Delay Selection by STDP in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs

Supporting Information: Text S1

1 Recurrent Correlation

As given by Equation (58) of [1], the (ordinary frequency) Fourier transform, Fg(f) = ffooo g(z)e= 2™l dx of the
recurrent correlation function for a network with only axonal delays is

FC(f) = QU P)[FC(S) + ding()] PT(~ f) + diag(v) }Q" (~ f) - diag(v), (1)

where e
Qk(f) = [ = Jpe*™ i Fe(— )7,
Pix(f) = Kjpe™ 5 Fe(— f).

It can be considered be to make up of three components

C('LL) = Cl (u) + CQ (u) + Cg (u)
FO(f) = FCu(f) + FCo(f) + FCs(f),

where

FCi(f) = Q(f)P(f)FC(f)PT (=R (- 1),
FCo(f) = Q(f)P(f)diag(?) P (— /)QT (1), (4)
FC5(f) = Q(f)diag(v)QT (—f) — diag(v).

These components are due to correlations in the inputs, spike triggering effects from the inputs, and recurrent
spike triggering effects, respectively. The last two of these are assumed to be negligible to the learning for large
numbers of inputs, M, and large numbers of neurons, N, respectively. This is the same assumption made in [1].
Because of this only the first correlation component was considered (i.e. FO(f) ~ FCi(f)).

To determine how large a network was sufficient for the spike triggering components to be negligible, simulations
with LIF neurons were run to observe the shape of the learned axonal delay distribution after 250s of learning.
This is shown in Figure S7. For simulations it was decided that the network size would always be the same as the
number of inputs (i.e. N = M). It can be seen that as the number of neurons (and inputs) increases, the resulting
delay distribution becomes a perfect cosine function. We decided that 10,000 neurons (and inputs) was sufficient
for simulations in this study.

2 Oescillatory Inputs
Input intensity functions are defined for oscillatory inputs as

Ae(t) = (Sk(t)) = o + acos[27 f (t + dy)], (5)

where g is the mean input rate (in Hz), a is the magnitude of the oscillations (in Hz), f,, is the modulation
frequency of the oscillations (in Hz), and dy, is the delay of the input (in seconds). Inputs within the same group
have the same delay, meaning that they are in phase.

The mean input firing rate of neuron k is

t t R
oy = %/H<Sk(t/)>dtl = %/H {190 + acos |27 i, (t + di)] }dt/

t
=iy + g/ cos [27rfm(t + dk)]dt’ =1p.
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The correlation function for a pair of inputs (k and 1) is

Cua(t,u) = % /t tT<Sk(t/)Sl(t/ +u))dt’ — (; /t tT<§k(t’)>dt’) (; /:T@(t' +u)>dt’)
- % /:T {f/o + acos 2 foo (¢ + di)] }{ﬁo + acos (27 fr (' + u + dy)] }dt’ — g

. t
=03+ roa {cos 27 frt] + cos[2m frn (B + u + cilag)] }dt’
T Ji—r

2 t
+ % / cos[27 fint']cos (2 frn (' + u + diag) | dt' —
T

(12 ¢

T g
o2 .
= 5cos [27rfm (u+ dlag)] )

{cos (27 fi (4 + diag) ] + co8[2 i (2 + 1+ diag)] }dt/

where cflag = dl — cZk, and the Fourier transform of this is

2

FCu(f) = az

(67 = fn) + 80/ + )| €271 (8)

If the inputs are from the same group, then cilag =0, and so

C'kl(u) = a2—2cos(27rfmu),
e o)
FOulf) = [0(F = fm) +0(F + ).

3 Homeostatic Equilibrium in a Recurrent Network

The rate of change of the recurrent axonal delay distribution is

JT(t,d>) = n[winﬁ(t) + wou (1) + Wi (t)? + CW (t,d™)|, (10)
where 7(t) is the mean firing rate of the recurrent group given by

vo+ N Ky
1 — Fe(0O)N;FJ(0)
vo + N Ky
1— Ny f;r:" J(z)dx
1+ Ng Ky
1-N;J

v =

where 1 is the spontaneous firing rate of the neurons, 7y is the mean firing rate of the inputs, and J is the mean

recurrent weight averaged over all axonal delays. The stable mean firing rate, 7*, and stable mean weight, J*, are
found from

dmax

J (Win + Wout) 7 + Wi + / C_’W(:L‘)dx

dmin (12)
0 = (Win + Wour)7* + W(7*)2 4+ CW.
Assuming C" is small and that 1y = 0, the solution to this is
o — 7(Win j’ wout)’ (13)
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and, by substituting in Equation (11) from this supporting text, we have that
Ny Ky Ng KigW

1-NyJH=—— =
v* _(Win + wout) (14)
gL <1 + NKKVOW).
NJ Win + Wout
4 Network Response for a Single Group
Given the average response is
drnax ~ A~
At) = NJ/ J(z) / e(r — )\t — r)drdr + Nx K / e(r — d)A(t —r)dr, (15)
dmin
where d is the delay of the inputs. The Fourier transform of this is
FAF) = NyFT(HDFe(f)FAS) + NicKe > 4 Fe())FA(), (16)
and by rearranging this we get A
5 NgKe ™4 Fe(f)FA

1— N;FT(f)Fe(f)

For oscillatory inputs where A(t) = Do+ acos(2m frt) and FA(f) = Dod(f) +216(f = fm)+0(f+fm)], the expression
for the response of the network becomes

Facp) = NiEFOnd(f) | aNiKe 2 F)) [ = fn) + 3 + )]
1— N;FJ(0)Fe0) 2[1 = Ny FJ(f)Fe(f)]
_ NxKopd(f) | aNgKe 2™ nFe(£,)0(f — fm) = aNgKe2™ 4 m Fe(—f,,)8(f + fin)
1= NyFT(0) 2[1 = NyFT(fm)Fe(fm)] 2(1 — NyFT (— fm)Fe(—fm)]
b = Nf(f(f/g aNKf(ef”dfiﬂfe(fm)eme’"t aNKK’ef’”'czf’i]:e(—fm)6727”?‘"”5 (1)
1= N;FJ0)  2[1 = NyFI(fm)Fe(fm)] 2[1 = NyFT (= fn) Fe(—fm)]
=7+ aNgKRe }—i(fm)f%ifM(Hd) 1
L= Ny FI(fm)Fe(fm)
) _ (27 fo (t=d) e (f1m)]
=0+ aNKKre(fm)Re{ L (fo)e - Fmd Nyr 7 (fon)e— 97 }7
where Fe(f) = rc(fle ), FT(f) = f;max J(z)e ?mf2dy = Tj(f)e_wj(f)a and 7 = 1_%i§?(0) = lefzfril;}‘

This gives Equation (22) in the main text.

5 Network Response for Two Groups

For two recurrently connected groups where the within group weights have been depressed each of the group
responses are given in Equation (38) of main text. The Fourier transforms of these is

FM(S) = Ny FTa(f)Fe(f))Fha(f) + NxKe > Fe(f)FA(f),

! Satd i St ’ (19)
Fha(f) = Ny FTIor(f)Fe(f)FM(f) + N Ke 2™ Fe( £)FAa(f),
and by rearranging these we get
 NiRe U Fe(f) | Fe(f)NSF Fia(£FSa(f) + Fha(f)]
Fa(f) = 5 ’
1 — F(f)N2F Tia(f)F T (f) (20)
_ NkRe U Fe(f)[Fe(HNGFTn(FHFM () + Falf)]
Fra(f) =

L= Fe(f)NFF T (/) F Tr2(f) ’



which can be approximated as
]_-5\1 (f) ~ aNK[_(e—QTriCZfre(f)e—icbe(f) {1 + re(f)e—i¢e(f)NJTj12 (f)e—i¢j12 (f)e—QTricilagf

+ rf(f)e*%@(fw,]% (f)eii‘z’jm(f)]\ﬁ;rjzl(f)efwjm(f)} [5(f — fm)+6(f+ fm)]a

- I _ o , " (21)
Fho(f) =~ aNg Ke 2mildtdag) [y (f)ei¢e(f) [1 + Te(f)eﬂm(f)]\;ﬂjm(f)e—mjzl(f)e%mdlagf
+r2(£)e 2 DNz (fle o DN 2 ( f)e—i%g(f)] [5( f=fum)+0(f + fm)].
This is then used to give Equation (39) in main text.
6 Learning Window and EPSP Kernel
It is assumed that W (u) and e(u) are given by
W(u) = —cqe %h(u) + cpe%h(—u)7 (22)
and 1
e(u) = p— (e B —e TA)h(u), (23)
where 75 > 74. From this, it can be seen that
CpT, CdTd
FW(f) = PP _
(/) 1—=2mit,f 14 2mityf
2 2
CpTp CdTd . CpTp CdTg
- - 2
T+ dn2r2f2 14 dn2rif? o+ mf(l TamrE 1T 47r27-3f2) (24)
CpTp — CaTd + 47r2f27p7'd(cp7d —cqTp) + 2mif [CPTE + chg + 47r2w27'573(cp + cd)]
B (1 +4n272 f2)(1 + 4n277 f2) ’
and .
B TA
Fe(f) = - )
«(f) B —TA <1 +2mitgf 14 2mitaf
1 B TA ) 2 T2
= 2.2 2 222—2mf( S g22) (25)
(B —7a) |1 +4m275 f 14 4n2r3 f 14 4n2r3 f 1+ 4n2r3 f
(1B —Ta) + 42 firpTa(Th — 75) — 2mif (T3 — T3)
(tB — 7a)(1 4+ 47273 f2)(1 + 47275 f2?)
It can be seen that FW(—f) = (FW(f))* and Fe(—f) = (Fe(f))*. Writing FW (f) in polar form gives
FW(f) =rw(f)e®v D), (26)
where
\/[cprp — cqTq + AT f21,74(cpTa — caTp)) ? ¢ar2p2 [cpT2 + caTd + 472 f27273 (cp + ca)] ?
rw(f) = (1 +4n272 f2)(1 + 4n277 f2) ’
arctan(§) for y >0 (27)
ow(f) = 3 fory=0,

2
arctan(y) + 7 for y <0

where = 27 fc, 7} + cqr] + 4An* 21277 (cp + ca)] and y = ¢p7y — caTq + 472 f21p7a(cpTa — cap). Plots of rw (f)
and ¢w (f) are shown in Figures S1 and 5B, respectively. Writing Fe(f) in polar form gives

Fe(f) =re(fle”'® D, (28)



where

75— 7a) +4n2 g ra(rh — R AT — T2)°
re(f) = (1 — 7a)(1 + 4273 f2)(1 + 47272 f2)

B V1+8m2f2757A(TE + Ta) + 1674 fAr2 73 (15 + 74)2 + 472 f2(T5 + Ta)?

(14 4m273 f2)(1 + 47272 f2)
\/1 +4n2 f2(1p + 74) [27BTA + 472 f27E75(TB + TA) + TB + T4
- (14 4273 f2)(1 + 47273 f2) ’
2 f(13 — 73) }
(t8 —7a) +4m2f27p7a(TE — 73)
2rf(tp + Ta) }
14+ 42 f2rp7Ta(TE +74) |

¢c(f) = arctan {

= arctan [

It can be seen from this that FW (0) = W and Fe(0) = 1. Plots of r(f) and ¢.(f) are shown in Figure 5A and B,

respectively.

7 Estimating the Amplitude of a Sum of Cosines

The amplitude of
S(z) = cos(z +a) + Z Bjcos(x + b;),

is unchanged under a shift in the x axis. So

S(x —a) = cos(z) + Z Bicos(z + V'),

where b'; = b; — a, will have the same amplitude. This can be written as

S(x — a) = cos(z) + Z [Bicos(b';)cos(z) — Bisin(b';)sin(z)]

[1—|—ZBcos }cos [ZBsm }sm x)
= Pcos(z) 4+ @sin(z),
where P =1 + Z Bjcos(b';) and Q = — Z B;sin(b';). This can be written in the form

S(x —a) = Wcos(z + ),
where the amplitude, W, is given by

2 2
W?2=P24+Q%*= [1 +)° Bicos(b’i)} + [Z Bisin(b’i)}

=1+2 Z Bjcos(b';) + 2 Z B;Bjcos(V';)cos(b'j) + Z B?cos® (V')

ijFi
+ ZBQSIH (b)) +2 Z B;B;sin(V;)sin(V ;)
1,71
—1+QZBCOS +ZBQ—|—ZBB cos(b'; — b';) + cos(b'; + V';)]
(N
Z B;Bj[cos(b'; — b ;) — cos(b'; + ;)]
iji
—1—&—223005 +ZBQ+2ZBBCOS -V,
i,j7#1

_1+ZB [2cos(b —a)+ B; —i—QZB icos(b; —b)}
J#i

(32)



and so

W = \JI—I—ZB |:2COS(b —a)+ B; +QZB cos( b])} (35)

Jj#i

For the case where we have B; o< X?, X < 1, and it is an infinite sum of cosines, we can estimate the square of the
amplitude to the (k + 1)th order with

k Lk/2] k k—i
W2:1+QZBicos(bifa ZB2+QZZBBCOS —b;), (36)
) )

where |z is the floor of x.

8 Third-Order Covariance of Oscillatory Inputs

Similar to the second-order input covariance,

Cralt,u) = % /;T(S“k(t’)ﬁl(t’—i—u»dt’— (; /;T<sk( ))dt)(; /;T(S‘l(t’—i—u»dt’), (37)

we defined the third-order input covariance as

Croom (1, 7) = ;/ttT@@( NG + u)Sn(t + u+ 1))t
<;/tT >< Slt’+u)§ (' +u+r)) dt’)
- <;/tT<Sl(t’+u)>dt’) G /t7T<5‘k(t’)§‘  +u+r) dt’)
- <11,/ttT<S’m(t'+u+r)>dt’> (; /ttT<§k(t Si(t' + u)) dt’) (38)
- <;/ttT<Sk(t’)>dt’> <;/ttT<§l(t’+u)>d )(; /t7T<5’m(t +u+r)>dt’>
1

T
— ﬁkélm(t + u, ’I“) — ﬁlékm(t, u + 7“) — I)mékl(t, u) — DUy,

= /tT<Sk( NSyt +w) S (' 4w+ 7))t

So for inputs which are simple realizations of identical, sinusoidal intensity functions given by 2y + acos(27 fint),
this is

t
Crim(t,u,7) = % / {0 + acos[2m fnt'] }{ Do + acos[2m frn (' + u)] }{ Do + acos27 fr, (' + u +1)] }dt’
t—T

a2ﬁ0

{cos[%rfmr] + cos27 frn (u + )] + cos[27rfmu}} —

- g / oS (27 frnt]cos 27 fin, (t + w)|cos2 frn (T + u + 7)]dt
=T

. t ! / / (39)
=57 - {cos[27Tfmu] + cos[27 f, (28" + u)] }cos[wam(t o+ r)dt
PRI

= — {cos[277fm(t' +7)] + cos[27 frr (' + 2u + 7)] + cos[27 frn (T — 7))
AT Ji—r

+ cos[2m fin (3t + 2u + 1) }dt’
=0.
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