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Quantification of correlogy and anti-correlogy 
   We downloaded orthology data from the Kyoto Encyclopedia of Genes and Genomes (KEGG, 
November 2009) [1], and surveyed the presence or absence of each ortholog across different 
bacterial species. To avoid possible biases arising from redundant genomes, we considered only 
one subspecies from each species if it contains multiple subspecies.* Also, we excluded a few 
species because of their suspicious genome annotations (see Table S1 for the full list of the 588 
bacterial species analyzed in this study). Because we are interested in functional interactions of 
genes reflected in their co-occurrence patterns across species, we take into account the genes (i.e., 
orthologs) not too lowly nor too highly prevalent across species; in the case of too lowly (highly) 
prevalent genes, there do not exist so many species with (without) the genes, making it hard to 
judge whether these few co-presences (co-absences) of the genes actually come from their 
functional interactions. In other words, without filtering, spurious correlations from non-
functional origins may emerge, simply by vertical co-inheritance of genes or by chance. 
Specifically, if Ei denotes the number of species containing gene i and N denotes the total 
number of species, one can define Xi = min(Ei, N−Ei) for each gene i. The probability density of 
Xi approximately follows the power-law decay as long as Xi ≥ Xth=80, and we chose the genes 
with Xi ≥ Xth to prevent spurious correlations that could occur at low Xi deviating from the 
power-law trend observed at large Xi. As such, the number of the resultant genes considered here 
was 2085 out of 5896 total. We also tried other lower bounds of Xi, ranging from 50 to 100, and 
found no qualitative difference from our main results. 
   The next step was to extract direct gene associations from the co-occurrence patterns. It should 
be noted that simple correlations calculated from the co-occurrence patterns can suffer from 
numerous indirect correlations between genes, caused by transitivity of direct correlations. 
Filtering out these indirect correlations has been of critical issues in the field of inferring 
transcriptional regulatory networks from microarray data [2,3]. Here, we applied the partial 
correlation method employed in graphical Gaussian models [3], of which superiority over many 
other methods was demonstrated in reverse engineering of transcriptional regulatory networks 
[2]. To implement this method, first we calculated the Pearson correlation rij for binary variables 
of presence and absence of genes i and j: 
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where Cij is the number of species containing both genes i and j. Second, to reduce indirect 
correlations between genes i and j, we calculated the partial correlation wij using rij: 
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where pij is the (i, j)th component of an inverse matrix of rij. However, in our case, the number of 
genes is much larger than the number of species, yielding an ill-conditioned problem for matrix 
rij. To overcome this problem, we applied the shrinkage estimation derived by Schäfer and 
Strimmer [3]. Specifically, Schäfer and Strimmer obtained a regularized estimator of rij 
combining analytic determination of shrinkage intensity from the Ledoit-Wolf theorem [4]. The 
following is the resultant estimator r*

ij that simply substitutes for rij in the above calculation of 
wij: 
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where δij is the Kronecker delta symbol and λ is given by 

( )( )
( ) ∑

∑

≠

≠

×−









−






 −

−−

=

ji
ij

ji
k

ijjikkjkjkkiki

rN

r
N

Nxxxx

2

2

1

1 σσ

λ . 

Here xki = 1 if gene i is present in species k, otherwise, xki = 0, <···>k denotes the average over 
species k’s, and σi is the standard deviation of xki over species k’s. 
   We expect that the calculation of wij will also alleviate vertical co-inheritance effects, as 
indirect correlations from redundant genetic backgrounds can be reduced so. As a result, the 
obtained wij indicates correlogy (wij > 0) or anti-correlogy (wij < 0) between genes i and j, and 
|wij| quantifies the magnitude of the correlogy and anti-correlogy. The significance range of wij 
was assessed by dissociating gene relationships with randomly-permuted presences of each gene 
across species: P < 0.001 as long as |wij| > 0.0008. For comparative analysis, the mutual 
information Iij of genes i and j between {xki} and {xkj} across species k’s [5] was also calculated. 
 
Significance analysis of correlation between wij (or rij, Iij) and protein interaction 
   We calculated the average of wij (wppi) from the pairs of physically-binding proteins in E. coli 
[6], and obtained its P value by generating the distribution of average wij (wnull) from the same 
number of, but arbitrarily-mated pairs of the proteins as distant as the given shortest path length 
in the protein interaction network. The central limit theorem ensured that this null distribution 
converged well to the Gaussian distribution, providing the P value for how frequently wnull 
exceeds wppi. The smaller the P value, the more significantly large wij physically-binding proteins 
tend to have. Similar analyses were also performed for rij and Iij. 
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Two distinct regimes of protein interactions 
   From wij ~ 0.045, the probability density of wij for interacting protein pairs in E. coli starts to 
record higher values than that for arbitrary pairs of proteins (Figure 1A). We hypothesize that 
such distinct wij’s in probability densities might represent distinct regimes enriched with 
obligatory or non-obligatory protein interactions. To investigate this possibility, we collected the 
operon data based on publicly available information [7], and found that the fraction belonging to 
the same operons among the gene pairs of given wij increases steeply at wij ~ 0.045 for both 
interacting and non-interacting protein pairs, but this increase appears more profound for 
interacting protein pairs (Figure S1, left). One might raise the possibility that the distinct regimes 
shown in Figure 1A can merely be due to the levels of operon pairs rather than due to the degree 
of functional coherence in protein interactions. However, even if we exclude the pairs belonging 
to the same operons, the trends similar to those in Figure 1A still persist although rather 
weakened (Figure S1, center; P = 4.8×10−7). The further analysis of these non-operonic pairs 
with the Affymetrix E. coli oligonucleotide array data [8] reveals that the gene pairs with wij > 
0.045 have higher Pearson correlation coefficient ρij’s of transcript profiles than the others, as 
especially manifested for the genes encoding interacting protein pairs (Figure S1, right); for 
interacting protein pairs, the average ρij of wij > 0.045 is 4.08 times larger than that of wij < 0.045, 
while for arbitrary protein pairs, 2.05 times larger. Taken together, our results indicate the overall 
enrichment of functionally-obligatory interacting proteins at wij > 0.045. 
 
Functional enrichment of correlogy and anti-correlogy 
   For a given pair of functional categories c1 and c2, we can quantify how correlogously genes 
in c1 and c2 are associated by: 
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where i and j are indices of genes, ai,c is 1 if gene i belongs to functional category c, otherwise 0, 
δi,j is the Kronecker delta symbol, gp
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does not double-count each pair of i and j. Ωp
c1,c2 is a weighted average of wij > 0 according to 

how exclusively genes i and j belong to c1 and c2. Likewise, we can define Ωn
c1,c2 to quantify 

how anti-correlogously genes in c1 and c2 are associated: 
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i,c is the index of gene satisfying 1,,

=cg n
ci

a  and )min( ,, ,
cjijgi aww n

ci
=  for given i and c. 

Ωn
c1,c2 is a weighted average of |wij| (wij < 0) according to how exclusively genes i and j belong to 

c1 and c2. Note that for both Ωp
c1,c2 and Ωn

c1,c2 , the cases with c1 = c2 as well as with c1 ≠ c2 are 
all allowed. Here, we generally followed the functional classification of orthologs taken by 
KEGG, but slightly modified it to better consider bacterium-specific physiology. 
   Figure S2 clearly shows high Ωp

c1,c2 and Ωn
c1,c2 when c1 = c2, indicating the enrichment of 

correlogy and anti-correlogy between genes of similar biological functions. For example, genes 
rrf, rrs, and rrl in common functional category Translation encode 5S rRNA, 16S rRNA, and 
23S rRNA, respectively, and are very strongly correlogous to each other; wij = 0.343 for rrf and 
rrs (the 12th largest wij > 0 among all gene pairs), wij = 0.307 for rrf and rrl (the 22nd largest wij 
> 0), and wij = 0.3975 for rrs and rrl (the 3rd largest wij > 0). In the same functional category, on 
the other hand, highly anti-correlogous are lysK and lysS encoding lysyl-tRNA synthetase (wij = 
−0.124, the 8th smallest wij < 0 among all gene pairs) as well as genes encoding glycyl-tRNA 
synthetase [wij = −0.123 for glyQ and glyS1 (the 9th smallest wij < 0), and wij = −0.120 for glyS 
and glyS1 (the 11th smallest wij < 0)]. 
 
Characterization of Si

p and Si
n 

   In order to quantify how tightly each gene i is correlogously associated to other genes, we 

defined ∑
>

=
0ijw

j
ij

p
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i wS  for anti-correlogous couplings around gene i. 

 
Correlation between Si

p and Si
n 

   With respect to the organizational property of correlogy versus anti-correlogy, Si
p and Si

n of 
each gene i are remarkably positively correlated (r = 0.99; Figure S3, left). This result does not 
seem to be caused by a methodological artifact, as Si

p and Si
n from surrogate data with randomly 

shuffled ortholog profiles show clear negative correlations [r = −0.48 ± 0.03 (average ± s.d.)]. In 
surrogate data, Si

p and Si
n of gene i are roughly proportional to the numbers of other gene j’s with 

wij > 0 and wij < 0, respectively, while the total number of gene j’s is always finite. This zero-
sum relation between Si

p and Si
n in surrogate data leads to such negative correlations. In other 

words, the positive correlation between Si
p and Si

n out of real ortholog profiles can only be 
accounted for by nontrivial fine-level structures behind wij’s. 
   To address this issue, we measured the Shannon disparities of wij > 0 and wij < 0 for each gene 
i (Di

p and Di
n, respectively) [9]: 
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exponentials of the Shannon entropies of p
ijw~  and n

ijw~ . The more homogeneously distributed wij > 

0 (< 0) around gene i, the larger Di
p (Di

n). Di
p and Di

n quantify how many genes are ‘effectively’ 
associated to gene i correlogously and anti-correlogously, respectively. The coefficient of 
variation (CV) of Di

p over gene i’s was 0.058 and that of Di
n was 0.025, indicating that Di

n is 
more constant over gene i’s than Di

p. In other words, the effective number of anti-correlogous 
associations around a gene tends to be constant relative to that of correlogous associations, and 
Si

n can be better proportional to individual |wij|’s (wij < 0) around gene i than Si
p can be to 

individual wij’s (wij > 0) around that gene. Indeed, it turns out that if the largest |wij| (wij < 0) 
around gene i is wi

nmax and the largest wij (wij > 0) around that gene is wi
pmax, r = 0.59 for wi

nmax 
and Si

n while r = −0.10 for wi
pmax and Si

p. 
   Because Si

n is substantially determined by individual wij’s although Si
p is not, we suggest that 

the positive correlation between Si
p and Si

n originates from the correlation between Si
p and 

individual wij’s (wij < 0), as shown by r = 0.56 for Si
p and wi

nmax (Figure S3, right; Z = 28.71 from 
surrogate data with randomly-shuffled ortholog profiles). Therefore, genes with higher Si

p are 
also likely to encounter more severely anti-correlogous genes. Why are genes in strong 
correlogous associations likely to encounter more anti-correlogous genes? We offer the 
possibility that if a certain gene A in a cell collaborates with other genes more tightly, harboring 
its anti-correlog B can antagonistically interfere with the entire functions performed by these 
collaborating genes, thereby making A and B more anti-correlogous to each other. 
 
Significance analysis of correlation between Si

p and phylum-level dispersion 
   Let nphyla be the number of different phyla where genes are present. For genes with nphyla < 7 
(Figure 2B), we obtained the slope of Si

p against nphyla by linear regression, and normalized it by 
multiplying p

i
phyla Sn / . From surrogate data with randomly-permuted gene presences across 

species, we also generated an ensemble of such normalized slopes for nphyla < 7, and calculated 
the Z score of the actual value. The larger the Z score, the more significantly large the slope of Si

p 
against nphyla. 
 
Characterization of the maximum relatedness subnetwork (MRS) 
   For any given weighted network, one can simplify its structure by constructing the MRS 
composed only of highly weighted edges in the network [9]. Specifically, in the MRS of this 
study, each gene i points to only two genes j and j’ by different categories of edges that represent 
the most correlogous (maxj wij > 0) and anti-correlogous (minj’ wij’ < 0) genes to gene i, 
respectively. Here, all genes in the MRS turned out to be decomposed into 483 different small 
subgroups, of which each includes correlogously associated genes yet not linked correlogously to 
any genes in the other subgroups. These subgroups in the MRS were termed correlog groups. 
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Functional coherence of correlog groups in the MRS 
   For given correlog group g in the MRS and given functional category c of genes, we can 
calculate fc

g = Ñc
g/Ñg, where Ñc

g is the number of genes affiliated to both correlog group g and 
functional category c, and Ñg is the total number of genes affiliated at least to one functional 
category in correlog group g. Therefore, fc

g represents the uniformity of gene functions in a 
correlog group. Majority (57.1%) of correlog groups with Ñg > 1 were shown to have at least one 
functional category c satisfying fc

g = 1 in each g. To calculate the corresponding Z score, we 
generated an ensemble of correlog groups with Ñg > 1 by randomly exchanging genes of the 
same number of the affiliated functional categories. The larger the Z score, the more significantly 
uniform gene functions each correlog group tends to have. 
   For a given pair of functional categories c1 and c2, we can also define their overlapping ratio 
(Figure 4A and Table S4) as: 
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where i and j are indices of genes, ai,c is 1 if gene i belongs to functional category c, otherwise 0, 
di,g is 1 if gene i belongs to correlog group g, otherwise 0, and H(x) is 1 if x > 0, otherwise 0. 
Yc1,c2 quantifies how likely genes in c1 and c2 belong to the same correlog groups (0 ≤ Yc1,c2 ≤ 1). 
The corresponding P value was obtained by generating the null distribution in the same way as in 
the case of fc

g above. As mentioned before, we here employed the modified version of the KEGG 
functional categories suited to bacterium-specific physiology. 
 
Anti-correlogous associations between different correlog groups in the MRS 
   Correlog groups in the MRS are seamlessly bridged by anti-correlogy links, allowing us to 
identify which correlog groups are significantly associated anti-correlogously with each other. 
For a given pair of correlog groups g1 and g2, we can count the number of anti-correlogy links 
(Lg1,g2) bridging g1 and g2. We compared Lg1,g2 with the values expected from the configuration 
model [10,11] to have the given numbers of incoming and outgoing anti-correlogy links for g1 
and g2, and calculated the Z score of Lg1,g2: 
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where kg
in is the number of anti-correlogy links of correlog group g incoming from the other 

correlog groups, kg
out is the number of those outgoing to the other correlog groups, and m is the 

total number of anti-correlogy links bridging different correlog groups. The larger the Z score, 
the more significantly two correlog groups are associated anti-correlogously (Table S5). 
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Effectiveness of correlog groups for different domains of life and environmental samples 
   To map orthologs in MRS to genes in archaea and eukaryotes, we considered 60 different 
archaeal species and 106 different eukaryotic species in KEGG. For this, we considered only one 
subspecies from each species to avoid biased analysis for any particular species.* For the 
mapping for environmental samples, we considered the data from twelve various environmental 
sources, available at the integrated microbial genomes (IMG) system [12], and selected only one 
sample from each source to prevent biasing the analysis for any particular source.† The twelve 
environmental samples were from human gut microbial communities [13], methane-oxidizing 
archaea from deep-sea sediments [14], hypersaline microbial mats [15], marine planktonic 
communities [16], acid mine drainages [17], mouse gut microbial communities [18], termite gut 
microbial communities [19], deep-sea whale fall carcasses [20], uranium contaminated 
groundwater [21], indoor atmosphere [22], agricultural soil [20], and lake sediments [23]. 
   For each species or environmental sample, we counted the number (n) of correlog groups 
harboring the genes mapped to the MRS. We also obtained the mean (η) and the standard 
deviation (σ) of such numbers of correlog groups when the same number of genes are randomly 
mapped to the MRS (Figure 4C-4E): 
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where N is the number of genes mapped to the MRS, g is the index of each correlog group, Ng is 
the total number of genes in correlog group g, and n  is the total number of correlog groups in 
the MRS. Accordingly, we can calculate the Z score of n [Z = (n−η)/σ]. The smaller the Z score 
below zero, the more significantly clustered the genes around correlog groups. 
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Footnotes 
 
*The earliest sequenced subspecies from each species was chosen for analysis based on the 
assumption that genome annotations of earlier sequenced subspecies might be more updated. 
Selections of other subspecies also did not affect the main results presented here. 

†From each source, selected was for analysis the sample containing the largest number of genes 
mapped to the MRS, based on the assumption that a richer genetic content in the same source 
might be of better quality. We also tried other selections of samples, but did not find much 
difference from the results presented here. 
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