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I. SUPPLEMENTARY MATERIALS

A. Details of the simplified proteome

There are 15 proteins in the simplified proteome. Table
S1 has the concentrations and interaction partners of all
15 proteins. The concentrations were chosen from the
yeast proteome.

Random mutations typically make proteins unstable.
In the monte carlo simulation of the simplified proteome,
the evolution of protein stability is modeled as a random
walk with a drift towards instability (1). We do not al-
low the free energy of the folded state to fall below 0 (the
folded state is always at least as stable as the unfolded
state). The protein-protein interaction energies are cho-
sen from a normal distribution (a lognormal distribution
for dissociation constants) with mean µ = 10 kBT and
deviation σ = 2.5 kBT . The statistical correlations do
not depend on the specific value of the mean and the
standard deviation. Each step of the monte carlo simula-
tion allows some of the proteins to change their stability
and interaction strengths. The fitness of the proteome
is determined by the total unfolded protein concentra-
tion. The monte carlo step is accepted at a particular
evolutionary temperature according to the Metropolis cri-
terion.

B. A brief description of population genetics terms

We briefly describe the population genetics terms used
in the main text. We refer the readers to classic text-
books such as (2) and a recent paper (3) for more details.

• The effective population size Ne can be understood
as the number of individuals in an idealized popula-
tion that would show the same amount of dispersion
of allele frequencies under random genetic drift as
the population under consideration. The effective
population is strictly less than the actual popula-
tion (the consensus population).

• Evolutionary biology understands the fitness f of
a genotype as the propensity of that genotype to
propagate to the next generation. In a popula-
tion of fixed size with individuals with genotypes
of different fitness, those with a genotype of higher
fitness are more likely to be present in the next
generation.

• If the population size Ne is small, due to random
chance, genotypes with suboptimal fitness may be
carried to the next generation in a process known
as random genetic drift. The degree of subopti-
mality that is likely to propagate depends on the
effective population size. In the canonical ensem-
ble picture of evolution where effective population
scales as inverse temperature (3), suboptimality
corresponds to an increase in thermal fluctuations

at higher evolutionary temperatures (low effective
population) compared to lower temperatures (high
effective populations).

C. Table for the statistical analysis with TANGO

We collect the various Spearman and partial Spearman
correlation coefficients in Table S2.

D. Statistical analysis for Aggrescan (4)

We use the area above hotspot threshold or AAHT
as an estimator of aggregation propensity (4). The
area estimates the region of the protein sequence that
is deemed aggregation prone by the Aggrescan (4) al-
gorithm. AAHT correlates well with the aggregation
propensity predicted by TANGO (p < 10−5). Similar
to TANGO, AAHT correlates negatively with concentra-
tion (Spearman r = −0.13 p < 10−5) and with the free
monomer concentration (Spearman r = −0.17 p < 10−5).

In Table S3, we reproduce the observed correlations
(similar to Table S2) with AAHT as a predictor of ag-
gregation propensity.

Similar to the TANGO estimate, the effect of protein
knockout or the capacitance Ci of protein i (see Discus-
sion in the main text) also correlates with 〈Zneighbors〉, the
average aggregation propensity of its neighbors (Spear-
man r = 0.53, p < 10−5) even after controlling for pro-
tein abundance (Spearman r = 0.59, p < 10−5).

E. Sequence length dependent models (6–8) do not
change our conclusions

Due to the lack of sequence dependent estimators
of protein stability, while calculating the interaction-
induced stability (See Eq. 8 in main text), we assumed
that all proteins are infinitely stable i.e. K1 →∞ in Eq.
7 in main text. The estimates of interaction-induced sta-
bility therein are thus the upper limit of protein stability.

Here, we show that employing a sequence length de-
pendent model (6–8) of stability does not change our
conclusions. In Figure S1, we plot the histogram of in-
duced stabilities ∆∆Gppi by taking into account the fi-
nite stability of proteins as predicted by their sequence
length. Observe that the distribution of induced stabili-
ties is very similar to the one observed when all proteins
are infinitely stable (See Fig. 3 in main text).

Moreover, the correlations observed in Table S2 are
also reproduced, albeit slightly weakly yet statistically
significantly (See Table S4), when we take into account
protein stabilities.
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F. Setting all K1A = 1 does not change our
conclusions

We also set the folding free energy ∆Gfolding to 0 i.e.
K1A = 1 for all proteins and estimate the interaction
induced stability. In Figure S2, we plot the histogram
of induced stabilities ∆∆Gppi when ∆Gfolding = 0 for
all proteins. Observe that the distribution of induced
stabilities is very similar to the one observed when all
proteins are infinitely stable (See Fig. 3 in main text).

The correlations observed in Table S2 are also repro-
duced statistically significantly (See Table S5), when pro-
tein stabilities are set to their minimum.

G. Alternative assignment of interaction constants
does not change our conclusions

In our estimates of interaction-induced stability, simi-
lar to Maslov and Ispolatov (9), we assign the dissociation
constant Kij for two proteins i and j with concentrations

Ci and Cj respectively by Kij =
max(Ci,Cj)

20 . The above
assignment minimizes the free monomer concentration(s)
while reproducing the overall distribution of experimen-
tally known dissociation constants.

In Figure S3, we show the histogram of interaction-
induced stabilities when all dissociation constants are set
at their estimated average Kij = 5 nM (9). Note that
the stabilities are slightly higher than in the main text.
A similar analysis at Kij = 10 nM also reproduces the
qualitative conclusions (not shown). Moreover as seen
in Table S6, the correlations observed in Table S2 are
reproduced as well.

We also test the robustness of the predicted histogram
of interaction-induced stabilities by shuffling the dissoci-
ation constants between interacting proteins. We find
that 50 different realizations of dissociation constants
shuffled on the interaction network robustly reproduce
the mean (〈∆∆Gppi〉 ≈ 2.3 kBT ) and the variance
(〈δ∆∆G2

ppi〉 ≈ 8.8 kBT
2) of the P (∆∆Gppi), the dis-

tribution of interaction-induced stabilization.

H. Disordered proteins

The proteins in higher organisms have stretches of
disordered regions in them. Even though our develop-
ment strictly applies only to proteins with a well de-
fined folded and unfolded states, it can be easily gen-

eralized to proteins with partial disorder. Similar to
folded proteins, partially disordered proteins too have
a soluble monomeric state and an insoluble oligomer-
ized state; even though the transition between the folded
and the unfolded state may not be well defined. More-
over, many disordered regions in proteins acquire a three
dimensional structure after binding to their interaction
partners. Here, we present the estimates of disordered
regions in the analyzed proteome of yeast (∼ 1600 cyto-
plasmic proteins). We use the freely available DisEMBL
program (10).

Figure S4 shows the histogram of estimated % disor-
dered amino acids for the ∼ 1600 proteins considered in
this study. We find that on an average 10% of the amino
acids in a given protein are disordered.

I. List of capacitors

The CSV file contains a list of top 20 capacitors iden-
tified in the current study.

J. Captions for supplementary figures

1. The histogram of estimated ppi-induced stabilities
for the yeast cytoplasmic proteome when the in-
herent stability of proteins is modeled solely on the
basis of their chain length (6–8). Similar to Fig. 3
in main text, the average stability is ∼ 2 kBT and
some proteins can receive as much as 5− 6 kBT of
stability from their binding partners.

2. The histogram of estimated ppi-induced stabilities,
similar to Figure S1, when all protein stabilities are
set at their minimum ∆Gfolding = 0 or K1A = 1.

3. The histogram of estimated ppi-induced stabilities,
similar to Figure S1, when the dissociation con-
stants for all protein-protein interactions are set at
KAB = 5 nM.

4. The histogram of the estimated % of amino acids
in a disordered state (10) in a protein for proteins
considered in this analysis. For majority of the pro-
teins, ∼ 10% of the amino acids are in a disordered
state. Note that there are a very few completely
disordered proteins.
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