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I. MODEL AND STABILITY ANALYSIS

A. Four-dimensional model

We determine the expressions of four biologically meaningful rest points (ρ0,ρ1,ρ2,ρ3) by setting to zero the
right-hand sides of eq. (6) in the main text. The first fixed point ρ0 = (1, 0, 0, 1) is the one where both bacterial
groups are extinct. The second fixed point ρ1 = (µs, (1 − µs)/ε, 0, 1) represents the sensitive monoculture where
µs = −(aε)/(ε−ms) and µt = a/(mt − 1) are the break-even concentrations of ρs and ρt without antibiotic presence
[1]. ρ1 exists if i) ms > ε and ii) ms > αε. The third fixed point ρ2 = (µt, 0, 1 − µt, 1) represents the scenario of
tolerant monoculture. This point exists if: i) mt > 1 and ii) mt > α. The last fixed point ρ3 = (µs, ρs3 , ρt3 , 1)
corresponds to the coexistence and the relative bacterial density are:

ρs3 =
1

ψ

(
mt

ms
ε− 1

)
ρt3 =
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mt

(
a

ε−ms
+
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ψ
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ε

)
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ψ
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Three conditions are necessary for the positivity of ρ3: i) ms > ε, ii) εmt > ms and iii) ψ < ε(ε−ms)(εmt−ms)
ms(εα−ms)

. Since

the parameters are positive, condition iii) gives the additional constrain of ms > εα.
The stability of the system is studied by linearising eq. (6) of the main text around each of the four fixed points

and studying the sign of the eigenvalues of the relative Jacobian matrix, which is defined by:

J =


−a(msρs+mtρt)

(a+S)2 − 1 − ms

a+SS − mt

a+SS 0
ams

(a+S)2 ρs
ms

a+SS − ε 0 0
amt

(a+S)2 ρs −ψρt mt

(a+S)S − ψρs − 1 0

0 0 0 −1

 . (2)

The eigenvalues relative to Jρ0
are λ01 = −1, λ02 = −1, λ03 = − mt

a+1 − 1, λ04 = − ms

a+1 − ε. ρ0 is stable if all eigenvalues

λ0 are negative, which determines the following inequalities: i) mt < α and ii) ms < αε. It is worth noticing that the
conditions ensuring the stability of ρ0 are the opposite of those for the existence of ρ1 and ρ2.

The stability of ρ1 is determined by studying the sign of: λ11 = −1, λ12 = ψ(µs−1)
ε + µsmt

a+µs
− 1, λ13,4 = −σ ±√

σ2 − 4εa3m3
s(ε(a+1)−ms)
(ε−ms)3

, where σ = ams[ams+(ε(a+1)−ms)(ε−ms)]
2(a+µs)2(ε−ms)2

. The imposition of λ12 < 0 gives the following

inequalities: i) ms > ε and ii) ms/mt >
ε2

ψ(1−µs)+ε
. The conditions for λ13,4 < 0 are equivalent to those for ρ1

existence. In summary, if ρ1 is well-defined, it is stable given the condition ii).

The eigenvalues associated to Jρ2
read: λ21 = −1, λ22 = −1, λ23 = ms/mt−ε, λ24 = − (mt−1)2−a(mt−1)

amt
. The conditions

for the stability of ρ2 are: i) mt > α and ii) ms/mt < ε.
To study the stability of ρ3, we use the Routh-Hurwitz criteria [4]. Let p = r4 + c1r

3 + c2r
2 + c3r + c4 being

the fourth-order characteristic polynomial for Jρ3
, then the rest point ρ3 is stable given the necessary and sufficient

conditions: i) c1 > 0, ii) c3 > 0, iii) c4 > 0 and iv) c1c2c3 > c23 + c21c4. It is easy to verify that conditions i) and ii) are
always satisfied:

c1 =
(ε+ms)

ms
+

(ε−ms)
2

ms
> 0
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FIG. S1: Vectorial field of forces and the phase-plane analysis for bistable conditions, for the following parameter values: ratio
between tolerant and sensitive maximum growth rate f = 1.1, antibiotic killing rate ε = 1.1 and social interaction rate ψ = 0.7.
We draw the three rest points ρ1 (blue circle), ρ2 (red circle) and ρ3 (empty circle), where ρ = (ρs, ρt) is the vector having
for components the sensitive s and tolerant t densities, and the system nullclines defined by dρs/dt = 0 (red line), dρt/dt = 0
(blue line) whose intersection individuate the saddle unstable rest point ρ3.

c3 =
a

(a+ µs)3
[msρc3 +mtρp3 +msmtψρc3ρp3 ] > 0

However, it is also fairly easy to see that condition iii) does not hold. Given the expression for c4

c4 =
ερc3(ε−ms)

2[ms(1 + ψρc3) −mt(ε+ ψρp3)]

am2
s

,

condition iii) requires that ms(1 + ψρc3) > mt(ε + ψρp3). After some algebra we can see that this condition is false
when the rest point is well-defined.

It is now possible to determine the criteria describing the system mono- or bistability in function of the model
parameters. By assuming the existence of both fixed points and by comparing the conditions of stability obtained
from the linearisation analysis we derive the following relationships:

• Monostability with only sensitives mt

ms
ε < 1,

• Monostability with only tolerants mt

ms
ε > 1 + ψ

ε (1 − µs),

• Bistability with both mutually exclusive sensitives and tolerants monocultures 1 < mtε
ms

< 1 + ψ
ε (1 − µs).

These criteria highlight two major concepts. First, it is necessary to have a negative feedback (i.e. ψ > 0) from
sensitives to tolerants for bistability to arise. If no negative feedback is present the system can set only in one of the two
mono-stable states. Second, the modulation effect of the antibiotic ε. It is clear that an increase in antibiotic-killing
needs to be counteracted by an increase in selective pressure in order to maintain sensitives stability.

B. Two-dimensional model

The two dimensional model of eqs. (1) and (2) in the main text is obtained by: 1) substituting eq. (7) of the
main text into eq. (6), 2) simplifying the saturation terms by dividing numerator and denominator by ms and 3)
introducing f = mt/ms.

We repeat the linear stability analysis and we determine three equivalent fixed points (Fig. S1): ρ1 = (1/ε, 0),
which represents the sensitive monoculture, ρ2 = (0, 1), which represents the tolerants monoculture and ρ3 =

( εf−1
ψ , ψ+ε(1−εf)ψεf ) which represents a state where both groups coexist. ρ1 and ρ2 are always exist while state ρ3
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FIG. S2: Model nullclines analysis in the absence of noise. A: the tolerants nullcline lies above the sensitives nullcline leading
to tolerants dominance and sensitive extinction. The corresponding parameter set is f = 1.1, ε = 1.1, ψ = 0.1. B: the sensitives
nullcline lies above the tolerants nullcline leading to sensitives dominance and tolerants extinction. The corresponding parameter
set is f = 1.0, ε = 1.0, ψ = 5. C: the tolerants nullcline is steeper than the sensitives nullcline and their intersection is a saddle
and unstable point. The stable manifold of the saddle divides the interior of the quadrant into the sets of initial conditions
leading to competitive dominance by one type of microbe and competitive exclusion of the other. The corresponding parameter
set is f = 1.1, ε = 1.0, ψ = 0.7.
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FIG. S3: Normalized-to-one areas of the basins of attraction, corresponding to sensitives (green curve) and tolerants (red
curve), versus the antibiotic-killing ε (A) or the social interaction ψ (B).

exists if and only if 1 < εf < 1 + ψ/ε. The Jacobian matrix J(ρ) now reads:

J(ρ) =

[
fρt

(ρs+fρt)2
− ε − fρs

(ρs+fρt)2

−ψρt − fρt
(ρs+fρt)2

fρs
(ρs+fρt)2

− ψρs − 1

]
. (3)

ρ1 has eigenvalues λ1 = −ε and λ2 = εf − ψ/ε − 1. Thus, since ε is positive-defined, ρ1 is stable if and only
if εf < 1 + ψ/ε. Equivalently, eigenvalues in ρ2 are −1 and 1/f − ε. ρ2 is stable if and only if εf > 1. Since
the characteristic polynomial of J is p = r2 + c1r + c2 the conditions for ρ3 stability are c1 = −λ1 − λ2 > 0 and
c2 = λ1λ2 > 0. These conditions are equivalent to verifying that the real parts of λ1 and λ2 are strictly negative. The
expression for c1 and c2 are the following:

c1 = εf − ε2(1 − f)(1 − εf)

ψ

c2 = ε
(1 − εf)

ψ
[ε(1 − εf) + ψ].

The first condition implies that ψ/ε > (1 − εf)(1 − f)/f . The condition is true only in the particular case when
f > 1, which by itself does not prove the instability of ρ3. However, in order to have c2 > 0, the argument inside the
square bracket has to be negative (i.e. ψ/ε < εf − 1), which is the opposite of the one ensuring ρ3 existence. As a
consequence, if ρ3 exists, it will be unstable analogously to the four-dimensional model of the previous section.
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The system stability features can be visualized by drawing the system nullclines (i.e. the curves represented by
dρs
dt = 0 and dρt

dt = 0) in the phase-plane defined by tolerant ρt vs. sensitive ρs densities (Fig. S2). Tolerants
domination ρ2 is always obtained for parameter sets resulting in the tolerants nullcline laying above the sensitives
one (Fig. S2A) and the reverse is true for sensitives dominance ρ1 (Fig. S2B). Bistability is obtained when the
nullclines intersect in the saddle unstable coexistence point ρ3 such that the stable manifold of the saddle divides the
interior of the quadrant into the sets of initial conditions leading to competitive dominance by one type of microbes
and competitive exclusion of the other. In absence of fluctuations, depending on the system initial conditions, a
time-trajectory will be attracted in one of the two mutually exclusive stable states ρ1 or ρ2 where it will persist
indefinitely (Fig. S2C). The phase-plane is divided into two attracting basins, one around the tolerant mono-culture
and the other around the sensitive mono-culture. Their size can be determined with a Monte Carlo search in the
phase space (Fig. S3).

II. NOISE-INDUCED DYNAMICS

The integration of the Langevin dynamics in presence of bistability shows that the system time evolution in the
presence of noise is non-trivial. The microbiota switches over-time between the antibiotic-tolerant and the antibiotic-
sensitive dominations in a non-deterministic fashion that varies for different realizations of the noise. Additionally,
in agreement with experimental observations on the level of isolation of individuals [6, 7], it appears that the time of
recovery to sensitive-domination depends on the magnitude of the noise variance (Fig. S4B-D).
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FIG. S4: Time evolution of the sensitive (green) and tolerant (red) densities obtained by solving the Langevin equations for
f = 1.1, ψ = 0.7, ε variable with time (see Panel A) and three different noise regimes. A: antibiotic treatment, B: D → 0,
C: D = 0.00033 and D: D = 0.001. The densities are obtained averaging over 100 noise realizations and show the strong
dependence of the return to sensitive domination after treatment on the noise level. Orange shaded region represents treatment
conditions. The dynamics here shown qualitatively reproduces the behaviour observed in longitudinal microbiome data (see
Fig. 5).

We can think that the introduction of the noise leads to a diffusion process within the space of possible microbiota
compositions such that the time of escape from each stable or meta-stable state becomes strictly finite. The strength
of the diffusive motion is given by the size of the noise variance, D. Increasing D, the system spends a shorter time to
wander far from the initial configuration which coincides with the increase of the probability of crossing the attracting
basins separatrix in shorter time. Previous studies have characterized the mean residence time in each domination by
computing the escape rate between the two stable states, in the limit of small D, in terms of stationary probability
distribution [9, 10]. However, in our case this function is not known a priori since the system is non-conservative. Even
though alternative numerical solutions (e.g. explicit integration of the Langevin equations or of the Fokker-Planck
Equation) can be used to do so, these methods can be numerically very intensive and become prohibitive when the
number of states increases (i.e. solving a partial differential equation in d� 3 dimensions). As a consequence, in the
main text we follow a new alternative theoretical framework based on transition state theory.
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FIG. S5: A: most probable bacterial density ρ change with respect the noise parameter D when the boundary condition are
fixed at negative values far enough from the location of the stable states. The set of parameters used is f = 1.1, ε = 1.1 and
ψ = 0.4. This configuration is not physical since we allow negative values of the densities. However, we show that the theoretical
prediction of the linear coefficients reported in the main text (see Results section) coincides with the numerical simulation here
reported. B: plot of four different stationary distributions for f = 1.1, ε = 1.1, ψ = 0.4 and D = 0.01, 0.015, 0.02, 0.025 obtained
solving numerically the FPE with the following boundary conditions: P s(−1, ρt) = 0 and P s(ρs,−1) = 0.

Numerical estimates of the mean residence time

In order to characterize the stochastic dynamical behaviour of the bacterial concentrations we can numerically esti-
mate the moments of their joint probability distribution (P (ρ)) by sampling different possible trajectories connecting
the two stable states multiple times. Each time-trajectory is obtained by solving the Langevin equations with different
realizations of the noise (ξ) using a Milstein integration scheme [8]. In the main text, we compare the estimate of the
residence time in each domination state (ti with i = 1, 2) obtained with this sampling technique with that determined
using the novel theoretical framework.
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FIG. S6: Stationary path connecting the stable points 1 and 2. The red, green and black solid curves are the trajectories
associated with different values of the initial velocity, 0.032 0.072 and 0.172 respectively showing that the most probable path
for small noise is concentrated along the unstable manifold as obtained for different sampled trajectories (data not shown). It is
worth emphasizing that for conservative fields of forces, meaning F = −∇U , it easy to verify that ρ̇ = ±F are both the uphill
and downhill optimal path. The solution with the plus sign has null action S = 0 meaning that its probability is equal to unity
for every value of the noise D. This means that the path is always deterministic: it describes a simple gradient descent that
takes place even in absence of noise. On the contrary the ρ̇ = −F is associated to the reverse path and has a finite action S > 0
meaning it is activated only in presence of noise since its probability is suppressed and has strictly null value when D = 0. The
optimal path connecting two stable states is formed by an ascending trajectory toward the unstable point, given by ρ̇ = −F,
followed by a descending trajectory given by ρ̇ = F. In presence of a non-conservative force, the scenario changes completely
and the uphill and downhill trajectory are different since ρ̇ = −F is no longer a solution of the optimal path equation any
longer.
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III. SUPPORTING FIGURES FOR SVD
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FIG. S7: Plot of the correlation with principal component 2 (PC2) versus correlation with principal component 1 (PC1) for
all the phylotypes detected in each subjects (A-C) from [2]. Green (red) are the top 10 most correlated phylotypes with PC1
(PC2) which significantly decrease (increase) in response to antibiotic treatment.
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FIG. S8: Log2 abundance versus samples for all the phylotypes detected in each subject (A-C) from [2] sorted from the most to
least correlated with PC1. At the top we individuate the most sensitive phylotypes to antibiotic (mostly decreasing in density)
while at the bottom the most tolerant ones (mostly increasing in density). Differently from Fig. 5 in the main text, where only
the top 20 sensitives and tolerants are shown, here we display all the detected phylotypes.
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FIG. S9: Ordination plot of the time samples based on their first two principal components. We can easily recognize the time
points belonging to the three individuals (inter-individual variability) and their evolution in response to treatment. Empty
circles represent untreated samples, asterisks represent samples during treatment 1 and filled circles represent represent samples
during treatment 2.
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