibrium constants of enzyme-catalyzed reactions. Typically, an
enzyme that specifically catalyzes a certain reaction is purified and added to a medium that contains the
reaction substrates. After the reaction reaches equilibrium, all reactant concentrations are measured. The
equilibrium constant K ′ is defined as the ratio between the product of all product concentrations and the
product of all substrate concentrations. Since there is no easy way to distinguish between pseudoisomers
of the same compound, the concentration of every reactant is actually the sum of all its protonation
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states. Therefore, K ′ is the apparent equilibrium constant, which is related to the standard transformed
Gibbs energy of reaction (∆rG

′◦ [1]). The problem with using this data as-is lies in the fact that K ′ and
∆rG

′◦ depend on the aqueous environment (e.g. pH, ionic strength, and pMg). The measurements listed
in TECRDB span a wide range of pH and ionic strength values, and many of the reactions have only
been measured in non-standard conditions.

In order to standardize the training data and eliminate the effects of pH and ionic strength, we apply
an inverse Legendre transform [2] to convert ∆rG

′◦ into ∆rG
◦ (i.e. from transformed Gibbs energies to

chemical Gibbs energies). As with the forward Legendre transform, this process requires the pKa values
for each of the reactants, provided by Caluclator Plugins from ChemAxon.

The TECRDB contains close to 4000 unique values of K ′ (for about 400 reactions in different condi-
tions). In addition, the standard chemical Gibbs energies of formation for another ≈ 200 compounds are
listed in the literature [3,4]. All this training data is collected and stored in a 1362 by 4146 stoichiometric
matrix (S ), along with the 4146 Gibbs energies (∆rG

◦
obs) corresponding to the columns of S.

1.1 Errors associated with the inverse Legendre transform

It is difficult to verify that effectiveness of the inverse Legendre transform in normalizing the effects of pH
and ionic strength. This procedure relies on the reported pH and I that appear in TECRDB, and which
are not always correct or even missing altogether. In addition, we ignore the effects of temperature and
metal ions in the solution. Perhaps the biggest uncertainty, however, comes from the proton dissociation
constants (pKa values) which we obtain from a 3rd party software tool by ChemAxon.

In theory, if the inverse transform were 100% correct (and all measurements were exact), then multiple
measurements of K ′, for the same reaction at different conditions, would all yield the exact same value
for ∆rG

◦. To test that, we compared between the standard deviations of the observed Gibbs energies
before and after the inverse transform, namely σ(∆rG

′◦
obs) versus σ(∆rG

◦
obs). We only looked at reactions

with more than 5 repeated measurements. We found that there was a reduction in the median standard
deviation from 2.2 kJ/mol to 1.5 kJ/mol (see Figure S1). These results indicate that the condition
dependency of K ′ has been somewhat normalized but that there is still noise in the data, probably
attributed both to measurement errors and inaccuracies in the inverse Legendre transform.

1.2 Weighing the training observations

Since we are combining multiple sources of standard Gibbs energies (formation energies, reduction po-
tentials, and inverse-transformed reaction energies from hundreds of publications) we allow our method
to factor in how reliable each observation is. Prior to applying the component contribution method, each
row of the stoichiometric matrix S is scaled by the confidence of that observation and the corresponding
observed values (∆rG

◦
obs) are scaled accordingly. The results reported in this paper were derived when

applying a fixed weight (e.g. 1) to all observations.

2 Group decomposition

In all group contribution methods, including the component contribution method, molecules are decom-
posed into non-overlapping structural groups. The contribution of each group to the overall Gibbs energy
of the molecule is assumed to be a constant value, independent of molecular environment or the neigh-
boring groups. The implementation by Jankowski et al. [5] added interaction factors, which are similar
to groups except that they are allowed to overlap with other groups and with each other. In [6], we
introduced the notion of pseudoisomeric groups, which are sensitive to the protonation state of the atoms
in the group. For the purpose of group decomposition, and the derivation of the group incidence matrix
G, we use here the exact same group definitions as in [6].



3

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

median = 2.2 kJ/mol

standard deviation in [kJ/mol]

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u

ti
o
n

median = 1.5 kJ/mol

standard deviations for reactions with >5 examples

Figure S1. Cumulative distribution functions of the standard deviations for ∆rG
◦ and

∆rG
′◦. The biochemical Gibbs energies (∆rG

′◦) directly derived from the apparent K ′ in TECRDB
has a higher median standard deviation, 2.2 kJ/mol, than the Gibbs energies after applying the inverse
transform (∆rG

◦) – which is 1.5 kJ/mol. Only reactions with more than 5 measurements were
considered for this comparison.

3 Full mathematical derivation of the component contribution
method

In order to derive the main result for the component contribution method (Eq. 10 in the main text)
we reiterate the set of definitions required. Let S ∈ Rm×n be the stoichiometric matrix of measured
reactions, G ∈ Rm×g be the group incidence matrix, ∆rG

◦
obs ∈ Rn×1 be the measured standard Gibbs

energies of the reactions in S, and x ∈ Rm be a stoichiometric vector for a new reaction. Define PR(S),

PN (S>) ∈ Rm×m as the orthogonal projection matrices onto the range of S and the null space of S>,
respectively. Define xR ≡ PR(S) · x and xN ≡ PN (S>) · x. Equations 3 and 8 (from the main text) state
that

∆fG
◦
rc =

(
S>
)+ ·∆rG

◦
obs,

and

∆gG
◦
gc =

(
S>G

)+ ·∆rG
◦
obs.

Therefore, the component contribution estimation for the standard Gibbs energy of x will be

∆rG
◦
cc,x = x>R ·∆fG

◦
rc + x>NG ·∆gG

◦
gc

= x>R
(
S>
)+ ·∆rG

◦
obs + x>NG

(
S>G

)+ ·∆rG
◦
obs

=
(
PR(S) · x

)> (
S>
)+ ·∆rG

◦
obs +

(
PN (S>) · x

)> G (S>G)+ ·∆rG
◦
obs

= x>
(
PR(S)

(
S>
)+

+ PN (S>)G
(
S>G

)+) ·∆rG
◦
obs. (1)
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We can thus say the component contribution method is equivalent to a linear regression problem
where the contribution coefficients are given by

∆cG
◦
cc ≡

(
PR(S)

(
S>
)+

+ PN (S>)G
(
S>G

)+) ·∆rG
◦
obs.

4 Estimation of error in group model

The group model in Eq. 7 (main text) relies on the assumption that the standard Gibbs energy of
a compound is a simple linear combination of the Gibbs energy contributions of substructures in that
compound. Throughout the main text, we have referred to this as the assumption of group additivity.
The error resulting from this assumption, which we will refer to as modeling error, can be estimated by
decomposing the residual in group contribution fitted Gibbs energies for reactions in S,

egc = ∆rG
◦
obs −∆rG

◦
gc, (2)

into two components; one corresponding to experimental error and the other to modeling error. The
component corresponding to experimental error is exactly the residual in the reactant contribution fitted
Gibbs energies for reactions in S,

erc = ∆rG
◦
obs −∆rG

◦
rc. (3)

An estimate of the modeling error em is therefore given by the difference between the two residuals

em = egc − erc = ∆rG
◦
rc −∆rG

◦
gc. (4)

To clarify we reiterate that ∆rG
◦
rc, given by

∆rG
◦
rc = PR(S>) ·∆rG

◦
obs, (5)

is the closest point to ∆rG
◦
obs that is in the range of S> and therefore consistent with the first law

of thermodynamics (see main text section Reactant contribution method). Since we assume that the
first law holds, we must assume that any component of ∆rG

◦
obs that is orthogonal to R

(
S>
)

is due to
experimental error. The residual erc is the orthogonal projection of ∆rG

◦
obs onto N (S) which is the

orthogonal complement of R
(
S>
)
. This can be seen by inserting Eq. 5 into Eq. 3;

erc = ∆rG
◦
obs − PR(S>) ·∆rG

◦
obs =

(
I − PR(S>)

)
·∆rG

◦
obs = PN (S) ·∆rG

◦
obs. (6)

erc ⊥ R
(
S>
)

is therefore an estimate of experimental error in ∆rG
◦
obs.

Group contribution fitted Gibbs energies for reactions in S are given by

∆rG
◦
gc = S>G

(
S>G

)+ ·∆rG
◦
obs = PR(S>G) ·∆rG

◦
obs, (7)

where PR(S>G) = S>G
(
S>G

)+
is the orthogonal projector onto the range of S>G. The residual of the

fit is

egc = ∆rG
◦
obs −∆rG

◦
gc = ∆rG

◦
rc −∆rG

◦
gc + erc

= PR(S>) ·∆rG
◦
obs − PR(S>G) ·∆rG

◦
obs + erc

=
(
PR(S>) − PR(S>G)

)
·∆rG

◦
obs + erc = em + erc, (8)

with em =
(
PR(S>) − PR(S>G)

)
· ∆rG

◦
obs. The modeling error em is therefore the part of ∆rG

◦
obs that

is consistent with the first law (i.e., is in R
(
S>
)
) but is not explained by the group model (is not in

R
(
S>G

)
).
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Note that em ⊥ erc since

e>m · erc = ∆rG
◦>
obs ·

(
PR(S>) − PR(S>G)

)
· PN (S) ·∆rG

◦
obs

= ∆rG
◦>
obs ·

(
I − PN (S) − I + PN (G>S)

)
· PN (S) ·∆rG

◦
obs

= ∆rG
◦>
obs ·

(
PN (G>S) − PN (S)

)
· PN (S) ·∆rG

◦
obs

= ∆rG
◦>
obs ·

(
PN (G>S) · PN (S) − PN (S) · PN (S)

)
·∆rG

◦
obs

= ∆rG
◦>
obs ·

(
PN (S) − PN (S)

)
·∆rG

◦
obs = 0 (9)

(see Section 4.1 for a proof that PN (S) · PN (G>S) = PN (S)). Therefore,

||egc||2 = ||erc||2 + ||em||2. (10)

It is important to emphasize that the residual erc is only an estimate of experimental error for several
reasons. Systems of biochemical reactions may deviate slightly from the assumptions underlying linear
regression, but we assume such deviations are small. More importantly, some error may be introduced
by the inverse Legendre transform of the experimental data (see Section 1). Since any such error would
contribute equally to egc, however, this would not affect our estimate of em. Even if the inverse transform
introduced no error, it is possible that the orthogonal projection of ∆rG

◦
obs did not give the true ∆rG

◦

for reactions in S. The true ∆rG
◦ may be some other point in R

(
S>
)

that is further away from ∆rG
◦
obs.

Our estimate of em would then be offset by the same distance. Lastly we note that, although it is unlikely
that error due to the assumption of group additivity can be avoided in a linear model such as the group
model, it is possible that a different choice of groups would lead to a reduction in em.

4.1 Proof that PN (S) · PN(G>S) = PN (S)

N (S) is a subspace of N
(
G>S

)
, since any x ∈ N (S) would have G>Sx = G>0 = 0 which would

mean that x ∈ N
(
G>S

)
. Therefore, projecting anything onto N

(
G>S

)
and then onto N (S) would be

equivalent to projecting it directly onto N (S).

4.2 Error in current group model

We estimated the root-mean-square modeling error for the group model used in the current publication
as √

||em||2
n− rank(S>G)

= 6.8 kJ/mol.

The modeling error was approximately normally distributed (Figure S2a) with mean ± stdev = -0.4 ±
6.6. The magnitude of the error was only weakly correlated with the length of group vectors for reactions
in S (Pearson’s correlation coefficient = 1.9, Figure S2b).

5 Reaction type statistics

The uncertainty in our estimations depends on the quality of the training data (i.e. the measurement
error), the amount of examples for each parameter and the crudeness of the assumptions made throughout
the evaluation. The hierarchical nature of the component contribution method can be understood by
defining four sets of reactions (where S is the stoichiometric matrix for the training data and G is the
group incidence matrix):
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Figure S2. Characteristics of the modeling error em for the group model used in the
current publication. (A) A scatter plot of em against the length of group vectors in S>G. (B) A
histogram showing the distribution of em for all reactions in S.

A: Reaction x is part of the training set (i.e. appears in TECRDB). This is equivalent to saying x is one
of the columns in S.

B: Reaction x can be constructed by a linear combination of reactions in the training set (i.e. x is in the
range of S). This is equivalent to saying x ⊥ N (S>).

C: The group decomposition of reaction x can be constructed by a linear combination of reactions
decompositions in the training set. This is equivalent to saying G>x ⊥ N (S>G).

D: x is a reaction.

These four sets have the following layered relationship: A ⊆ B ⊆ C ⊆ D. The first and last relations are
trivial. To prove that B ⊆ C, we only need to see that ∀x ∈ B, ∃v such that Sv = x. Then to show that

G>x ⊥ N (S>G), it is enough to see that ∀y ∈ N
(
S>G

)
⇒
(
G>x

)>
y =

(
v>S>G

)
y = v>

(
S>G

)
y = 0.

This hierarchy of reactions is ordered by increasing uncertainty levels. Estimates for reactions in A
have the lowest uncertainty since these reactions have been directly measured. Estimates for reactions in B
have a slightly higher uncertainty, since some deduction is made in order to get the value of ∆rG

◦, namely
an inverse Legendre transform (which depends on pKa data) and the projection of the observations onto
the column-space of S. CC will apply the RC method exclusively for all reactions in this set. Estimates
for reactions in C generally have a higher uncertainty than estimates for reactions in B, as we need to
assume that the group decomposition is the only parameter affecting ∆rG

◦ – i.e. that each group has a
defined ∆grG

◦ regardless of its surroundings within the molecule. Note, that every reaction in B is also
in C and CC will always use the more precise method wherever possible. Furthermore, if x is in C but
not completely orthogonal to N (S>), CC will use GC for the projection of x onto N (S>) and RC for
the rest (the part which is orthogonal to this null-space, i.e. contained in B). Reactions that are not in C
cannot be evaluated at all, and thus the uncertainty in their ∆rG

◦ is ∞. A summary of the four sets of
reactions are given in Table S1, along with the fractions of reactions in iAF1260 and Recon 1 that belong
to each set.
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Table S1. Statistics for the four sets of reactions.

Fraction of reactions
Set Definition Methods available iAF1260 Recon 1
A ∃i s.t. x = S∗,i RC / GC / CC 6% 4%
B x ⊥ N (S>) RC / GC / CC 9% 8%
C G>x ⊥ N (S>G) GC / CC 90% 72%
D x ∈ Rm None 100% 100%

6 Prediction of flux distributions

6.1 iAF1260

Flux distributions in iAF1260 were predicted using loopless flux balance analysis (ll-FBA) [7]. ll-FBA
was used in preference to standard FBA [8] to avoid artificially high fluxes through reactions in thermo-
dynamically infeasible loops. Thermodynamics-based metabolic flux analysis (TMFA) [9] was not used to
avoid biasing solutions with our estimated Gibbs energies. A total of 312 flux distributions were predicted
for iAF1260, corresponding to optimal growth on 174 carbon sources, 78 nitrogen sources, 49 phosphate
sources, and 11 sulfur sources that the model was previously shown to grow on [10]. Constraints on
exchange, sink and demand reactions in each simulation were the same as in [10]. All simulations were
done in Matlab (R2009b, The MathWorks, Natick, MA) with the Gurobi solver (version 5.0.1, Gurobi
Optimization, Inc., Houston, TX).

6.2 Recon 1

As growth is not the primary objective of mammalian cells, we did not simulate optimal growth on
different nutrient sources for Recon 1. Instead, we predicted optimal flux distributions for 288 metabolic
objectives designed to validate Recon 1 [11]. The size of Recon 1 does not allow efficient application of
loopless FBA. We therefore applied standard FBA. In an attempt to find loopless flux distributions we
searched among all alternative optimal distributions for one with a minimum taxicab norm. As fluxes
through reactions in thermodynamically infeasible loops are usually close to the maximum allowed value,
flux distributions including such loops are expected to have a greater taxicab norm. Minimizing the
taxicab norm will only yield a loopless flux distribution if one exists at the optimum. As a further step
to avoid loops, we therefore eliminated all flux distributions where flux through at least one reaction was
at the maximum allowed value. This step eliminated all except 97 predicted flux distributions.

7 Calculation of confidence and prediction intervals

In this section we summarize the statistical theory underlying calculation of confidence intervals for the
true values of standard reaction Gibbs energies, and prediction intervals for observations of standard
reaction Gibbs energies. The summary is based on the textbook by Kutner et al. [12]. We focus the
summary on reactant contribution, as it is the simplest linear regression model we work with. Results
for group contribution are always analogous to those for reactant contribution. We presented the main
results for component contribution in the main text.
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7.1 Assumptions

The regression model for reactant contribution is

∆rG
◦
obs = S> ·∆fG

◦ + εrc, (11)

where ∆rG
◦
obs ∈ Rn×1 is a vector of observed standard reaction Gibbs energies, S ∈ Rm×n is the

stoichiometric matrix for reactions in ∆rG
◦
obs, ∆fG

◦ ∈ Rm×1 is the vector of standard Gibbs energies of
formation for metabolites in S, and εrc ∈ Rn×1 is a vector of random errors. We assume that the error
εrc is normally distributed, with expected value E (εrc) = 0, and covariance matrices σ2 (εrc) = σ2

rcIn,
where σ2

rc is a constant and In is the n × n identity matrix. Since all element of both S and ∆fG
◦ are

constants, we have that ∆rG
◦
obs is also normally distributed with

E (∆rG
◦
obs) = S> ·∆fG

◦ + E (εrc) = S> ·∆fG
◦ (12)

and σ2 (∆rG
◦
obs) = σ2 (εrc) = σ2

rcIn.
These assumptions about the distributions of errors and observed standard reaction Gibbs energies,

apply to any reaction vector x ∈ Rn×1, whether it is a column of S or a new reaction. Observed standard
Gibbs energies for x are assumed to be distributed as ∆rG

◦
obs,x ∼ N

(
x> ·∆fG

◦, σ2
rc

)
, and the errors in

those observations are assumed to be distributed as εrc,x ∼ N
(
0, σ2

rc

)
.

According to the first law of thermodynamics, the true standard Gibbs energies ∆rG
◦ of reactions in

S are given by
∆rG

◦ = S> ·∆fG
◦. (13)

Comparison with Eq. 11 shows that E (∆rG
◦
obs) = ∆rG

◦. The same applies to an arbitrary reaction

vector x i.e., that E
(

∆rG
◦
obs,x

)
= ∆rG

◦
x. An estimate of E

(
∆rG

◦
obs,x

)
is therefore also an estimate of

∆rG
◦
x.

7.2 Estimation of the distribution of ∆rG
◦
obs

We use the method of least-squares to estimate E (∆rG
◦
obs) and σ2

rc. The least-squares fit of the reactant
contribution model (Eq. 11) to ∆rG

◦
obs gives an estimate of E (∆rG

◦
obs):

∆rG
◦
rc = S>

(
S>
)+ ·∆rG

◦
obs. (14)

The variance σ2
rc is estimated as

s2rc =
‖erc‖2

n− rank (S)
, (15)

where erc = ∆rG
◦
obs −∆rG

◦
rc is the residual of the fit in Eq. 14.

The reactant contribution estimate of E
(

∆rG
◦
obs,x

)
for an arbitrary reaction vector x is

∆rG
◦
rc,x = x>

(
S>
)+ ·∆rG

◦
obs. (16)

s2rc from Eq. 15 gives an estimate of the variance in ∆rG
◦
obs,x, since we assumed that the variance was

the same for all x (see Subsection 7.1).

7.3 Confidence intervals for ∆rG
◦
x

∆rG
◦
rc,x in Eq. 16 is an estimate of E

(
∆rG

◦
obs,x

)
, and thus also of ∆rG

◦
x; the true standard Gibbs energy

for reaction vector x. However, it is only a point estimate, which is dependent on the particular sample
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of observations ∆rG
◦
obs in our training set. If we were to repeat the measurements of standard Gibbs

energies for all reactions in S, we would get a different estimate of E
(

∆rG
◦
obs,x

)
. If we repeated the

same measurements an infinite number of times, we could construct the sampling distribution of ∆rG
◦
rc,x.

The sampling distribution of ∆rG
◦
rc,x will be normal with mean E

(
∆rG

◦
rc,x

)
= E

(
∆rG

◦
obs,x

)
=

∆rG
◦
x, and variance σ2

rc,x = σ2
rc ·x>

(
SS>

)+
x (see [12] for proof). We estimate E

(
∆rG

◦
rc,x

)
as ∆rG

◦
rc,x,

and σ2
rc,x as

s2rc,x = s2rc · x>
(
SS>

)+
x. (17)

The estimated standard deviation src,x =
√
s2rc,x is sometimes referred to as the standard error of

∆rG
◦
rc,x, and we adopt this terminology here.

The estimated parameters of the sampling distribution of ∆rG
◦
rc,x can be used to calculate confidence

intervals for ∆rG
◦
x. At a specified confidence level γ ∈ [0%, 100%], the confidence interval for ∆rG

◦
x is

∆rG
◦
rc,x ± tγ,νsrc,x, (18)

where tγ,ν is the value of a t-distribution with ν = n − rank (S) degrees of freedom, at a cumulative
probability of (100% + γ) /2. Since ν is large for our reactant contribution model, we can approximate
tγ,ν as zγ ; the value of the standard normal distribution at a cumulative probability of (100% + γ) /2.
The γ confidence interval for ∆rG

◦
x is thus approximated as

∆rG
◦
rc,x ± zγsrc,x. (19)

7.4 Prediction intervals for ∆rG
◦
obs,x

We seek to validate the reactant contribution method against experimental data. The only experimental
data available to us is ∆rG

◦
obs; which we assume to be a vector of independent observations of standard

reaction Gibbs energies. The appropriate way to validate the reactant contribution method is thus to
test its ability to predict independent observations of standard reaction Gibbs energies. We assume that
independent observations of the standard Gibbs energy for reaction vector x, are normally distributed

with mean E
(

∆rG
◦
obs,x

)
and variance σ2

rc. In Subsection 7.2 we estimated E
(

∆rG
◦
obs,x

)
as ∆rG

◦
rc,x,

and σ2
rc as s2rc. The estimated standard deviation of ∆rG

◦
obs,x is src =

√
s2rc.

Based on these estimates, we could mistakenly predict that approximately 68.4% of ∆rG
◦
obs,x would

fall within the interval ∆rG
◦
rc,x±src, approximately 95% would fall within the interval ∆rG

◦
rc,x±1.96×src,

and so on. In other words, we could assume that the γ prediction interval for ∆rG
◦
obs,x were ∆rG

◦
rc,x ±

zγsrc. The reason this is incorrect is that ∆rG
◦
rc,x is only a point estimate of E

(
∆rG

◦
obs,x

)
. Prediction

intervals for ∆rG
◦
obs,x must account for the variance σ2

rc,x, of the sampling distribution for ∆rG
◦
rc,x. The

correct way to calculate the γ prediction interval for ∆rG
◦
obs,x is therefore as

∆rG
◦
rc,x ± zγ

√
s2rc + s2rc,x. (20)

8 Symbols
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Table S2. Descriptions of used symbols.

Symbol Description
R the gas constant (8.31 J mol−1 K−1)
T temperature (in K)
K ′ apparent reaction equilibrium constant
Q reaction quotient

∆fG
◦ standard Gibbs energy of formation (in kJ/mol)

∆rG
◦ standard Gibbs energy of reaction (in kJ/mol)

∆rG
′◦ standard transformed Gibbs energy of reaction (in kJ/mol)

S the stoichiometric matrix of measured reactions
G the group incidence matrix

∆rG
◦
obs observed standard Gibbs energy of measured reactions in S

εrc deviation of ∆rG
◦
obs from the unknown true Gibbs energies

εgc deviation of ∆rG
◦
obs from the group contribution assumption

erc / egc residual values for the linear model used in RC/GC
∆fG

◦
rc RC estimates of standard Gibbs energies of formation for com-

pounds in S
∆gG

◦
gc standard Gibbs energy contributions of the groups in G

∆rG
◦
rc / ∆rG

◦
gc / ∆rG

◦
cc RC/GC/CC fitted standard Gibbs energies for reactions in S

∆rG
◦
rc,x/∆rG

◦
gc,x/∆rG

◦
cc,x RC/GC/CC estimation for the standard Gibbs energy of reac-

tion x
PR(S) orthogonal projection matrix on the range of S
PN (S>) orthogonal projection matrix on the null space of S>

s2rc / s2gc estimated variance of the error term εrc / εgc
Vrc / Vgc the covariance matrix for RC/GC estimates

src,x / sgc,x / scc,x the standard error of ∆rG
◦
rc,x / ∆rG

◦
gc,x / ∆rG

◦
cc,x
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