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In the deterministic model presented in the main text, the
dynamics of the TF concentration c was described by the
following ordinary differential equation:

dc
dt

= g(rc)(b/V )− βc, ()

inwhich b is the burst size, V the volume of the cell, and r the
fraction of TFs that is modified/activated. e transcription
rate g(ĉ), with ĉ ≡ rc, is affected by auto-regulation and is
assumed to have the following form:

g(ĉ) ≡ α
(ĉ/K)H + 1/f

(ĉ/K)H + 1
.

Here α is the maximal transcription rate, K is the dissocia-
tion constant of the TF binding to its binding sites,H is the
Hill coefficient, and f the fold change.
e response functionwas defined as the steady state con-

centration of modified/activated TF as a function of r, de-
noted ĉs(r). Here we demonstrate that the shape of the
response function is determined only by f and H . With
this we mean that the other parameters merely scale the re-
sponse function horizontally and/or vertically. Since scaling
a function should not change its sensitivity, nor whether or

not it has a bistable domain, we focus on the shape parame-
ters f andH .
From Eq. , the steady state TF concentration cs is implic-

itly given by
cs = [b/(βV )] g(rcs).

In terms of ĉs = rcs, this can be wrien as

ĉs = r[b/(βV )] g(ĉs).

We now rewrite this equation in terms of the scaled and
dimensionless quantities c̃ ≡ ĉs/K and r̃ ≡ (cmax/K) r,
where cmax ≡ (α/β)(b/V ):

c̃ = r̃ g̃(c̃). ()

Here g̃(c̃) is defined as

g̃(c̃) ≡ (c̃)H + 1/f

(c̃)H + 1
. ()

Only two parameters remain: H and f . is shows that the
other parameters merely scale the response function hor-
izontally and/or vertically; therefore, the shape of the re-
sponse function is determined byH and f only.
e case H = 1 (non-cooperative auto-activation) is of

special interest, and can easily be solved exactly. In this case,
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Figure S: Phase diagram showing the sensitive regions of parame-
ter space, according to the measure s∆. (In the main text a similar
figure is provided for measure sd.) Here, we have chosen a rather
stringent cutoff of s∆ = 2, which compares to Hill functions with
a Hill coefficient larger than . We note that, unlike sd, s∆ does de-
pend on the threshold location rt = K/cmax; we have used rt = 0.5
to generate this plot. Higher values of rt lead to higher values of
s∆ for given f andH .

Eq.  is quadratic and yields:

c̃(r̃) =
r̃ − 1

2
+

1

2

√
(r̃ − 1)2 + 4r̃/f.

In the limit of large f , this reduces to c̃ = r̃ − 1, and c̃ = 0
becomes a stable solution for r̃ < 1, so that

ĉs(r) =

{
0 if r ≤ rt,
cmaxr −K if r > rt.

()

(Here we defined rt ≡ K/cmax.) is proves that in this limit
the response becomes threshold-linear. Lastly, from Eq. ,
cs(r) follows directly, yielding

cs(r) =

{
0 if r ≤ rt,
cmax −K/r if r > rt.

 C   

emain text contains results about the sensitivity of the re-
sponse function as a function of parameters. Here we derive
these and additional results.

. Definitions

We use two different measures to quantify the sensitivity
of response functions y(x). e first measure, sd[y(x)], is
defined as the maximum slope of y(x) in a log–log plot:

sd[y(x)] ≡ max
x∈R+

(
dlog y(x)
dlogx

)
.

is measure is commonly used and effectively detects re-
gions of large amplification or gain. However, a high sd
does not establish that y(x) resembles a binary switch (or
step function). erefore we also introduce the measure s∆
as

s∆[y(x)] ≡
∆ log y(x)
∆ logx

,

where the ∆ refers to the x-interval in which y(x) − y(0)
increases from % to % of its value. us, s∆ can be in-
terpreted as the average log–log derivative (also called gain)
calculated over the domain in which the function switches
from low to high. A high value of s∆ therefore does indicate
switch-like behavior.

. Sensitivity of the open-loop circuit

In the open-loop circuit, the response is determined by the
properties of the promoters of the genes regulated by the TF
(its target genes). We assume that the expression of these
genes responds according to a Hill function:

h̃(r) ≡ α
(rcs/K)H + 1/f

(rcs/K)H + 1
.

Here cs is the steady state TF level, and α, H , f and K are
respectively the maximal transcription rate, the Hill coeffi-
cient, the fold change and the dissociation constant of the
target promoter. As before, r is the fraction of the TFs that
is activated. Because scaling of r and vertical scaling of h(r)
do not influence s∆, we continue our calculations in terms
of the scaled Hill function h(x), defined by

h(x) ≡ xH + 1/f

xH + 1
.

e log–log derivative d(x) of h(x) can be calculated di-
rectly:

d(x) ≡ x

h(x)

dh(x)
dx

=
(f − 1)H xH

(1 + xH) (1 + fxH) .

Maximizing this function gives

sd[h(x)] =
H

Hc(f)
,

where we defined

Hc(f) ≡
√
f + 1√
f − 1

. ()

is result is used in the main text.
To calculate s∆ for the same function, we first derive the

value of xwhere h(x)−h(0) reaches a fraction ϕ of its max-
imum value 1− 1/f , by solving

h(x)− h(0) = ϕ (1− 1/f).

e solution is xH = ϕ/(1 − ϕ). is means that the
switching domain is bordered by xl and xh such that xH

l =
0.1/(1 − 0.1) = 1/9 and xH

h = 0.9/(1 − 0.9) = 9. e
corresponding values of h(x) are hl = 0.1 + 0.9/f and
hh = 0.9 + 0.1/f respectively. erefore,

∆ log r = ∆ logx = logxh − logxl

=
2

H
log 9,





and

∆ logh(x) = log
(
9 + 1/f

1 + 9/f

)
.

is results in

s∆[h(x)] =
∆ logh(x)
∆ logx

= W (f)

(
H

2

)
, ()

where the prefactor

W (f) =

(
log(9 + 1/f)− log(1 + 9/f)

log 9

)
()

converges to 1 from below in the limit of high f . Eqs  and
 prove that, for Hill functions, s∆ can be at mostH/2.

. Sensitivity of the auto-activation circuit

We now calculate the sensitivity of the auto-activation cir-
cuit. e response of the circuit is determined by Eq. . We
cannot solve this equation analytically for general parame-
ters. However, it is straightforward to find the inverse of the
response function, r̃(c̃):

r̃(c̃) =
c̃

g̃(c̃)
. ()

We can use this inverse function to calculate sd[c̃(r̃)]. e
log–log derivative of the response function at a given output
c̃ is given by

d(c̃) =
r̃

c̃

dc̃
dr̃

=
r̃(c̃)

c̃

/
dr̃(c̃)
dc̃

=

[
1 +H

(
1

f(c̃)H + 1
− 1

(c̃)H + 1

)]−1

. ()

is function is maximal when c̃ = f−1/(2H). By insert-
ing this into Eq.  we learn that this occurs when r̃ =
f (H−1)/(2H), and by inserting it in Eq.  we obtain the sen-
sitivity

sd =
Hc(f)

Hc(f)−H
,

which is the result used in the main text. (Hc(f)was defined
in Eq. .) For a given f , sd diverges when H → Hc(f); this
is because the circuit is bistable whenH > Hc(f).
e values of s∆ for general parameters have to be cal-

culated numerically. Fig. S shows the region of parame-
ter space in which the response is sensitive, taking s∆ = 2
as the cutoff. (To obtain these results, we assumed that
K/cmax = 0.5.) We already showed that for Hill functions
s∆ is at mostH/2, which implies that the sensitivity of auto-
activating circuits with s∆ > 2 is similar to the sensitivity of
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Figure S: Response characteristics of the stochastic model at
H = 1, at a high fold-change f . (a) Shown as a density plot is
the steady-state probability distribution of the total TF expression
level c(r) as a function of the modified fraction r. For comparison
the blue line shows the prediction from the deterministic model. As
in the deterministic model, the stochastic model predicts a thresh-
old response. (b) Shown are both the standard deviation σ and the
Fano factor σ2/µ (where µ is the mean) of the response plot in (a),
as a function of r. e peak of the Fano factor in the threshold re-
gion is mainly caused by the reduced mean: σ peaks only mildly.
Parameters: α = 4/min, β = 0.04/min, K = 200 nM, b = 10,
V = (1µm)3, and f = 600.

Hill functions with H > 4. We conclude that, even though
there are clearly numerical differences between sd and s∆
for the auto-activation circuit, the region of high sensitivity
is similar for both measures.
One case of special interest can be worked out by hand:

the non-cooperative auto-activation circuit (H = 1), in the
limit of large f . We showed that, in this limit, the response
becomes threshold-linear. e value of s∆ now depends
only on the location of the threshold, rt ≡ K/cmax, and can
be calculated straightforwardly, yielding:

s∆ = W (1/rt)
−1,

where W was defined in Eq. . For example, at rt = ½, this
evaluates to s∆ = 4.0. To obtain the same value with a
Hill function, the Hill coefficient H = 8 is required, which
shows that the threshold response is highly sensitive.

. reshold response conserved in the stoastic model

e above calculations for the deterministic model demon-
strate that, ifH = 1 and f is large, an ultra-sensitive thresh-
old response is obtained. Fig. S shows that this feature is
conserved in the stochastic model. (A figure very similar to
Fig. S(b) is presented in Ref. [] for a related model.)

 F      

In the main text, we discuss the induction time of the
stochastic circuit. To calculate this quantity, we used the fol-
lowing fast method for calculating first passage times, which
can be applied to a large class of models. We first describe
the method in a general form, and then explain how we ap-
plied it to the calculation of the mean induction time.
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Figure S: Induction time distributions, obtained by simulations (105 repetitions per histogram). In all three plotsK = 50/V , α = 1/min,
β = 0.04/min and b = 10. (a) Results for f = 10 and H = 1. At these parameters, f < α/β, so that the deterministic model and
the mean of the stochastic model give similar results. (b) Distribution for f = 150 and H = 1. Now, f > α/β; that is, anomalous
induction occurs, and the induction is limited by the first transcription event, at rate α/f = (150min)−1. As a result, the distribution
is approximately exponential. (c) At f = 150 and H = 3 the model is in the classical bistable regime. As expected for waiting times of
barrier crossing problems, the distribution is close to exponential.

. Numerical first passage time calculation

We imagine a stochastic system with a countable number
of states n. We ask how long it takes (on average) before a
“random walker” exits the domain n ∈ [0, a⟩ if at time t = 0
it is in state n with probability pin(n).
First, we write down a Master equation for the domain

n ∈ [0, a⟩ with an absorbing boundary condition at n = a.
In vector notation, it reads

dp⃗(t)
dt

= A p⃗(t),

where p⃗(t) is a a-dimensional vector containing the proba-
bilities pn(t) of being in state n at time t, and A is the a× a
transition matrix. Given an initial condition p⃗(0) = p⃗in, this
linear system of differential equations has the formal solu-
tion

p⃗(t) = eAt p⃗in. ()

Since a is an absorbing boundary, the sum S(t) ≡∑a−1
n=0 pn(t) decreases with time; in fact, S(t) is the prob-

ability that at time t the walker has not le the domain
n ∈ [0, a⟩ yet (i.e., S(t) is the survival probability). Let F (t)
denote the probability density that walker exits the domain
for the first time at time t (i.e., the first passage time proba-
bility density); then

F (t) = −dS(t)
dt

.

Partial integration now shows that the mean first arrival
time equals

τ =

∫ ∞

0

tF (t) dt

=

∫ ∞

0

S(t) dt. ()

(Here we assumed that limt→∞ S(t) = 0, that is, that the
walker will surely be absorbed if we wait long enough.)

For brevity, we below use the notation
∑

v⃗ to denote the
sum of the elements of a vector v⃗. en, from the Eq. , the
definition of S(t), and Eq. , it follows that

τ =

∫ ∞

0

∑
p⃗(t) dt

=
∑∫ ∞

0

eAt p⃗in dt

=−
∑

A−1 p⃗in. ()

is result shows that, in order to calculate the mean first
passage time, one only needs to invert thematrixA, multiply
it by the initial condition p⃗in, and sum the elements of the
resulting vector.
It remains to be shown that inverseA−1 indeed exists. For

this, a sufficient condition is that limt→∞ S(t) = 0: this im-
plies that all probabilities pn must vanish with time, which
means that all eigenvalues of A are negative. en, the de-
terminant ofA is nonzero,A is non-singular, and the inverse
A−1 exists.
In soware packages such as Matlab, large, sparse matri-

ces like A can be inverted quickly. But since we do not need
the inversematrix itself—just its productwith p⃗in—a fast way
to implement Eq.  in Matlab is:

t=-sum(A\p).

where p is the initial condition p⃗in. Aer defining A and p,
the whole mean first passage time calculation can thus be
implemented in a single line of code.

. Application to the induction time

We define the induction time as follows. We imagine that
the signal has been absent long enough to ensure that the
circuit is in the steady state corresponding to r = 0. en,
at time t = 0, the signal is introduced (r = 1). e induction
time is the mean time it takes before the TF expression level
reaches % of the average steady state expression level at
r = 1. erefore, the induction time can be calculated using
the method described above.





A subtlety is that, at time t = 0, the circuit can already
be in a state n ≥ a (due to a fluctuation). is can easily be
taken into account. We can write the mean first arrival time
as

τ =

∞∑
n=0

ps(n) τn,

where ps(n) is the steady state probability distribution at
r = 0, and τn is the mean first passage time given that, at
time t = 0, the system is in state n. Now, if n ≥ a at t = 0,
the induction time is zero, i.e., τn = 0. is means that we
can truncate the summation at n = a− 1:

τ =
a−1∑
n=0

ps(n) τn.

erefore we calculate ps(n), and simply truncate it at n =
a− 1; the resulting (unnormalized) distribution is then used
as p⃗in in the method explained above.

 I  

We defined the induction time as themean time it takes, aer
the signal arrives, until the expression reaches % of the
average steady state level. To verify that the mean time is
representative of the underlying induction time probability
distribution, we also studied the full distributions.
Fig. S shows distributions for three parameter seings,

obtained by simulations of the induction process. e pa-
rameters in Fig. S(a) are chosen such that f < α/β, so that
no anomalous induction is expected. e exponential tail of
the distribution is determined by the time scale of the slow-
est step in the induction process, which is the transcription
in the “o” state, i.e. f/α = 10min. Despite this exponen-
tial tail, the coefficient of variation cv, defined as the stan-
dard deviation over the mean, is 0.50 for these parameters,
showing that the distribution is more compact than expo-
nential distributions. In additon, if both α and K are in-
creased in proportion while other parameters are kept fixed,
the process becomes more and more deterministic and cv is
further reduced (data not shown). In Fig. S(b), f > α/β and
H = 1, so that anomalous induction occurs. As we explain
in the main text, now the induction time is dominated by the
waiting time for the first transcription event. Because this
is approximately a Poisson process, this leads to an approx-
imately exponential induction time distribution, with scale
parameter f/α = 150min. Consistently, the coefficient of
variation for this distribution equals cv = 0.96, close to the
value cv = 1 for exponential distributions. Lastly, Fig. S(c)
shows results for f = 150 and H = 3, which is in the de-
terministically bistable regime. Now, the induction process
is a classical barrier crossing problem, and again an approx-
imately exponential distribution should be expected []. In-
deed, this is what we find, with cv = 0.99. Fig. S plots cv
for various f andH , which supports this picture.
We conclude that in all regimes the meanwaiting time is a

reasonable measure of the induction speed, but the variation
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Figure S: Coefficient of variation for the induction time distri-
butions. e coefficient of variation cv is defined as the standard
deviation divided by the mean. e figure presents data obtained
by simulation (105 repeats per data point; the errors are compara-
ble to the symbol size). Results are shown for a range of f values,
and for H = 1, 2, 3. e other parameters are as in Fig. S. In-
dependent of H , cv converges to  for high fold changes; indeed,
there the distributions are approximately exponential. Red dots
and labels indicate the results corresponding to the distributions in
Figs. S(a), (b), and (c).

in the waiting time can be large. is shows that at large f ,
the induction tends to become slow as well as unpredictable.

 B . 

To be precise, wemake a distinction between bimodality and
bistability. A circuit is called bistable if the deterministic
model predicts two stable steady states. We call it bimodal if
the steady state probability distribution of the TF expression
level, according to the stochastic model, has two peaks. If a
circuit is bistable, one would expect it to be bimodal, and vice
versa—but this is not always true [, –].

. Conditions for bimodality atH = 1 and b = 1.

A non-cooperative auto-activation circuit (H = 1) cannot
be bistable. Nevertheless, for certain parameter values, the
stochastic model predicts that it is bimodal, even if the pro-
duction of proteins is not “bursty” (burst size b = 1). is is
demonstrated in Fig. S. Here we derive the exact conditions
for this to occur, because, as we argued, the anomalous in-
duction time and anomalous bimodality are two sides of the
same coin.
We first consider the ratio R(n), defined as

R(n) ≡ ps(n+ 1)

ps(n)
,

where ps(n) is the steady probability that n TFs are present
in the cell. Because b = 1, detailed balance holds; for the
Master equation given in the main text, this implies that

g(rn)ps(n) = β(n+ 1)ps(n+ 1),

so that

R(n) =
g(r n)

β(n+ 1)
.
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Figure S: Anomalous bimodality. At H = 1 (non-cooperative auto-activation), even though the circuit is not bistable according to the
deterministic model, bimodal expression is observed in the stochastic model if the fold-change f is high. (a) Steady-state distributions of
the total TF concentration for various values of the modified fraction r, at f = 600. e blue line indicates the mean of the distributions
as a function of r. Because f > α/β bimodality results: at r > 0.23 an unexpected peak appears at n = 0. is is particularly clear at
r = 0.25 (shown in cyan). (b) Transition from unimodal to bimodal. If r < 0.23 the distributions are unimodal with a peak at n = 0;
if r > 0.23 a second peak appears. If r is further increased, the peak at n = 0 shrinks, but technically never completely disappears. (c)
Phase diagram summarizing the conditions for anomalous slowdown and bimodality in the stochastic model: the basal transcription rate
ϵ ≡ α/f must be lower than the protein degradation rate β, and the modified fraction r has to be sufficiently higher than the threshold
rt ≡ K/cmax (see Eq. ). Parameters (unless specified): α = 4/min, β = 0.04/min,K = 200 nM, V = (1µm)3, f = 600 and b = 10.

In order to have bimodality with a peak at n = 0, there
should be valuesn1 andn2 (withn1 < n2) such thatR(n) <
1 if 0 ≤ n < n1 or n > n2, and R(n) > 1 for values
n1 < n < n2. In that case, n1 can be identified as the
minimum between the two peaks of ps(n), and n2 marks the
location of the second peak.
e condition R(n) < 1 is equivalent to the condition

Q(n) < 0, where Q(n) is the quadratic polynomial

Q(n) ≡ An2 +Bn+ C, ()

with

A ≡ −ρ,

B ≡ (µ− 1)ρ− 1,

C ≡ µ/f − 1.

Herewe used the abbreviationsµ ≡ α/β and ρ = r/K . is
means that bimodality occurs if and only if Q(n) has two
positive roots. e following three requirements are neces-
sary and sufficient to ensure this:
. Q(0) < 0; this immediately leads to the condition

f > µ. ()

. −B/(2A) > 0, because the top of the parabola Q(n)
(see Eq. ) must occur at a positive n. Because A < 0 this
requires B > 0, leading to

µ > 1, ()

ρ > 1/(µ− 1). ()

. e determinant D ≡ B2 − 4AC must be positive. D
itself can be interpreted as a quadratic function of ρ:

D(ρ) = A′ρ 2 +B′ρ+ C ′,

with

A′ = (µ− 1)2,

B′ = −4[1− µ/f ]− 2(µ− 1),

C ′ = 1.

e constraint in Eq.  ensures that A′ > 0. Furthermore,
it guarantees that B′ < 0. ese two facts together prove
that the minimum of D(ρ) occurs at a positive value of ρ,
since −B′/(2A′) > 0. Also, because (B′)2 − 4A′C ′ > 0
(again using Eq.  and ), we know thatD(ρ) = 0 has two
roots, x1 and x2, and since D(0) = 1 > 0 both roots must
be positive. erefore, D(ρ) is positive provided ρ < x1 or
ρ > x2 (we assume without loss of generality that x1 < x2).
However, since x1 < 1/(µ − 1) < x2, Eq.  eliminates
the range ρ < x1. We calculate x2 and finally arrive at the
condition

0 <1/ρ

<µ+ 1− 2µ/f − 2
√

µ− µ2/f − µ/f + (µ/f)2. ()

To summarize, we proved that bimodality occurs exactly
if f > α/β (required to have a peak at n = 0), α/β > 1, and
Eq.  holds (required to have a second peak). Very similar
results have been obtained for a different stochastic model,
presented in the Supplementary Material of Ref. [].
For general b it is less straightforward to give a full proof

of the conditions of bimodality. Yet, a peak at n = 0 only
requires that ps(n+1)/ps(n) < 1, which for any b is equiv-
alent to f > α/β. erefore, at any b ≥ 1, if f > α/β > 1
bimodality should be expected for some range of r/K .

. Parameter regions of bistability and bimodality

In the main text, we treated bistability in the context of
the deterministic model. is is convenient, because in that
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[Hc(f)] separates the region of parameter space where the cir-
cuit is monostable from the region where it is bistable (according
to the deterministic model). e blue dots (with error bars) indi-
cate where bimodality sets in according to the stochastic model.
A rather high burst size b = 10 is chosen in order not to un-
derestimate the effect of the noise. As long as f < α/β, the bi-
modal and bistable regions coincide. At f > α/β and H ≈ 1,
the stochastic model is bimodal while the deterministic one is not
bistable. Parameters used for the stochastic model: α = 1min−1,
β = 1/25min−1,K = 50 nM, V = (1µm)3 and b = 10.

model the requirements for bistability can easily be calcu-
lated. Would our conclusions change if we, instead, would
have used the stochastic model?
Fig. S shows in which domain of parameter space the

system is bimodal (in the stochastic model); it also shows
where it is bistable (in the deterministic model). Clearly, the
two domains closely overlap, except in the region H ≈ 1,
f > α/β, where the anomalous bimodality occurs that was
discussed above. is means that requiring that the circuit is
not bistable is practically the same as requiring that it is not
bimodal. We are therefore justified to use the simple math-
ematical results from the deterministic model in the main
text.
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