Supporting Information - Text S2

Derivation of the equations presented in the paper

Calculation of the equilibrium concentration of all chemical species

The following equilibrium constants are defined based on the thermodynamic cycle shown in Scheme 1:

$$
\begin{array}{r}
\mathrm{K}_{\mathrm{OpH}}=\frac{(\mathrm{Op})\left(\mathrm{H}^{+}\right)}{(\mathrm{OpH})} \\
\mathrm{K}_{\mathrm{CH}}=\frac{\left(\mathrm{C}^{-}\right)\left(\mathrm{H}^{+}\right)}{(\mathrm{CH})} \\
\mathrm{K}_{\mathrm{H}}=\frac{(\mathrm{OpH})}{(\mathrm{CH})} \\
\mathrm{K}_{\mathrm{D}}=\frac{\left(\mathrm{Op}^{-}\right)}{\left(\mathrm{C}^{-}\right)} \tag{4}
\end{array}
$$

Using mole fractions, the following must also be true:

$$
\begin{equation*}
\left(\mathrm{Op}^{-}\right)+(\mathrm{OpH})+\left(\mathrm{C}^{-}\right)+(\mathrm{CH})=1 \tag{5}
\end{equation*}
$$

From the thermodynamic cycle,

$$
\begin{equation*}
-\mathrm{RT} \ln \mathrm{~K}_{\mathrm{OpH}}=\mathrm{RT} \ln \mathrm{~K}_{\mathrm{H}}-\mathrm{RT} \ln \mathrm{~K}_{\mathrm{CH}}-\mathrm{RT} \ln \mathrm{~K}_{\mathrm{D}} \tag{6}
\end{equation*}
$$

Rearranging this equation, it is possible to obtain an expression for K_{H} as a function of K_{D} :

$$
\begin{equation*}
\mathrm{K}_{\mathrm{H}}=\frac{\mathrm{K}_{\mathrm{CH}} \times \mathrm{K}_{\mathrm{D}}}{\mathrm{~K}_{\mathrm{OPH}}} \tag{7}
\end{equation*}
$$

By replacing K_{H} from equation (7) into equation (3), we get:

$$
\begin{equation*}
(\mathrm{OpH})=\frac{(\mathrm{CH}) \times \mathrm{K}_{\mathrm{CH}} \times \mathrm{K}_{\mathrm{D}}}{\mathrm{~K}_{\mathrm{OpH}}} \tag{8}
\end{equation*}
$$

Using (8), (4) and (2) into (5), it is possible to obtain an equation for C^{-}as a function of $\mathrm{K}_{\mathrm{D}},\left(\mathrm{H}^{+}\right), \mathrm{K}_{\mathrm{opH}}, \mathrm{K}_{\mathrm{CH}}:$

$$
\begin{equation*}
\left(C^{-}\right)=\frac{1}{1+K_{D}+\left(H^{+}\right)\left(\frac{K_{D}}{K_{\mathrm{OpH}}}+\frac{1}{K_{C H}}\right)} \tag{9}
\end{equation*}
$$

Then, the mole fraction of all NP4 states can be calculated using equation (9), together with (1), (2) and (4), for a given solvent pH and K_{D} value:

$$
\begin{equation*}
(C H)=\frac{\left(H^{+}\right)}{K_{C H}\left[1+K_{D}+\left(H^{+}\right)\left(\frac{K_{D}}{K_{\mathrm{OpH}}}+\frac{1}{K_{C H}}\right)\right]} \tag{10}
\end{equation*}
$$

$$
\begin{align*}
& \left(O p^{-}\right)=\frac{K_{D}}{1+K_{D}+\left(H^{+}\right)\left(\frac{K_{D}}{K_{\mathrm{OpH}}}+\frac{1}{K_{\mathrm{CH}}}\right)} \tag{11}\\
& (\mathrm{OpH})=\frac{K_{D}}{\mathrm{~K}_{\mathrm{OpH}}\left[1+\mathrm{K}_{\mathrm{D}}+\left(\mathrm{H}^{+}\right)\left(\frac{K_{D}}{\mathrm{~K}_{\mathrm{OpH}}}+\frac{1}{\mathrm{~K}_{\mathrm{CH}}}\right)\right]} \tag{12}
\end{align*}
$$

Calculation of the apparent pK_{a}

The experimental signal was defined in equation 2 of the paper as

$$
\begin{equation*}
S=\alpha\left(\left[\mathrm{C}^{-}\right]+[\mathrm{CH}]\right)+\beta([\mathrm{Op}]+[\mathrm{OpH}]) \tag{13}
\end{equation*}
$$

The apparent pK_{a} is then defined as the inflection point of the S vs. pH curve and can be calculated as the pH for which the second derivative of S equals zero. This calculation was performed using Mathematica (Wolfram Research, Inc., Mathematica, Version 7.0, Champaign, IL (2008)). The obtained apparent pK_{a} is independent of the constants α and β :

$$
\begin{equation*}
\text { apparent } \mathrm{pK}_{\mathrm{a}}=\mathrm{pK}_{\mathrm{OpH}}+\mathrm{pK}_{\mathrm{CH}}-\log \left(\left(\mathrm{K}_{\mathrm{D}}+1\right) /\left(\mathrm{K}_{\mathrm{D}} \times \mathrm{K}_{\mathrm{CH}}+\mathrm{K}_{\mathrm{OpH}}\right)\right) \tag{14}
\end{equation*}
$$

