Algorithm S2. (Hybrid H-bond and MSM based) Exchange State Identification Algorithm

Input:

Chemical Shift Values per residue. $CS = \{CS_1, CS_2, \dots, CS_{33}\}$ where $CS_i \in \mathcal{R}^N$ where N is the total number of frames in the simulation. Macro states from MSMBuilder. $MS = \{MS_1, MS_2, \dots, MS_M\}$ where M is the total number of macrostates. H-bond frames in minor state from Algorithm S1. $HB = \{HB_1, HB_2, \ldots, HB_H\}$ where H is the total number of relevant H-bonds found by Algorithm S1. function SUPERSTATESEARCH(CS, MS, HB) $SC \gets \emptyset$ for $i \leftarrow 1 \dots M$ do $\triangleright M = 40$ in this study if $MS_i \cap HB > \delta$ then $\triangleright \ \delta$ is the minimum intersection fraction $\delta = 0.002$ $SC \leftarrow SC \cup MS_i$ \triangleright SC Identifies relevant macrostates to reduce search end if end for for $k \leftarrow 1 \dots \lfloor |SC|/2 \rfloor + 1$ do

for $z \leftarrow 1 \dots \binom{|SC|}{k}$ do $\triangleright SC(x)$ is one of $\binom{|SC|}{k}$ macrostate combinations in SC $StatesA \leftarrow SC(z)$ $StatesB \leftarrow \{MS_1, MS_2, \dots MS_{40}\} \setminus StatesA$ $\Phi_{ex} \leftarrow \text{Estimate}\Phi_{ex}(\text{StatesA}, \text{StatesB}, \text{CS})$ \triangleright See Equation (2) in main paper $\rho_{new} \leftarrow \rho(\mathbf{\Phi}_{\mathbf{ex}}, \mathbf{R}_{\mathbf{ex}})$ if $\rho_{new} > \rho_{best}$ then $\rho_{best} \leftarrow \rho_{new}$ $SuperA \leftarrow StatesA$ $SuperB \leftarrow StatesB$ end if end for end for return SuperA, SuperB, ρ_{best} end function