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1 Analysis of doubly-censored data

We implemented the method of [1] to extract the probability distribution of
GDS/FAST stage durations in AD. From the longitudinal dataset in hand we
obtained the bounds for the beginning (X) and the end (Z) times of stages
4-6, XL ≤ X ≤ XR and ZL ≤ Z ≤ ZR. We performed the calculations for
each stage. For a given stage, we disregarded all the patients whose last visit
happened before the given stage, or those whose first visit happened after the
end of the given stage. In some cases, the value ZR was set to ∞ for the lack
of appropriate data (right censored).

If a patient made his/her first visit at stage i, we assumed that the cor-
responding stage began sometime within the last t̃ years before the first visit
(see [7]). This assumption was motivated by the fact that a transition to a new
stage brings about new, noticeable symptoms which can spur a visit to the doc-
tor. Including this assumption in the regression analysis in [7] yielded the mean
stage durations remarkably close to those previously reported in the literature
[5]. Unfortunately, this method cannot be extended to variance calculations (see
below). For this reason, here we used a different approach to calculate the stage
duration variance, but we kept the assumption that the first patients visit was
soon after the beginning of the current stage.

In the figures of the main text, we present the results with the parameter
t̃ = 0.3 years. For stages 5 and 6, the calculated mean and variance values for
stage durations did not vary significantly with the value of t̃. Table 1 shows
the mean values and standard deviations of stage durations calculated by using
t̃ = 0.3 and t̃ = 0.6. We can see that the results for stages 5 and 6 did not change
by more than 0.1 year. However, results for stage 4 seem to depend more on
the value of t̃. This is not surprising because there were very few records in the
database from patients diagnosed with stage 3. Therefore, most information
about the beginning of stage 4 is obtained from the records of patients whose
first visit occurred in stage 4, and increasing the value of t̃ by a month would
increase the calculated mean by up to a month. Note however that the fact that
the values of the standard deviations of stage durations remain relatively large
for different values of t̃, thus making this result independent on the choice of t̃.

The method of [1] requires splitting the time-axis into discrete intervals, both
for the absolute value of stage beginning, x1, . . . , xr, and for the stage duration,
t1, . . . , ts. We have arranged the time-points in such a way that each interval
[XL, XR] contained at least one value xi, and each interval [ZL, ZR] contained at
least one value of xi+tj . We have checked that the results of the calculations do
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t̃, yrs GDS 4 FAST 4 GDS 5 FAST 5 GDS 6 FAST 6
0.3 2.57± 2.3 2.09± 2.11 2.03± 1.70 1.77± 1.87 3.24± 1.65 4.30± 2.35
0.6 2.78± 2.12 2.38± 1.89 2.09± 1.63 1.87± 1.84 3.27± 1.68 4.34± 2.30

Counting 2.48± 3.11 2.14± 2.76 1.89± 1.54 2.37± 2.29 3.42± 1.93 4.51± 2.55

Table 1: Mean values and standard deviations for stage durations (yrs) calcu-
lated by the method of [1] with different values of t̃. Also presented are the
values calculated by the counting method, corresponding to t̃ = 0.3 years and
npat = 5.

not depend significantly on the choice of time-points (uniform and non-uniform
grids), or their number.

Calculations can formally be performed for stage 7, but the iterations con-
verge to a solution where all the probability values are zero except for the largest
time-point. This is expected since we have no upper bound on the time when
stage 7 finishes. For this reason we were not able to obtain any results for
GDS/FAST stage 7 duration.

2 A counting method as an alternative estimate

of the cumulative distribution function

In order to double-check the results obtained by the method of [1], we designed
an alternative method to estimate the cumulative probability distribution func-
tion. This non-parametric method is based on a simple event-counting algo-
rithm.

We consider all the patients whose first visit corresponds to stage i.1 For
a given stage, say, stage i, we calculate the numerical cumulative probability
distribution of the stage duration, Pi(t). For these patients, we assume that
their first visit is at t = 0 (the onset of stage i is therefore on average at
time t = −t̃/2). Consider all the patients who visit the doctor’s office in some
relatively short interval [tj , tj+1], all of whom were at stage i at time 0. The
∆tj = tj+1 − tj is chosen to ensure that each patient within the grouping has

exactly one visit in the interval. Then we can compute N j
t to be the number of

patients who, upon visiting the doctor between times tj and tj +∆tj , transited
to the next stage of the disease. Thus, for all these patients, the duration of
stage i was less that tj . Likewise, we can define N j

s as the number of patients
seen at the clinic in the time interval [tj , tj +∆tj ] who remained in stage i; for
all of these patients, the duration of stage i is greater than tj + ∆tj . For all
the patients who have an office visit in the interval [tj , tj + ∆tj ] we define t̄j

1Because of this restriction, we are not using all the data available. Despite this fact, we
still have a relatively large number of records to perform the calculations (namely, 334, 219
and 84 records for stages 4, 5, and 6 respectively).
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to be the mean time of these office visits, and compute Pi(tj) =
Nj

s

N
j
s+N

j

t

. The

ordered pairs (t̄j , Pi(tj)) for j = 1...M are thus a numerical approximation to
the cumulative distribution function.

We further assume that the underlying probability distribution has finite
support; that is, there exist some tmin for which t ≤ tmin ⇒ P (t) = 0 and
tmax for which t ≥ tmax ⇒ P (t) = 1. We specify tmin and tmax as follows:
set tmin = floor(t1) and tmax = ceiling(tM ). The choice of interval lengths
∆tj is somewhat arbitrary, and defines the discretization grid for the numerical
approximation of the cumulative probability function. We chose this grid to
be non-uniform because the distribution of intervisit durations of the patients
in the dataset was highly non-uniform (see figure 3(d) of the main text). We
chose the time-intervals such that the number of patients, npat, in each of the
intervals was the same. This way we avoided having a time-interval with too
few, or zero, visits. We tried different values of npat from 5 to 25 and found that
the results for the mean and standard deviation values only weakly depend on
the choice of npat.
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Figure 1: The comparison of cumulative probability distributions for stage du-
rations obtained by two methods. The method of [1] is shown by thick lines
with circles: black for GDS and gray for FAST stages. The counting method
described here is presented by thin lines; we used npat = 15 and t̃ = 0.3.

We compared the cumulative probability distribution function obtained by
the method of [1] with that of the counting method described here. The results
are presented in figure 1. We can see that the iterative method described in the
previous section converges to solutions close to those obtained by the counting
method. This means that the iterative method did not converge to a spurious
solution. The last row of table 1 presents the mean values and standard devi-
ations of stage durations calculated by the counting method. Again, they are
similar to those obtained by the method of [1]. In particular, the result that the
standard deviation values are relatively large, is confirmed by these calculations.
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The advantage of the simple counting method is that it naturally gives a
way to estimate the cumulative probability distribution of stage durations, in a
very simple, non-iterative way. The disadvantage is that to get accurate results,
we need to have a relatively large number of patients; with the amount of data
available to us, the obtained solution is rather noisy, see figure 1.

3 The linear regression method

Finally, we briefly review the regression method used in [5, 7], and explain why
it was not used in the present study.

The first step in this method is to classify each patient based on their med-
ical record, that is, at which stage they came to the doctor at their first and

subsequent visit (for a disease with n stages, there are n(n+1)
2 possible transition

classes). For a patient in transition class i → j, with i ≤ j, the time elapsed

between two doctor’s visits is given by tij =
∑j

s=i xsTs, where Ts is the duration
of stage s for the given patient, and the completion coefficients, xs, satisfy the
following: xs = 0 if a patient did not enter stage s; 0 < xs < 1, if a patient
did not fully complete stage s; and xs = 1, if a patient fully transited stage s.
The values Ts and xs are unknown, and the values tij , are determined from the
patient data set.

We assume that Ts is a random variable with an unknown distribution, and
that the completion coefficients for partial stage completion are distributed as
U(0, 1), independent of Ts. Define a new random variable Zi = xiTi, whenever
a patient starts but does not fully complete stage i in the time-interval between
the two visits. Since each of the two random variables in Zi is independent of
one another, we have

E[Zi] =
1

2
E[Ti],

V ar[Zi] =
V ar[Ti]

3
+

E2[Ti]

12
.

Therefore, for a patient set entering at stage i and exiting at stage j, with total
time-interval ti,j , the total mean and variance can be calculated as:

E[ti,j ] =
E[Ti]

2
+

j−1∑

s=i+1

E[Ts] +
E[Tj ]

2
, (1)

V ar[ti,j ] =
V ar[Ti]

3
+

E2[Ti]

12
+

j−1∑

s=i+1

V ar[Tsx] +
V ar[Tj ]

3
+

E2[Tj ]

12
. (2)

In the case of an i → i transition, only the first term in each equation is used.
Under the assumption that the patients from transition classes i → j with

j > i tend to make their initial visit at the beginning of a stage, rather than
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in the middle or end of that stage, the completion coefficient for classes i → j
with j > i is given by 1. This results in the following system:

E[ti,j ] = E[Ti] +

j−1∑

s=i+1

E[Ts] + E[Tj ]/2, j > i, (3)

E[ti,i] = E[Ti]/2. (4)

There are two drawbacks of the regression method that precluded us from
using it in the present paper. One inherent problem is the assumption of in-
dependence of the completion coefficients and the patients’ stage durations.
Extensive testing using artificial data sets showed that despite this fact, the
method gives reasonable predictions for the mean stage durations. However,
it cannot be extended to calculating the variance, where the inherent interde-
pendence of the completion coefficients and stage durations causes the current
method to be very inaccurate. In a validation test of the regression method
using a data set in which each stage of a 4-stage disease were i.i.d. with mean
3 and variance 1/3, with 1000 total patients in the set, the method produced
a 95% confidence interval calculating the mean to 7% accuracy for each stage,
yet the 95% confidence interval for calculating the variance was at best 20% for
each stage.

Another assumption that the regression method implicitly makes is the in-
dependence of different stage durations. In the light of our previous analysis
[7], as well as many other reports (see e.g. [2]), it appears that there are cer-
tain subgroups among AD patients that differ by their progression patterns. In
particular, it has been suggested that slow progressors remain slow, while rapid
progressors remain rapid. This means that the durations of different GDS/FAST
stages are not independent. Therefore, the regression method should not be used
without first separating the patients in different classes, as was done in [7].

4 Studying long-term trends

The patient data used in this study come from a longitudinal study conveyed
between 1983 and 2006. An important question is the constancy of the diagnos-
tic and clinical process in the course of 23 years. Both GDS [3] and FAST [4]
staging procedures have been fully developed by 1986 (the start of the dataset).
The reliability of the FAST staging has been studied in [6]. Different raters
were asked to independently determine the AD stages of a number of patients,
and such variables as “rater agreement” and “rater consistency” were evalu-
ated and found to be “excellent”. It was concluded that “FAST is a reliable
and valid assessment technique for evaluating functional deterioration in AD
patients throughout the entire course of the illness”.

Next we examine the patients in terms of their progression stages and ask
if there are any significant differences between patients that came early in the
study and late in the study. We split all the patients in the dataset into two
parts: the patients whose first visit occurred before 1994 (early cohort), and
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Figure 2: A comparison between early (a) and late (b) cohorts of the patients.
The histograms represent the FAST stages at the first visit to the clinic.

those whose first visit occurred after 1994 (late cohort). There were 335 and 313
patients in the two cohorts respectively. In figure 2(a,b) we present histograms
of progression stages at the fist visit, recorded for the patients in the early
and the late cohorts. We can see that the distribution is similar. When we
examine the histograms of all the stages recorded for the patients in the two
subgroups (not shown), we can see that there is a difference. Namely, there
are proportionally fewer patients seen in late stages of AD in the late cohort,
compared to those in the early cohort. This is the consequence of the fact that
in the late cohort, some of the patients did not progress to later stages before
the end of the study (see also (a) at the end of this section). Thus the early and
the late cohorts of the patients do not demonstrate any significant differences
in terms of stage distributions.

Further, it is theoretically possible that in the course of 23 years the progres-
sion rates have changed. A significant change in progression rate could explain
the large variance we are measuring in the whole cohort, which combines the
data from all the patients. To eliminate this possibility, we have performed the
following analysis. We used the two cohorts described above, and performed
the analysis of stage durations separately for each subgroup. Note that for the
patients in the early cohort, some of their subsequent visits may have happened
after 1994, but the majority of the visits falls in the first half. We have cal-
culated the mean stage durations together with their standard deviations for
stages 4-6 for the two groups. It turned out that

(i) the standard deviations of stage durations in each group were similar to
each other, and similar to the ones calculated for the whole cohort, and

(ii) the mean values of the stage durations in the two groups were not signifi-
cantly different.

We also performed the following additional tests. (a) In the first patient group
described above, we ignored all the visits that happened after 1994, and calcu-
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lated the statistics of this group, compared to those of the second group (the
patients whose first visit happened after 1994). (b) We also took random sam-
ples of all the patients regardless of the timing of their first visits, and computed
the statistics for such groups. In both cases, conclusions (i) and (ii) held true.
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