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Supplementary Information

Schilling et al.:
Cell-sorting at the A/P-compartment boundary in the Drosophila wing primordium: a computational
model to consolidate observed non-local effects of Hedgehog signaling.

1 Discussion of Parameter Values

1.1 Parameter Set of the Differential Equations

For convenience we display again the system of differential equations describing the Hh signaling pathway:

∂[Hh]

∂t
= DHh∇2[Hh]− kHh [Hh] + kP0 Hh − k+

Hh·Ptc[Hh][Ptc] + k−HhPtc[Hh Ptc], (S.1)

∂[Ptc]

∂t
= kA0 Ptc + kALxSmo,1 [Lx Smo]− kPtc − k+

Hh·Ptc[Hh][Ptc] + k−HhPtc[Hh Ptc], (S.2)

∂[Hh Ptc]

∂t
= −kHhPtc [Hh Ptc] + k+

Hh·Ptc[Hh][Ptc]− k−HhPtc[Hh Ptc], (S.3)

∂[Lx]

∂t
= −kPtc·Lx [Ptc][Lx] + kLxout

[Lxout]− kLx[Lx]

− k+
Lx·Smo[Lx][Smo] + k−LxSmo[Lx Smo], (S.4)

∂[Smo]

∂t
= k0 Smo − kSmo [Smo]− k+

Lx·Smo[Lx][Smo] + k−LxSmo[Lx Smo], (S.5)

∂[Lx Smo]

∂t
= −kLxSmo [Lx Smo] + k+

Lx·Smo[Lx][Smo]− k−LxSmo[Lx Smo], (S.6)

∂[TMx]

∂t
= k0 TMx + kALxSmo,2 [Lx Smo]− kTMx[TMx], (S.7)

where

DHh : diffusion constant,

[X] : concentration of protein X,

[L R] : concentration of complex of ligand [L] (Hh/Lx) and receptor [R] (Ptc/Smo),

ksupsub : rate constants with

sub = 0X : zeroth, sub = X : first, sub = X · Y : second order

sup = A/P : production in A/P compartment,

sup = +/− : reversible complex formation/degradation.

In Hh signaling, as in most other signaling pathways, quantitative data in terms of absolute molecular
concentrations and rate constants is scarce. We therefore concentrated our parameter exploration on the
better-known shapes (mostly based on antibody stainings) of the various concentration gradients. The
parameter set displayed in Table (S.1) best describes known antibody staining data (from Suppl. Ref. [1])
as well as our own experimental observations.

We measured rounded smo− clones in the anterior compartment (as an indicator for the priming of
cells for boundary formation) up to 20 µm from the compartment boundary. Here we assume, that he
priming of cells for boundary formation is due to the increased expression levels of the transmembrane
protein TMx. Parameters were chosen such that the region of increased TMx expression roughly cor-
responds to the region of rounded smo− clones (see Figure S1). Furthermore, the relative increase in
TMx expression in the boundary region had to be large enough to obtain a straightened compartment
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boundary (see Fig. (S4)) and smooth ectopic boundaries of smo− clones in the boundary region.

Protein concentrations are given in arbitrary units (a.u.), as mostly data for ratios or normalized
intensities of the various gradients is available. All variables are expressed as multiples of the characteristic
length L = 1 µm, the characteristic time T = 1 h and the characteristic concentration U = 1 a.u.. With
the help of these characteristic variables we transformed the system of partial and ordinary differential
equations (S.1-S.7) into its non-dimensional form [2].

Table (S.1). Parameter set of the system of differential equations (S.1-S.7).

Zero-Order Prod. k0 = 1 a.u./h
kP0 Hh 5 k0

kA0 Ptc 5 k0

k0 Smo 5 k0

k0 TMx 0.2 k0

First-Order Prod. k1 = 1/h
kALx Smo,1 10 k1

kALx Smo,2 20 k1

kLxout
k1

First-Order Decay
kHh 2 k1

kPtc 30 k1

kHhPtc 5 k1

kLx 3 k1

kSmo 10 k1

kLxSmo 10 k1

kTMx k1

k−HhPtc k1

k−LxSmo k1

Second-Order Prod. k2 = 1/((a.u.) · h)
kPtc·Lx 5 · 104 k2

k+
Hh·Ptc 600 k2

k+
Smo·Lx 60 k2

Concentrations
Lxout 2 a.u.
Diffusion Constant
DHh 2 · 10−13 m2/s = 720 µm2/h

The chosen value for the Hh diffusion constant, DHh = 2 · 10−13m2/s, is is in the same order of
magnitude as the measured effective diffusion coefficient of GFP-Dpp: DDpp = (1± 0.5) · 10−13m2/s [3].
Note that both diffusion constants are about three orders of magnitude smaller than typical aqueous
diffusion coefficients of proteins in free solution. However, the diffusion term in eq. (S.1) represents the
mass exchange of Hh between (and not within) cells, which is presumably not a free aqueous diffusion
process.
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1.2 Parameter Exploration of the Energy function

We explored the parameter space of the constants entering the normalized energy function, Λ and Γ,
in steps of 0.01 for both parameters (simulations not shown). The goal was to find a parameter set in
agreement with our experimental data and with data describing general tissue topology properties. In
general, stable parameter sets (which allowed to simulate growth) with a higher ratio of Λ to Γ resulted in
straighter compartment boundaries and rounder smo−clones in the region of enhanced TMx expression
(Figure 5). In these regions of parameter space, the relative contribution of the line tension term to
the total energy of the tissue is enhanced and thus changes in the line tension contribution due to Hh
signaling have a stronger impact. The chosen parameter set of Λ = 0.2 and Γ = 0.03 is in agreement
with our experimental findings and with data published in [4, 5].

1.3 Parameter Exploration of the Kinetic Parameters

In our model, the sole interface between Hedgehog pathway activity and mechanical outcome in the
tissue is the “TMx”-molecule. More specifically, the relative difference of TMx levels between two cells
influences the contraction properties of the edge-interface between the two cells. Below we explore this
difference systematically, assuming steady-state conditions. For the concentration of the transmembrane
protein we have (see Fig. (3) and eqn. (S.7))

∂[TMx]

∂t
= k0 TMx + kALxSmo,2 [Lx Smo]− kTMx[TMx]. (S.8)

Hedghog target genes are only present in the anterior compartment, thus we assume that the active
form of Smoothened, [Lx Smo], leads to an (enhanced) expression of the Hedgehog target genes only in
the anterior compartment. This is reflected in the definition of the production rate kALxSmo,2, where the
superscript A denotes a production rate only present in the anterior compartment. The concentration of
the active form of Smoothened, [Lx Smo], is approximately zero (see panel C of figure S1) outside the
Hedgehog stripe in the anterior compartment. Thus we obtain from eq. (S.8) for the basal concentration
of transmembrane protein outside the Hedgehog stripe:

∂[TMx]basal
∂t

= k0 TMx − kTMx[TMx]basal. (S.9)

For the steady state basal TMx concentration we get from eq. (S.9)

0 = k0 TMx − kTMx[TMx]basal ⇒
[TMx]basal = k0 TMx/kTMx. (S.10)

In the region of enhanced concentration of the active form of Smoothened we get from eq. (S.8) in steady
state

[TMx] = k0 TMx/kTMx + kALxSmo,2/kTMx[Lx Smo]

= [TMx]basal + kALxSmo,2/kTMx[Lx Smo]. (S.11)

The highest concentration difference between neighboring cells is between P1 (basal concentration of
transmembrane protein TMxbasal) and A1 (highest concentration TMxA1

max) cells (see Figure 3D), their
shared edges define the compartment boundary between posterior and anterior compartment.

For the ratio of transmembrane concentrations between a A1 and P1 we have

r =
[TMx]A1

max

[TMx]basal
= 1 + kALxSmo,2/k0 TMx[Lx Smo]

A1
max. (S.12)
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[Lx Smo]
A1
max is the maximal concentration of [Lx Smo] in the anterior compartment. By varying

kALxSmo,2 we explored in Fig. (S.4) the dependency of boundary straightness on the ratio r of [TMx]
levels on either side of the boundary.

2 Modeling Growth and the Hh Signaling Pathway

All simulations were started with 220 cells; the initial concentrations of all proteins within each cell
was set to zero. Between cells and the extracellular medium we applied zero flux boundary conditions.
Mimicking the relatively quiescent first instar stage of the larvae, the system of differential equations
(S.1-S.7) was solved without cell divisions within the first 20 h simulated time. From t = 20 h on, we
considered cell devision and energy minimization after each simulated minute, whereas the system of
differential equations was simulated with a temporal resolution of ∆t = 1 s. Simulations were stopped,
when the tissue was grown up to 6000 cells. This roughly corresponds to the number of cells in the wing
pouch of a third instar larva.

3 Numerical Solution of the System of Differential Equations

The Operator Split approach (OS) applied in this study is based on the assumption that chemical reactions
and cell-to-cell transport by diffusion occur on different time scales, thus transport and chemical reaction
processes can be decoupled. Diffusion and reaction operators are separated and solved sequentially in
each time step ∆t [6, 7].

3.1 Langmuir Assumptions

The kinetics of the reversible binding of a ligand L (here: Hh/Ptc) to its (immobile) receptor R (here:
Lx/Smo) is given by

∂[LR]

∂t

∥∥∥∥
reac

= k+
L R[L][R]− k−L R[LR]. (S.13)

In local equilibrium of binding of receptor to its ligand, we obtain

∂[LR]

∂t

∥∥∥∥
reac

= 0⇒ [LR]

[L][R]
=
k+
LR

k−LR

= KLR. (S.14)

The total amount of receptor is given by the sum of free and complex bound receptor

[RT ] = [R] + [LR]. (S.15)

With eq. (S.14) we get for the relation of complex to total receptor in the local equilibrium

[LR] = ΘRT , (S.16)

where

Θ =
KLR[L]

1 +KLR[L]
(S.17)

is the Langmuir equation [8]. It relates the adsorption of molecules onto a limited number of binding
sites to the concentration of [L] in the solution at a fixed temperature. Θ is the relative coverage of the
binding sites. The bigger KLR, the closer is Θ to its asymptotical value of 1.
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3.2 Algorithm

Below, [X]n denotes the concentration obtained in a previous time step, [X]∗n+1 is an intermediate
concentration, and [X]n+1 is the concentration at the end of the current time step. In each time step,
the following algorithm is executed:

1. Computation of the concentration of complex in local equilibrium [LR]n from [L]n by eq. (S.16)

[LR]n = Θn[R]T,n =
KLR[L]n

1 +KLR[L]n
. (S.18)

2. Calculation of intermediate concentration of ligands Hh and Lx

• Ligand Hedgehog:
We assume that cell-to-cell diffusion occurs on a different time-scale than ligand receptor
binding and unbinding. This allows us to simulate the diffusion and zero-order production and
first-order decay of Hedgehog without changing the receptor-bound concentration [Hh Ptc].
Thus we obtain from eq. (S.1)(

1

∆t
+ kHh −DHh∇2

)
[Hh]∗n+1 =

1

∆ t
[Hh]n + k0

Hh. (S.19)

in which [Hh]∗n+1 is the intermediate concentration of Hh within each cell. Eq. (S.19) is
discretized in space by the Finite Volume Method (FVM) [9], in which the domain is divided
into a number of control volumes, here polygons defined by the vertices of tissue cells. The
differential form of the governing equation is integrated over each control volume resulting in
a set of ordinary differential equations for cell-averaged concentrations. By construction, the
FVM conserves mass in each individual cell.

• Lipid like ligand Lx
Assuming local equilibrium of complex [LxSmo] and no change in Ptc concentration we obtain
by integration:

[Lx]∗n+1 =
e−∆ty (−kLxout

[Lxout] + kLx[Lx]n + kPt·Lx[Lx]n[Pt]n) + kLxout
[Lxout]

y
, (S.20)

where
y = kLx + kPtc·Lx[Pt]n.

3. Evaluation of the total concentration of the ligand

[L]
∗
T,n+1 = [L]

∗
n+1 + [LR]n. (S.21)

4. Calculation of the free ligand concentration [L]n+1 from the total concentration [L]
∗
T,n+1

Substituting the Langmuir equation into the definition of the total concentration [L]
∗
T,n+1 results

in:

[L]
∗
T,n+1 = [L]n+1 +

KLR[L]n+1

1 +KLR[L]n+1

[R]T,n. (S.22)

Solving the above equation for [L]n+1, we obtain:

[L]n+1 =
a+

√
a2 + 4KLR [L]

∗
T,n+1

2KLR
, (S.23)

where
a = [L]

∗
T,n+1KLR − 1−KLR[R]T,n.
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5. Calculation of intermediate values of the complexes [LR]∗n+1 and receptors[R]
∗
n+1

From eq. (S.22) follows

[LR]∗n+1 = [L]
∗
T,n+1 − [L]n+1, (S.24)

[R]∗n+1 = [R]T,n − [LR]∗n+1. (S.25)

6. Kinetic reactions
Considering relatively slow concentration changes of reaction parterns, we solve the pseudo first-
order approximations of all kinetic reaction equations (except for those related to Hh production
and decay) analytically, resulting in exponential expressions:

(a) Complexes

[LR]n+1 = [LR]∗n+1 exp (−∆t kLR). (S.26)

(b) Receptor Patched

[Ptc]n+1 =

(
kA0 Ptc

kPtc
+
kALx Smo,1

kPtc
[Lx Smo]n+1

)(
1− e−kPtc∆t

)
+ e−kPtc∆t[Ptc]∗n+1 (S.27)

(c) Receptor Smoothened

[Smo]n+1 =
k0
Smo

kSmo

(
1− e−kSmo∆t

)
+ e−kSmo∆t[Smo]n+1. (S.28)

(d) Transmembrane protein

[TMx]n+1 =

(
kA0 TMx

kTMx
+
kALx Smo,2

kTMx
[Lx Smo]n+1

)(
1− e−kTMx∆t

)
+ e−kTMx∆t[TMx]∗n+1 (S.29)

7. Equilibration of complexes and receptors

[L]T,n+1 = [L]n+1 + [LR]n+1, (S.30)

[R]T,n+1 = [R]n+1 + [LR]n+1. (S.31)

8. Repetition of entire procedure for each time step



A.7

References

1. Casali A, Struhl G (2004) Reading the hedgehog morphogen gradient by measuring the ratio of
bound to unbound patched protein. Nature 431: 76–80.

2. Dillon R, Othmer HG (1999) A mathematical model for outgrowth and spatial patterning of the
vertebrate limb bud. Journal of Theoretical Biology 197: 295–330.

3. Kicheva A, Pantazis P, Bollenbach T, Kalaidzidis Y, Bittig T, et al. (2007) Kinetics of morphogen
gradient formation. Science 315: 521–5.
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